Multi-Photon Absorption in Optical Pumping of Rubidium Xinyi Xu (ID PIN:A51481739) Department of Physics and Astronomy Michigan State University

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Photon Absorption in Optical Pumping of Rubidium Xinyi Xu (ID PIN:A51481739) Department of Physics and Astronomy Michigan State University Multi-photon Absorption in Optical Pumping of Rubidium Xinyi Xu (ID PIN:A51481739) Department of Physics and Astronomy Michigan State University Abstract: In optical pumping of rubidium, a new kind of absorption occurs with a higher amplitude of radio frequency current. From measurement of the corresponding magnetic field value where this absorption occurs, there is a conclusion that it is multi- photon absorption. Both the degeneracy and energy of photons contribute to the intensity. I. INTRODUCTION considering the interaction with the nucleus. According to quantum mechanics, in the Optical pumping is a method to explore presence of a weak magnetic field, the the atomic structure of atoms. An external amount of energy level splitting, or Zeeman magnetic field causes Zeeman Effect, and Effect, is proportional to the value of the creates sublevels based on the Hyperfine external magnetic field. The energy Splitting. The atoms used in this experiment difference between sublevel M and M+1 can are rubidium atoms. Electronic be calculated as configuration in the standard notation is 2 2 6 2 10 2 6 W(M+1) – W(M)=ΔW= μ0gF B (1) 1s 2s 2p 3s 3d 4s 4p 5s. where W is the interaction energy, ΔW is the With circularly polarized resonance energy splitting, μ0 is magnetic constant radiation, a rubidium atom can be excited 2 (vacuum permeability), gF is the g factor and deexcited between S1/2 ground state and 2 the P1/2 excited state. Take what occurs to atoms at F=1, M=0 2 sublevel of S1/2 ground state as an example Figure 1. Vector relationship of magnetic fields and angular momenta components involved in the experiment, [1] where B is the static applied magnetic field, Brf is the varying radio frequency (RF) magnetic field, F is the total angular momentum of the atom, M is the component of F along the applied magnetic field, I is the nuclear Figure 2. The transitions involved in optical spin angular momentum. S is the electron spin pumping of Rb87, and the hyperfine splitting and angular momentum. L is the electron orbital Zeeman splitting we used. angular momentum. of optical pumping. By absorbing a photon, photon absorption. The absorption of two ground-state atoms in the F=1, M=0 sublevel photons with energy of hυ couldn’t occur jump to the F=1, M=1 sublevel of the excited simultaneously. After absorbing the first state; atoms in the excited state decay to photon, the atom reach a virtual energy state. either M=0 or M=1 ground-state sublevels. This state is not an eigenstate and unstable. Eventually, all atoms will be at F=1, M=1 The atom would either continue to absorb a sublevel of ground state and stop absorption second photon to another eigenstate or emit [2]. If an atom at ground-state absorb an a photon to the original eigenstate. [3] The external photon and then deexcites to the probability of TPA should be much smaller F=1, M=1 sublevel from the F=1, M=0 than the probability of single-photon sublevel, the thermodynamic equilibrium is absorption. Only if an atom is located among broken, and this atom will absorb incoming enough photons can this double absorption, light again. That is the whole process of or double collision, occurs. optical pumping. In multi-photon absorption, the relative The rubidium atoms absorb photons and energy levels of the ground electronic state get energy of (μ0gFB) to break and the resonance transition frequency can thermodynamic equilibrium. be calculated as Traditionally, optical pumping N hυ=μ0gF B (2) experiments focus on single photon where υ is the transition frequency in Hz, h absorption, whereas we analyze multi- is Planck’s constant, and N=2,3,4… photon absorption. Take two-photon When rubidium absorption cell is absorption (TPA) as an example of multi- considered as a medium, for single-photon absorption, B of Figure 1, the static applied magnetic Iout=Iin exp(-nσL) (3) field, or horizontal magnetic field. A beam where Iout is the intensity of transmitted light, of light (photons) at a certain wavelength of Iin is the intensity of incoming light, n is the 780nm passed through a vapor of the Rb volume density (concentration) of the atoms, and the intensity of transmitted light medium, σ is the absorption cross-section is measured. With Brf=0, the rubidium atoms and L is the thickness of medium. For reached thermodynamic equilibrium. Such double-photon absorption, the intensity after condition that no incoming light was the sample is absorbed providing a transmitted photon signal that is maximal and stable. When the (4) whole magnetic field value B is the where α= nσ, β is the coefficient responsible corresponding value of