A High Performance Backend for Array-Oriented Programming on Next-Generation Processing Units Simon Andreas Frimann Lund
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Loop Pipelining with Resource and Timing Constraints
UNIVERSITAT POLITÈCNICA DE CATALUNYA LOOP PIPELINING WITH RESOURCE AND TIMING CONSTRAINTS Autor: Fermín Sánchez October, 1995 1 1 1 1 1 1 1 1 2 1• SOFTWARE PIPELINING 1 1 1 2.1 INTRODUCTION 1 Software pipelining [ChaSl] comprises a family of techniques aimed at finding a pipelined schedule of the execution of loop iterations. The pipelined schedule represents a new loop body which may contain instructions belonging to different iterations. The sequential execution of the schedule takes less time than the sequential execution of the iterations of the loop as they were initially written. 1 In general, a pipelined loop schedule has the following characteristics1: • All the iterations (of the new loop) are executed in the same fashion. • The initiation interval (ÍÍ) between the issuing of two consecutive iterations is always the same. 1 Figure 2.1 shows an example of software pipelining a loop. The DDG representing the loop body to pipeline is presented in Figure 2.1(a). The loop must be executed ten times (with an iteration index i G [0,9]). Let us assume that all instructions in the loop are executed in a single cycle 1 and a new iteration may start every cycle (otherwise the dependence between instruction A from 1 We will assume here that the schedule contains a unique iteration of the loop. 1 15 1 1 I I 16 CHAPTER 2 I I time B,, Prol AO Q, BO A, I Q, B, A2 3<i<9 I Steady State D4 B7 I Epilogue Cy I D9 (a) (b) (c) I Figure 2.1 Software pipelining a loop (a) DDG representing a loop body (b) Parallel execution of the loop (c) New parallel loop body I iterations i and i+ 1 will not be honored).- With this assumption,-the loop can be executed in a I more parallel fashion than the sequential one, as shown in Figure 2.1(b). -
Developing Scientific Computing Software: Current Processes And
DEVELOPING: SGIENffl&Pifli|ii^Mp| CURRENT PROCESSES" WMWiiiiia DEVELOPING SCIENTIFIC COMPUTING SOFTWARE MASTER OF APPLIED SCIENCE(2008) McMaster University COMPUTING AND SOFTWARE Hamilton, Ontario TITLE: Developing Scientific Computing Software: Current Processes and Future Directions AUTHOR: Jin Tang, M.M. (Nanjing University) SUPERVISOR: Dr. Spencer Smith NUMBER OF PAGERS: xxii, 216 n Abstract Considerable emphasis in scientific computing (SC) software development has been placed on the software qualities of performance and correctness. How ever, other software qualities have received less attention, such as the qualities of usability, maintainability, testability and reusability. Presented in this work is a survey titled "Survey on Developing Scien tific Computing Software, which is apparently the first conducted to explore the current approaches to SC software development and to determine which qualities of SC software are in most need of improvement. From the survey. we found that systematic development process is frequently not adopted in the SC software community, since 58% of respondents mentioned that their entire development process potentially consists only of coding and debugging. Moreover, semi-formal and formal specification is rarely used when developing SC software, which is suggested by the fact that 70% of respondents indicate that they only use informal specification. In terms of the problems in SC software development, which are dis covered by analyzing the survey results, a solution is proposed to improve the quality of SC software by using SE methodologies, concretely, using a modified Parnas' Rational Design Process (PRDP) and the Unified Software Development Process (USDP). A comparison of the two candidate processes is provided to help SC software practitioners determine which of the two pro cesses fits their particular situation. -
The Guide to Available Mathematical Software Problem Classification System
The Guide to Available Mathematical Software Problem Classification System Ronald F. Boisvert, Sally E. Howe and David K. Kahaner November 1990 U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, MD 20899 100 U56 //4475 1990 C.2 NATIONAL, INSrrnJTE OF STANDARDS & TECHNOLOGY / THE GUIDE TO AVAILABLE MATHEMATICAL SOFTWARE PROBLEM CLASSIFICATION SYSTEM Ronald F. Boisvert Sally E. Howe David K. Kahaner U.S. DEPARTMENT OF COMMERCE National InstHute of Standards and Technology Center for Computing and Applied Mathematics Gaithersburg, MO 20899 November 1990 U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director 2 Boisvert, Howe and Kahaner own manuals or on-line documentation system. In order to determine what software is avail- able to solve a particular problem, users must search through a very large, heterogeneous collection of information. This is a tedious and error-prone process. As a result, there has been much interest in the development of automated advisory systems to help users select software. Keyword search is a popular technique used for this purpose. In such a system keywords or phrases are assigned to each piece of software to succinctly define its purpose, and the set of aU such keywords axe entered into a database. Keyword-based selection systems query users for a set of keywords and then present a fist of software modules which contain them. A major difficulty with such systems is that users often have trouble in providing the appropriate keywords for a given mathematical or statistical problem. There is such a wealth of alternate mathematical and statistical terminology that it would be a rare occurrence for two separate knowledgeable persons to assign the same set of keywords to a given software module. -
