Abstract Satisfiability-Based Program Reasoning And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Techniques for Improving the Performance of Software Transactional Memory
Techniques for Improving the Performance of Software Transactional Memory Srdan Stipi´c Department of Computer Architecture Universitat Polit`ecnicade Catalunya A thesis submitted for the degree of Doctor of Philosophy in Computer Architecture July, 2014 Advisor: Adri´anCristal Co-Advisor: Osman S. Unsal Tutor: Mateo Valero Curso académico: Acta de calificación de tesis doctoral Nombre y apellidos Programa de doctorado Unidad estructural responsable del programa Resolución del Tribunal Reunido el Tribunal designado a tal efecto, el doctorando / la doctoranda expone el tema de la su tesis doctoral titulada ____________________________________________________________________________________ __________________________________________________________________________________________. Acabada la lectura y después de dar respuesta a las cuestiones formuladas por los miembros titulares del tribunal, éste otorga la calificación: NO APTO APROBADO NOTABLE SOBRESALIENTE (Nombre, apellidos y firma) (Nombre, apellidos y firma) Presidente/a Secretario/a (Nombre, apellidos y firma) (Nombre, apellidos y firma) (Nombre, apellidos y firma) Vocal Vocal Vocal ______________________, _______ de __________________ de _______________ El resultado del escrutinio de los votos emitidos por los miembros titulares del tribunal, efectuado por la Escuela de Doctorado, a instancia de la Comisión de Doctorado de la UPC, otorga la MENCIÓN CUM LAUDE: SÍ NO (Nombre, apellidos y firma) (Nombre, apellidos y firma) Presidente de la Comisión Permanente de la Escuela de Secretaria de la Comisión Permanente de la Escuela de Doctorado Doctorado Barcelona a _______ de ____________________ de __________ To my parents. Acknowledgements I am thankful to a lot of people without whom I would not have been able to complete my PhD studies. While it is not possible to make an exhaustive list of names, I would like to mention a few. -
Proceedings of the Linux Symposium
Proceedings of the Linux Symposium Volume One June 27th–30th, 2007 Ottawa, Ontario Canada Contents The Price of Safety: Evaluating IOMMU Performance 9 Ben-Yehuda, Xenidis, Mostrows, Rister, Bruemmer, Van Doorn Linux on Cell Broadband Engine status update 21 Arnd Bergmann Linux Kernel Debugging on Google-sized clusters 29 M. Bligh, M. Desnoyers, & R. Schultz Ltrace Internals 41 Rodrigo Rubira Branco Evaluating effects of cache memory compression on embedded systems 53 Anderson Briglia, Allan Bezerra, Leonid Moiseichuk, & Nitin Gupta ACPI in Linux – Myths vs. Reality 65 Len Brown Cool Hand Linux – Handheld Thermal Extensions 75 Len Brown Asynchronous System Calls 81 Zach Brown Frysk 1, Kernel 0? 87 Andrew Cagney Keeping Kernel Performance from Regressions 93 T. Chen, L. Ananiev, and A. Tikhonov Breaking the Chains—Using LinuxBIOS to Liberate Embedded x86 Processors 103 J. Crouse, M. Jones, & R. Minnich GANESHA, a multi-usage with large cache NFSv4 server 113 P. Deniel, T. Leibovici, & J.-C. Lafoucrière Why Virtualization Fragmentation Sucks 125 Justin M. Forbes A New Network File System is Born: Comparison of SMB2, CIFS, and NFS 131 Steven French Supporting the Allocation of Large Contiguous Regions of Memory 141 Mel Gorman Kernel Scalability—Expanding the Horizon Beyond Fine Grain Locks 153 Corey Gough, Suresh Siddha, & Ken Chen Kdump: Smarter, Easier, Trustier 167 Vivek Goyal Using KVM to run Xen guests without Xen 179 R.A. Harper, A.N. Aliguori & M.D. Day Djprobe—Kernel probing with the smallest overhead 189 M. Hiramatsu and S. Oshima Desktop integration of Bluetooth 201 Marcel Holtmann How virtualization makes power management different 205 Yu Ke Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps 215 J. -
Approaches and Applications of Inductive Programming
Report from Dagstuhl Seminar 17382 Approaches and Applications of Inductive Programming Edited by Ute Schmid1, Stephen H. Muggleton2, and Rishabh Singh3 1 Universität Bamberg, DE, [email protected] 2 Imperial College London, GB, [email protected] 3 Microsoft Research – Redmond, US, [email protected] Abstract This report documents the program and the outcomes of Dagstuhl Seminar 17382 “Approaches and Applications of Inductive Programming”. After a short introduction to the state of the art to inductive programming research, an overview of the introductory tutorials, the talks, program demonstrations, and the outcomes of discussion groups is given. Seminar September 17–20, 2017 – http://www.dagstuhl.de/17382 1998 ACM Subject Classification I.2.2 Automatic Programming, Program Synthesis Keywords and phrases inductive program synthesis, inductive logic programming, probabilistic programming, end-user programming, human-like computing Digital Object Identifier 10.4230/DagRep.7.9.86 Edited in cooperation with Sebastian Seufert 1 Executive summary Ute Schmid License Creative Commons BY 3.0 Unported license © Ute Schmid Inductive programming (IP) addresses the automated or semi-automated generation of computer programs from incomplete information such as input-output examples, constraints, computation traces, demonstrations, or problem-solving experience [5]. The generated – typically declarative – program has the status of a hypothesis which has been generalized by induction. That is, inductive programming can be seen as a special approach to machine learning. In contrast to standard machine learning, only a small number of training examples is necessary. Furthermore, learned hypotheses are represented as logic or functional programs, that is, they are represented on symbol level and therefore are inspectable and comprehensible [17, 8, 18]. -