RF frequency υ, i.e. for the two photon absorption. [4][5] RF B = N hυ / (μ0gF) (5) amplitude influence n and σ, then influence atoms were pumped to another ground state Iout. sublevel and could be excited by incoming light. The transmitted intensity decreased II. METHODS AND THE SETUP because the absorption increased. Thus, a In laboratory, a radio frequency signal sharp drop of signal can be observed. (RF) was used to excite coils around the A rubidium discharge lamp were used to rubidium absorption cell to produce the Brf create the necessary light (photons). of Figure 1. A specific frequency and Including an interference filter (diameter amplitude of Brf was used. The current in an 50mm), a linear polarizers in rotatable additional set of coils was varied to modify mounts (diameter 50mm) and a quarter optical axis is shown as Figure 3. They wavelength plate in rotatable mount to get should be adjusted at the same height before polarized light of 780nm wavelength. The the experiment started. polarized light was passed through a cell Outside absorption cell are three pairs of with rubidium vapor (Rubidium Absorption Helmholtz coils (see Fig. 4), consisting of Cell in Figure 3). The photons passing the Vertical Field Coils, the Horizontal Field through the rubidium vapor were detected Coils, and the Horizontal Sweep Field Coils using a silicon photodiode from Photonic (Sweep Field Coils). For all coils, the Detectors Inc. PDB-C108. The light emitted magnetic field value is proportional to by deexicitation of the excited states is current. During measurements, the hardware isotropic and too weak to influence signal, so Figure 4(a) is covered by a black box to we assume detector only detects light from minimize stray signals from ambient light. Rb discharge lamp. Two plano-convex Other main equipment in this experiment lenses (diameter 50mm, focal length 50mm) includes FLUKE 6060B Synthesized RF are also used to minimize spherical Signal Generator (used to create radio aberrations. The apparatus arrangement on frequency signal), TDS 3000B Series Digital Figure 3. The apparatus arrangement for optical pumping. The optics on optical axis Figure 4. The apparatus arrangement for optical pumping. (a) Left: Helmholtz coils and RF coils around rubidium absorption cell. (b) Right: The front panel of main equipment. (http://teachspin.com /instruments /optical_pumping/index.shtml) Phosphor Oscilloscopes, Teachspin Optical y = 9.9105ln(x) - 42.458, (6) Pumping Apparatus, and three digital Nevertheless, because the actual amplitude voltmeters. of current was found to change randomly The amplitude of RF in this experiment when the digital amplitude was increased was shown on FLUKE 6060B Synthesized from 18.0dBm to 19.0dBm, and because RF Signal Generator. Amplitude is described there were systematic errors, the real with unit dBm. The maximum it can reach is amplitude of RF coils’ current was used. 19dBm, which was used frequently. The rubidium vapor cell temperature Amplitude of more than 13dBm was was set at 50.0℃. The effect of the external uncalculated. The relationship between magnetic field was minimized by adjusting actual amplitude of RF coils’ current (x) and both the direction of optical axis, and the digital amplitude shown on the signal Helmholtz Vertical Field. generator (y) was experimentally determined to be III. MEASUREMENTS AND RESULTS A. Optical Pumping and Single-photon photon with energy (hυ). Absorption at Lower Radio Frequency Single-photon absorption at lower radio /Lower Magnetic Field frequency/magnetic field is a traditional RF frequency was limited to be <106Hz optical pumping experiment. It can be used (1MHz). At a specific RF frequency, the for calibration. light intensity was measured as a function of the primary Brf field (see Figure 1). Sharp B. The Magnetic Field of All Dips and reduction in light intensity signaled photon Multi-Photon Absorption absorption at several points (see Figure 5). When the amplitude of RF is increased When the sum of magnetic field caused by sufficiently, some new dips appear. Figure 6 current in both main coils and sweep coils satisfy units B =μ0gF/( hυ) (7) , arbitrary Then a rubidium atom can be excited by a Signal units , arbitrary Signal Time/Sweep Coil Current (arbitrary units) Figure 5. Frequency=0.4MHz, the dips of 87Rb Figure 6. Signals when Brf frequency was with decreasing RF amplitude on oscilloscope. 0.3MHz. Upper graph is for the case of an RF Right ones in every region are caused by amplitude of 19dBm; the lower graph was unavoidable sudden decrease of sweep current, measured with RF amplitude of 18dBm. and they are not related to this experiment. shows one of these new dips. As we can see, satisfy the equation (5) the small dip almost disappear when B = N hυ/( μ0gF). amplitude if 18dBm. The dips had been or B should be proportional to RF frequency, observed in the former experiments will be and the slope should be [Nh/(μ0gF)].
Recommended publications
  • Optical Pumping of Stored Atomic Ions (*)
    Ann. Phys. Fr. 10 (1985) 737-748 DhCEMBRE 1985, PAGE 131 Optical pumping of stored atomic ions (*) D. J. Wineland, W. M. Itano, J. C. Bergquist, J. J. Bollinger and J. D. Prestage Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80303, U.S.A. Resume. - Ce texte discute les expkriences de pompage optique sur des ions atomiques confints dans des pikges tlectromagnttiques. Du fait de la faible relaxation et des dtplacements d'energie trbs petits des ions confine$ on peut obtenir une trb haute rtsolution et une tres grande prkision dans les exptriences de pompage optique associt a la double rtsonance. Dans la ligne de l'idee de Kastler de (( lumino-rtfrigtration H (1950), l'tnergie cinttique des niveaux des ions confines peut Ctre pompke optiquement. Cette technique, appelee refroidissement laser, rtduit sensiblement les dtplacements de frtquence Doppler dans les spectres. Abstract. - Optical pumping experiments on atomic ions which are stored in ekG tromagnetic (( traps )) are discussed. Weak relaxation and extremely small energy shifts of the stored ions lead to very high resolution and accuracy in optical pumping- double resonance experiments. In the same spirit of Kastler's proposal for (( lumino refrigeration )) (1950), the kinetic energy levels of stored ions can be optically pumped. This technique, which has been called laser cooling significantly reduces Doppler frequency shifts in the spectra. 1. Introduction. For more than thirty years, the technique of optical pumping, as originally proposed by Alfred Kastler [I], has provided information about atomic structure, atom-atom interactions, and the interaction of atoms with external radiation. This technique continues today as one of the primary methods used in atomic physics.
    [Show full text]
  • H20 Maser Observations in W3 (OH): a Comparison of Two Epochs
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 7-13-2012 H20 Maser Observations in W3 (OH): A comparison of Two Epochs Steven Merriman DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Physics Commons Recommended Citation Merriman, Steven, "H20 Maser Observations in W3 (OH): A comparison of Two Epochs" (2012). College of Science and Health Theses and Dissertations. 31. https://via.library.depaul.edu/csh_etd/31 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. DEPAUL UNIVERSITY H2O Maser Observations in W3(OH): A Comparison of Two Epochs by Steven Merriman A thesis submitted in partial fulfillment for the degree of Master of Science in the Department of Physics College of Science and Health July 2012 Declaration of Authorship I, Steven Merriman, declare that this thesis titled, `H2O Maser Observations in W3OH: A Comparison of Two Epochs' and the work presented in it are my own. I confirm that: This work was done wholly while in candidature for a masters degree at Depaul University. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
    [Show full text]
  • Quantum Mechanics of Atoms and Molecules Lectures, the University of Manchester 2005
    Quantum Mechanics of Atoms and Molecules Lectures, The University of Manchester 2005 Dr. T. Brandes April 29, 2005 CONTENTS I. Short Historical Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 I.1 Atoms and Molecules as a Concept . 1 I.2 Discovery of Atoms . 1 I.3 Theory of Atoms: Quantum Mechanics . 2 II. Some Revision, Fine-Structure of Atomic Spectra : : : : : : : : : : : : : : : : : : : : : 3 II.1 Hydrogen Atom (non-relativistic) . 3 II.2 A `Mini-Molecule': Perturbation Theory vs Non-Perturbative Bonding . 6 II.3 Hydrogen Atom: Fine Structure . 9 III. Introduction into Many-Particle Systems : : : : : : : : : : : : : : : : : : : : : : : : : 14 III.1 Indistinguishable Particles . 14 III.2 2-Fermion Systems . 18 III.3 Two-electron Atoms and Ions . 23 IV. The Hartree-Fock Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24 IV.1 The Hartree Equations, Atoms, and the Periodic Table . 24 IV.2 Hamiltonian for N Fermions . 26 IV.3 Hartree-Fock Equations . 28 V. Molecules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35 V.1 Introduction . 35 V.2 The Born-Oppenheimer Approximation . 36 + V.3 The Hydrogen Molecule Ion H2 . 39 V.4 Hartree-Fock for Molecules . 45 VI. Time-Dependent Fields : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48 VI.1 Time-Dependence in Quantum Mechanics . 48 VI.2 Time-dependent Hamiltonians . 50 VI.3 Time-Dependent Perturbation Theory . 53 VII.Interaction with Light : : : : : : : : : : : : : : : : : : : : : : :