Well-Founded Functions and Extreme Predicates in Dafny: a Tutorial
EPiC Series in Computing Volume 40, 2016, Pages 52–66 IWIL-2015. 11th International Work- shop on the Implementation of Logics Well-founded Functions and Extreme Predicates in Dafny: A Tutorial K. Rustan M. Leino Microsoft Research [email protected] Abstract A recursive function is well defined if its every recursive call corresponds a decrease in some well-founded order. Such well-founded functions are useful for example in computer programs when computing a value from some input. A boolean function can also be defined as an extreme solution to a recurrence relation, that is, as a least or greatest fixpoint of some functor. Such extreme predicates are useful for example in logic when encoding a set of inductive or coinductive inference rules. The verification-aware programming language Dafny supports both well-founded functions and extreme predicates. This tutorial describes the difference in general terms, and then describes novel syntactic support in Dafny for defining and proving lemmas with extreme predicates. Various examples and considerations are given. Although Dafny’s verifier has at its core a first-order SMT solver, Dafny’s logical encoding makes it possible to reason about fixpoints in an automated way. 0. Introduction Recursive functions are a core part of computer science and mathematics. Roughly speaking, when the definition of such a function spells out a terminating computation from given arguments, we may refer to it as a well-founded function. For example, the common factorial and Fibonacci functions are well-founded functions. There are also other ways to define functions. An important case regards the definition of a boolean function as an extreme solution (that is, a least or greatest solution) to some equation. -
There Are No Limits to Learning! Academic and High School
Brick and Click Libraries An Academic Library Symposium Northwest Missouri State University Friday, November 5, 2010 Managing Editors: Frank Baudino Connie Jo Ury Sarah G. Park Co-Editor: Carolyn Johnson Vicki Wainscott Pat Wyatt Technical Editor: Kathy Ferguson Cover Design: Sean Callahan Northwest Missouri State University Maryville, Missouri Brick & Click Libraries Team Director of Libraries: Leslie Galbreath Co-Coordinators: Carolyn Johnson and Kathy Ferguson Executive Secretary & Check-in Assistant: Beverly Ruckman Proposal Reviewers: Frank Baudino, Sara Duff, Kathy Ferguson, Hong Gyu Han, Lisa Jennings, Carolyn Johnson, Sarah G. Park, Connie Jo Ury, Vicki Wainscott and Pat Wyatt Technology Coordinators: Sarah G. Park and Hong Gyu Han Union & Food Coordinator: Pat Wyatt Web Page Editors: Lori Mardis, Sarah G. Park and Vicki Wainscott Graphic Designer: Sean Callahan Table of Contents Quick & Dirty Library Promotions That Really Work! 1 Eric Jennings, Reference & Instruction Librarian Kathryn Tvaruzka, Education Reference Librarian University of Wisconsin Leveraging Technology, Improving Service: Streamlining Student Billing Procedures 2 Colleen S. Harris, Head of Access Services University of Tennessee – Chattanooga Powerful Partnerships & Great Opportunities: Promoting Archival Resources and Optimizing Outreach to Public and K12 Community 8 Lea Worcester, Public Services Librarian Evelyn Barker, Instruction & Information Literacy Librarian University of Texas at Arlington Mobile Patrons: Better Services on the Go 12 Vincci Kwong, -
Programming Language Features for Refinement
Programming Language Features for Refinement Jason Koenig K. Rustan M. Leino Stanford University Microsoft Research [email protected] [email protected] Algorithmic and data refinement are well studied topics that provide a mathematically rigorous ap- proach to gradually introducing details in the implementation of software. Program refinements are performed in the context of some programming language, but mainstream languages lack features for recording the sequence of refinement steps in the program text. To experiment with the combination of refinement, automated verification, and language design, refinement features have been added to the verification-aware programming language Dafny. This paper describes those features and reflects on some initial usage thereof. 0. Introduction Two major problems faced by software engineers are the development of software and the maintenance of software. In addition to fixing bugs, maintenance involves adapting the software to new or previously underappreciated scenarios, for example, using new APIs, supporting new hardware, or improving the performance. Software version control systems track the history of software changes, but older versions typically do not play any significant role in understanding or evolving the software further. For exam- ple, when a simple but inefficient data structure is replaced by a more efficient one, the program edits are destructive. Consequently, understanding the new code may be significantly more difficult than un- derstanding the initial version, because the source code will only show how the more complicated data structure is used. The initial development of the software may proceed in a similar way, whereby a software engi- neer first implements the basic functionality and then extends it with additional functionality or more advanced behaviors. -