    [Show full text]
  • Optical Pumping: a Possible Approach Towards a Sige Quantum Cascade Laser
    Institut de Physique de l’ Universit´ede Neuchˆatel Optical Pumping: A Possible Approach towards a SiGe Quantum Cascade Laser E3 40 30 E2 E1 20 10 Lasing Signal (meV) 0 210 215 220 Energy (meV) THESE pr´esent´ee`ala Facult´edes Sciences de l’Universit´ede Neuchˆatel pour obtenir le grade de docteur `essciences par Maxi Scheinert Soutenue le 8 octobre 2007 En pr´esence du directeur de th`ese Prof. J´erˆome Faist et des rapporteurs Prof. Detlev Gr¨utzmacher , Prof. Peter Hamm, Prof. Philipp Aebi, Dr. Hans Sigg and Dr. Soichiro Tsujino Keywords • Semiconductor heterostructures • Intersubband Transitions • Quantum cascade laser • Si - SiGe • Optical pumping Mots-Cl´es • H´et´erostructures semiconductrices • Transitions intersousbande • Laser `acascade quantique • Si - SiGe • Pompage optique i Abstract Since the first Quantum Cascade Laser (QCL) was realized in 1994 in the AlInAs/InGaAs material system, it has attracted a wide interest as infrared light source. Main applications can be found in spectroscopy for gas-sensing, in the data transmission and telecommuni- cation as free space optical data link as well as for infrared monitoring. This type of light source differs in fundamental ways from semiconductor diode laser, because the radiative transition is based on intersubband transitions which take place between confined states in quantum wells. As the lasing transition is independent from the nature of the band gap, it opens the possibility to a tuneable, infrared light source based on silicon and silicon compatible materials such as germanium. As silicon is the material of choice for electronic components, a SiGe based QCL would allow to extend the functionality of silicon into optoelectronics.
    [Show full text]
  • Optical Pumping
    Optical Pumping MIT Department of Physics (Dated: February 17, 2011) Measurement of the Zeeman splittings of the ground state of the natural rubidium isotopes; measurement of the relaxation time of the magnetization of rubidium vapor; and measurement of the local geomagnetic field by the rubidium magnetometer. Rubidium vapor in a weak (∼.01- 10 gauss) magnetic field controlled with Helmholtz coils is pumped with circularly polarized D1 light from a rubidium rf discharge lamp. The degree of magnetization of the vapor is inferred from a differential measurement of its opacity to the pumping radiation. In the first part of the experiment the energy separation between the magnetic substates of the ground-state hyperfine levels is determined as a function of the magnetic field from measurements of the frequencies of rf photons that cause depolarization and consequent greater opacity of the vapor. The magnetic moments of the ground states of the 85Rb and 87Rb isotopes are derived from the data and compared with the vector model for addition of electronic and nuclear angular momenta. In the second part of the experiment the direction of magnetization is alternated between nearly parallel and nearly antiparallel to the optic axis, and the effects of the speed of reversal on the amplitude of the opacity signal are observed and compared with a computer model. The time constant of the pumping action is measured as a function of the intensity of the pumping light, and the results are compared with a theory of competing rate processes - pumping versus collisional depolarization. I. PREPARATORY PROBLEMS II. INTRODUCTION 1. With reference to Figure 1 of this guide, estimate A.
    [Show full text]
  • Optical Pumping 1
    Optical Pumping 1 OPTICAL PUMPING OF RUBIDIUM VAPOR Introduction The process of optical pumping is a beautiful example of the interaction between light and matter. In the Advanced Lab experiment, you use circularly polarized light to pump a particular level in rubidium vapor. Then, using magnetic fields and radio-frequency excitations, you manipulate the population of the pumped state in a manner similar to that used in the Spin Echo experiment. You will determine the energy separation between the magnetic substates (Zeeman levels) in rubidium as well as determine the Bohr magneton and observe two-photon transitions. Although the experiment is relatively simple to perform, you will need to understand a fair amount of atomic physics and experimental technique to appreciate the signals you witness. A simple example of optical pumping Let’s imagine a nearly trivial atom: no nuclear spin and only one electron. For concreteness, you can think of the 4He+ ion, which is similar to a Hydrogen atom, but without the nuclear spin of the proton. Its ground state is 1S1=2 (n = 1,S = 1=2,L = 0, J = 1=2). Photon absorption can excite it to the 2P1=2 (n = 2,S = 1=2,L = 1, J = 1=2) state. If you place it in a magnetic field, the energy levels become split as indicated in Figure 1. In effect, each original level really consists of two levels with the same energy; when you apply a field, the “spin up” state becomes higher in energy, the “spin down” lower. The spin energy splitting is exaggerated on the figure.
    [Show full text]
  • Spin Coherence and Optical Properties of Alkali-Metal Atoms in Solid Parahydrogen
    Spin coherence and optical properties of alkali-metal atoms in solid parahydrogen Sunil Upadhyay,1 Ugne Dargyte,1 Vsevolod D. Dergachev,2 Robert P. Prater,1 Sergey A. Varganov,2 Timur V. Tscherbul,1 David Patterson,3 and Jonathan D. Weinstein1, ∗ 1Department of Physics, University of Nevada, Reno NV 89557, USA 2Department of Chemistry, University of Nevada, Reno NV 89557, USA 3Broida Hall, University of California, Santa Barbara, Santa Barbara, California 93106, USA We present a joint experimental and theoretical study of spin coherence properties of 39K, 85Rb, 87Rb, and 133Cs atoms trapped in a solid parahydrogen matrix. We use optical pumping to prepare the spin states of the implanted atoms and circular dichroism to measure their spin states. Optical pumping signals show order-of-magnitude differences depending on both matrix growth conditions ∗ and atomic species. We measure the ensemble transverse relaxation times (T2) of the spin states ∗ of the alkali-metal atoms. Different alkali species exhibit dramatically different T2 times, ranging 87 2 39 from sub-microsecond coherence times for high mF states of Rb, to ∼ 10 microseconds for K. ∗ These are the longest ensemble T2 times reported for an electron spin system at high densities 16 −3 (n & 10 cm ). To interpret these observations, we develop a theory of inhomogenous broadening of hyperfine transitions of 2S atoms in weakly-interacting solid matrices. Our calculated ensemble transverse relaxation times agree well with experiment, and suggest ways to longer coherence times in future work. I. INTRODUCTION In this work, we compare the optical pumping prop- ∗ erties and ensemble transverse spin relaxation time (T2) Addressable solid-state electron spin systems are of in- for potassium, rubidium, and cesium in solid H2.