Developing Verified Sequential Programs with Event-B
UNIVERSITY OF SOUTHAMPTON Developing Verified Sequential Programs with Event-B by Mohammadsadegh Dalvandi A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Faculty of Physical Sciences and Engineering Electronics and Computer Science April 2018 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING ELECTRONICS AND COMPUTER SCIENCE Doctor of Philosophy by Mohammadsadegh Dalvandi The constructive approach to software correctness aims at formal modelling of the in- tended behaviour and structure of a system in different levels of abstraction and verifying properties of models. The target of analytical approach is to verify properties of the final program code. A high level look at these two approaches suggests that the con- structive and analytical approaches should complement each other well. The aim of this thesis is to build a link between Event-B (constructive approach) and Dafny (analytical approach) for developing sequential verified programs. The first contribution of this the- sis is a tool supported method for transforming Event-B models to simple Dafny code contracts (in the form of method pre- and post-conditions). Transformation of Event-B formal models to Dafny method declarations and code contracts is enabled by a set of transformation rules. Using this set of transformation rules, one can generate code contracts from Event-B models but not implementations. The generated code contracts must be seen as an interface that can be implemented. If there is an implementation that satisfies the generated contracts then it is considered to be a correct implementation of the abstract Event-B model. A tool for automatic transformation of Event-B models to simple Dafny code contracts is presented. -
Master's Thesis
FACULTY OF SCIENCE AND TECHNOLOGY MASTER'S THESIS Study programme/specialisation: Computer Science Spring / Autumn semester, 20......19 Open/Confidential Author: ………………………………………… Nicolas Fløysvik (signature of author) Programme coordinator: Hein Meling Supervisor(s): Hein Meling Title of master's thesis: Using domain restricted types to improve code correctness Credits: 30 Keywords: Domain restrictions, Formal specifications, Number of pages: …………………75 symbolic execution, Rolsyn analyzer, + supplemental material/other: …………0 Stavanger,……………………….15/06/2019 date/year Title page for Master's Thesis Faculty of Science and Technology Domain Restricted Types for Improved Code Correctness Nicolas Fløysvik University of Stavanger Supervised by: Professor Hein Meling University of Stavanger June 2019 Abstract ReDi is a new static analysis tool for improving code correctness. It targets the C# language and is a .NET Roslyn live analyzer providing live analysis feedback to the developers using it. ReDi uses principles from formal specification and symbolic execution to implement methods for performing domain restriction on variables, parameters, and return values. A domain restriction is an invariant implemented as a check function, that can be applied to variables utilizing an annotation referring to the check method. ReDi can also help to prevent runtime exceptions caused by null pointers. ReDi can prevent null exceptions by integrating nullability into the domain of the variables, making it feasible for ReDi to statically keep track of null, and de- tecting variables that may be null when used. ReDi shows promising results with finding inconsistencies and faults in some programming projects, the open source CoreWiki project by Jeff Fritz and several web service API projects for services offered by Innovation Norway. -
Download and Use25
Journal of Artificial Intelligence Research 1 (1993) 1-15 Submitted 6/91; published 9/91 Inductive logic programming at 30: a new introduction Andrew Cropper [email protected] University of Oxford Sebastijan Dumanˇci´c [email protected] KU Leuven Abstract Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to in- duce a hypothesis (a set of logical rules) that generalises given training examples. In contrast to most forms of machine learning, ILP can learn human-readable hypotheses from small amounts of data. As ILP approaches 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main ILP learning settings. We describe the main building blocks of an ILP system. We compare several ILP systems on several dimensions. We describe in detail four systems (Aleph, TILDE, ASPAL, and Metagol). We document some of the main application areas of ILP. Finally, we summarise the current limitations and outline promising directions for future research. 1. Introduction A remarkable feat of human intelligence is the ability to learn new knowledge. A key type of learning is induction: the process of forming general rules (hypotheses) from specific obser- vations (examples). For instance, suppose you draw 10 red balls out of a bag, then you might induce a hypothesis (a rule) that all the balls in the bag are red. Having induced this hypothesis, you can predict the colour of the next ball out of the bag. The goal of machine learning (ML) (Mitchell, 1997) is to automate induction. -