    [Show full text]
  • Quantum State Detection of a Superconducting Flux Qubit Using A
    PHYSICAL REVIEW B 71, 184506 ͑2005͒ Quantum state detection of a superconducting flux qubit using a dc-SQUID in the inductive mode A. Lupașcu, C. J. P. M. Harmans, and J. E. Mooij Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands ͑Received 27 October 2004; revised manuscript received 14 February 2005; published 13 May 2005͒ We present a readout method for superconducting flux qubits. The qubit quantum flux state can be measured by determining the Josephson inductance of an inductively coupled dc superconducting quantum interference device ͑dc-SQUID͒. We determine the response function of the dc-SQUID and its back-action on the qubit during measurement. Due to driving, the qubit energy relaxation rate depends on the spectral density of the measurement circuit noise at sum and difference frequencies of the qubit Larmor frequency and SQUID driving frequency. The qubit dephasing rate is proportional to the spectral density of circuit noise at the SQUID driving frequency. These features of the back-action are qualitatively different from the case when the SQUID is used in the usual switching mode. For a particular type of readout circuit with feasible parameters we find that single shot readout of a superconducting flux qubit is possible. DOI: 10.1103/PhysRevB.71.184506 PACS number͑s͒: 03.67.Lx, 03.65.Yz, 85.25.Cp, 85.25.Dq I. INTRODUCTION A natural candidate for the measurement of the state of a flux qubit is a dc superconducting quantum interference de- An information processor based on a quantum mechanical ͑ ͒ system can be used to solve certain problems significantly vice dc-SQUID .
    [Show full text]
  • Quantum Mechanics Department of Physics and Astronomy University of New Mexico
    Preliminary Examination: Quantum Mechanics Department of Physics and Astronomy University of New Mexico Fall 2004 Instructions: • The exam consists two parts: 5 short answers (6 points each) and your pick of 2 out 3 long answer problems (35 points each). • Where possible, show all work, partial credit will be given. • Personal notes on two sides of a 8X11 page are allowed. • Total time: 3 hours Good luck! Short Answers: S1. Consider a free particle moving in 1D. Shown are two different wave packets in position space whose wave functions are real. Which corresponds to a higher average energy? Explain your answer. (a) (b) ψ(x) ψ(x) ψ(x) ψ(x) ψ = 0 ψ(x) S2. Consider an atom consisting of a muon (heavy electron with mass m ≈ 200m ) µ e bound to a proton. Ignore the spin of these particles. What are the bound state energy eigenvalues? What are the quantum numbers that are necessary to completely specify an energy eigenstate? Write out the values of these quantum numbers for the first excited state. sr sr H asr sr S3. Two particles of spins 1 and 2 interact via a potential ′ = 1 ⋅ 2 . a) Which of the following quantities are conserved: sr sr sr 2 sr 2 sr sr sr sr 2 1 , 2 , 1 , 2 , = 1 + 2 , ? b) If s1 = 5 and s2 = 1, what are the possible values of the total angular momentum quantum number s? S4. The energy levels En of a symmetric potential well V(x) are denoted below. V(x) E4 E3 E2 E1 E0 x=-b x=-a x=a x=b (a) How many bound states are there? (b) Sketch the wave functions for the first three levels (n=0,1,2).
    [Show full text]
  • Molecular Column Density Calculation
    Molecular Column Density Calculation Jeffrey G. Mangum National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA [email protected] and Yancy L. Shirley Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA [email protected] May 29, 2013 Received ; accepted – 2 – ABSTRACT We tell you how to calculate molecular column density. Subject headings: ISM: molecules – 3 – Contents 1 Introduction 5 2 Radiative and Collisional Excitation of Molecules 5 3 Radiative Transfer 8 3.1 The Physical Meaning of Excitation Temperature . 11 4 Column Density 11 5 Degeneracies 14 5.1 Rotational Degeneracy (gJ)........................... 14 5.2 K Degeneracy (gK)................................ 14 5.3 Nuclear Spin Degeneracy (gI ).......................... 15 5.3.1 H2CO and C3H2 ............................. 16 5.3.2 NH3 and CH3CN............................. 16 5.3.3 c–C3H and SO2 .............................. 18 6 Rotational Partition Functions (Qrot) 18 6.1 Linear Molecule Rotational Partition Function . 19 6.2 Symmetric and Asymmetric Rotor Molecule Rotational Partition Function . 21 2 7 Dipole Moment Matrix Elements (|µjk| ) and Line Strengths (S) 24 – 4 – 8 Linear and Symmetric Rotor Line Strengths 26 8.1 (J, K) → (J − 1, K) Transitions . 28 8.2 (J, K) → (J, K) Transitions . 29 9 Symmetry Considerations for Asymmetric Rotor Molecules 29 10 Hyperfine Structure and Relative Intensities 30 11 Approximations to the Column Density Equation 32 11.1 Rayleigh-Jeans Approximation . 32 11.2 Optically Thin Approximation . 34 11.3 Optically Thick Approximation . 34 12 Molecular Column Density Calculation Examples 35 12.1 C18O........................................ 35 12.2 C17O........................................ 37 + 12.3 N2H ....................................... 42 12.4 NH3 .......................................