Bias Reformulation for One-Shot Function Induction
Bias reformulation for one-shot function induction Dianhuan Lin1 and Eyal Dechter1 and Kevin Ellis1 and Joshua B. Tenenbaum1 and Stephen H. Muggleton2 Abstract. In recent years predicate invention has been under- Input Output explored as a bias reformulation mechanism within Inductive Logic Task1 miKe dwIGHT Mike Dwight Programming due to difficulties in formulating efficient search mech- Task2 European Conference on ECAI anisms. However, recent papers on a new approach called Meta- Artificial Intelligence Interpretive Learning have demonstrated that both predicate inven- Task3 My name is John. John tion and learning recursive predicates can be efficiently implemented for various fragments of definite clause logic using a form of abduc- tion within a meta-interpreter. This paper explores the effect of bias reformulation produced by Meta-Interpretive Learning on a series Figure 1. Input-output pairs typifying string transformations in this paper of Program Induction tasks involving string transformations. These tasks have real-world applications in the use of spreadsheet tech- nology. The existing implementation of program induction in Mi- crosoft’s FlashFill (part of Excel 2013) already has strong perfor- problems are easy for us, but often difficult for automated systems, mance on this problem, and performs one-shot learning, in which a is that we bring to bear a wealth of knowledge about which kinds of simple transformation program is generated from a single example programs are more or less likely to reflect the intentions of the person instance and applied to the remainder of the column in a spreadsheet. who wrote the program or provided the example. However, no existing technique has been demonstrated to improve There are a number of difficulties associated with successfully learning performance over a series of tasks in the way humans do. -
Essays on Emotional Well-Being, Health Insurance Disparities and Health Insurance Markets
University of New Mexico UNM Digital Repository Economics ETDs Electronic Theses and Dissertations Summer 7-15-2020 Essays on Emotional Well-being, Health Insurance Disparities and Health Insurance Markets Disha Shende Follow this and additional works at: https://digitalrepository.unm.edu/econ_etds Part of the Behavioral Economics Commons, Health Economics Commons, and the Public Economics Commons Recommended Citation Shende, Disha. "Essays on Emotional Well-being, Health Insurance Disparities and Health Insurance Markets." (2020). https://digitalrepository.unm.edu/econ_etds/115 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Economics ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Disha Shende Candidate Economics Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Alok Bohara, Chairperson Richard Santos Sarah Stith Smita Pakhale i Essays on Emotional Well-being, Health Insurance Disparities and Health Insurance Markets DISHA SHENDE B.Tech., Shri Guru Govind Singh Inst. of Engr. and Tech., India, 2010 M.A., Applied Economics, University of Cincinnati, 2015 M.A., Economics, University of New Mexico, 2017 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Economics At the The University of New Mexico Albuquerque, New Mexico July 2020 ii DEDICATION To all the revolutionary figures who fought for my right to education iii ACKNOWLEDGEMENT This has been one of the most important bodies of work in my academic career so far. -
On the Di Iculty of Benchmarking Inductive Program Synthesis Methods
On the Diiculty of Benchmarking Inductive Program Synthesis Methods Edward Pantridge omas Helmuth MassMutual Financial Group Washington and Lee University Amherst, Massachuses, USA Lexington, Virginia [email protected] [email protected] Nicholas Freitag McPhee Lee Spector University of Minnesota, Morris Hampshire College Morris, Minnesota 56267 Amherst, Massachuses, USA [email protected] [email protected] ABSTRACT ACM Reference format: A variety of inductive program synthesis (IPS) techniques have Edward Pantridge, omas Helmuth, Nicholas Freitag McPhee, and Lee Spector. 2017. On the Diculty of Benchmarking Inductive Program Syn- recently been developed, emerging from dierent areas of com- thesis Methods. In Proceedings of GECCO ’17 Companion, Berlin, Germany, puter science. However, these techniques have not been adequately July 15-19, 2017, 8 pages. compared on general program synthesis problems. In this paper we DOI: hp://dx.doi.org/10.1145/3067695.3082533 compare several methods on problems requiring solution programs to handle various data types, control structures, and numbers of outputs. e problem set also spans levels of abstraction; some 1 INTRODUCTION would ordinarily be approached using machine code or assembly Since the creation of Inductive Program Synthesis (IPS) in the language, while others would ordinarily be approached using high- 1970s [15], researchers have been striving to create systems capa- level languages. e presented comparisons are focused on the ble of generating programs competitively with human intelligence. possibility of success; that is, on whether the system can produce Modern IPS methods oen trace their roots to the elds of machine a program that passes all tests, for all training and unseen test- learning, logic programming, evolutionary computation and others.