    [Show full text]
  • Introduction to Biomolecular Electron Paramagnetic Resonance Theory
    Introduction to Biomolecular Electron Paramagnetic Resonance Theory E. C. Duin Content Chapter 1 - Basic EPR Theory 1.1 Introduction 1-1 1.2 The Zeeman Effect 1-1 1.3 Spin-Orbit Interaction 1-3 1.4 g-Factor 1-4 1.5 Line Shape 1-6 1.6 Quantum Mechanical Description 1-12 1.7 Hyperfine and Superhyperfine Interaction, the Effect of Nuclear Spin 1-13 1.8 Spin Multiplicity and Kramers’ Systems 1-24 1.9 Non-Kramers’ Systems 1-32 1.10 Characterization of Metalloproteins 1-33 1.11 Spin-Spin Interaction 1-35 1.12 High-Frequency EPR Spectroscopy 1-40 1.13 g-Strain 1-42 1.14 ENDOR, ESEEM, and HYSCORE 1-43 1.15 Selected Reading 1-51 Chapter 2 - Practical Aspects 2.1 The EPR Spectrometer 2-1 2.2 Important EPR Spectrometer Parameters 2-3 2.3 Sample Temperature and Microwave Power 2-9 2.4 Integration of Signals and Determination of the Signal Intensity 2-15 2.5 Redox Titrations 2-19 2.6 Freeze-quench Experiments 2-22 2.7 EPR of Whole Cells and Organelles 2-25 2.8 Selected Reading 2-28 Chapter 3 - Simulations of EPR Spectra 3.1 Simulation Software 3-1 3.2 Simulations 3-3 3.3 Work Sheets 3-17 i Chapter 4: Selected samples 4.1 Organic Radicals in Solution 4-1 4.2 Single Metal Ions in Proteins 4-2 4.3 Multi-Metal Systems in Proteins 4-7 4.4 Iron-Sulfur Clusters 4-8 4.5 Inorganic Complexes 4-17 4.6 Solid Particles 4-18 Appendix A: Rhombograms Appendix B: Metalloenzymes Found in Methanogens Appendix C: Solutions for Chapter 3 ii iii 1.
    [Show full text]
  • Optical Pumping on Rubidium
    Optical Pumping on Rubidium E. Lance (Dated: March 27, 2011) By means of optical pumping the values of gf and nuclear spin for Rubidium were determined. 85 87 85 For Rb gf was found to be .35. For Rb gf was found to be .50. The nuclear spin for Rb was found to be 2.35 with a theoretical value of 2.5, for Rb87 the nuclear spin was found to be 1.5 with a theoretical value of 1.5. Quadratic Zeeman effect resonances were observed around magnetic fields of 6.98 gauss and RF of 4.064 MHz. I. INTRODUCTION Rabi equation: Optical pumping refers to the redistribution of oc- cupied energy states, in thermal equilibrium, inside an ∆W µ ∆W 4M 1=2 W (F; M) = − − j BM± 1+ x+x2 : atom. The redistribution is achieved by polarizing inci- 2(2I + 1) I 2 2I + 1 dent light, therefor, pumping electrons to less absorbent (4) energy states. By confining electrons in less absorbent A plot of Breit-Rabi equation is shown in figure 2, this energy states we can then study the relationship between plot shows how when the magnetic field becomes large, magnetic fields and Zeeman splitting. the energy splittings stop behaving in a linear fashion and a quadratic Zeeman effect can be seen. II. THEORY We will be dealing with Rubidium atoms which can, essentially, be conceived as a hydrogen like single elec- tron atoms. The single valence electron in Rubidium can be described by a total angular momentum vector J which couples the orbital angular momentum L with the spin orbital angular momentum S.
    [Show full text]