Python – an Introduction
Python { AN IntroduCtion . default parameters . self documenting code Example for extensions: Gnuplot Hans Fangohr, [email protected], CED Seminar 05/02/2004 ² The wc program in Python ² Summary Overview ² Outlook ² Why Python ² Literature: How to get started ² Interactive Python (IPython) ² M. Lutz & D. Ascher: Learning Python Installing extra modules ² ² ISBN: 1565924649 (1999) (new edition 2004, ISBN: Lists ² 0596002815). We point to this book (1999) where For-loops appropriate: Chapter 1 in LP ² ! if-then ² modules and name spaces Alex Martelli: Python in a Nutshell ² ² while ISBN: 0596001886 ² string handling ² ¯le-input, output Deitel & Deitel et al: Python { How to Program ² ² functions ISBN: 0130923613 ² Numerical computation ² some other features Other resources: ² . long numbers www.python.org provides extensive . exceptions ² documentation, tools and download. dictionaries Python { an introduction 1 Python { an introduction 2 Why Python? How to get started: The interpreter and how to run code Chapter 1, p3 in LP Chapter 1, p12 in LP ! Two options: ! All sorts of reasons ;-) interactive session ² ² . Object-oriented scripting language . start Python interpreter (python.exe, python, . power of high-level language double click on icon, . ) . portable, powerful, free . prompt appears (>>>) . mixable (glue together with C/C++, Fortran, . can enter commands (as on MATLAB prompt) . ) . easy to use (save time developing code) execute program ² . easy to learn . Either start interpreter and pass program name . (in-built complex numbers) as argument: python.exe myfirstprogram.py Today: . ² Or make python-program executable . easy to learn (Unix/Linux): . some interesting features of the language ./myfirstprogram.py . use as tool for small sysadmin/data . Note: python-programs tend to end with .py, processing/collecting tasks but this is not necessary. -
Alternatives to Python: Julia
Crossing Language Barriers with , SciPy, and thon Steven G. Johnson MIT Applied Mathemacs Where I’m coming from… [ google “Steven Johnson MIT” ] Computaonal soPware you may know… … mainly C/C++ libraries & soPware … Nanophotonics … oPen with Python interfaces … (& Matlab & Scheme & …) jdj.mit.edu/nlopt www.w.org jdj.mit.edu/meep erf(z) (and erfc, erfi, …) in SciPy 0.12+ & other EM simulators… jdj.mit.edu/book Confession: I’ve used Python’s internal C API more than I’ve coded in Python… A new programming language? Viral Shah Jeff Bezanson Alan Edelman julialang.org Stefan Karpinski [begun 2009, “0.1” in 2013, ~20k commits] [ 17+ developers with 100+ commits ] [ usual fate of all First reacBon: You’re doomed. new languages ] … subsequently: … probably doomed … sll might be doomed but, in the meanBme, I’m having fun with it… … and it solves a real problem with technical compuBng in high-level languages. The “Two-Language” Problem Want a high-level language that you can work with interacBvely = easy development, prototyping, exploraon ⇒ dynamically typed language Plenty to choose from: Python, Matlab / Octave, R, Scilab, … (& some of us even like Scheme / Guile) Historically, can’t write performance-criBcal code (“inner loops”) in these languages… have to switch to C/Fortran/… (stac). [ e.g. SciPy git master is ~70% C/C++/Fortran] Workable, but Python → Python+C = a huge jump in complexity. Just vectorize your code? = rely on mature external libraries, operang on large blocks of data, for performance-criBcal code Good advice! But… • Someone has to write those libraries. • Eventually that person may be you. -
Data Visualization in Python
Data visualization in python Day 2 A variety of packages and philosophies • (today) matplotlib: http://matplotlib.org/ – Gallery: http://matplotlib.org/gallery.html – Frequently used commands: http://matplotlib.org/api/pyplot_summary.html • Seaborn: http://stanford.edu/~mwaskom/software/seaborn/ • ggplot: – R version: http://docs.ggplot2.org/current/ – Python port: http://ggplot.yhathq.com/ • Bokeh (live plots in your browser) – http://bokeh.pydata.org/en/latest/ Biocomputing Bootcamp 2017 Matplotlib • Gallery: http://matplotlib.org/gallery.html • Top commands: http://matplotlib.org/api/pyplot_summary.html • Provides "pylab" API, a mimic of matlab • Many different graph types and options, some obscure Biocomputing Bootcamp 2017 Matplotlib • Resulting plots represented by python objects, from entire figure down to individual points/lines. • Large API allows any aspect to be tweaked • Lengthy coding sometimes required to make a plot "just so" Biocomputing Bootcamp 2017 Seaborn • https://stanford.edu/~mwaskom/software/seaborn/ • Implements more complex plot types – Joint points, clustergrams, fitted linear models • Uses matplotlib "under the hood" Biocomputing Bootcamp 2017 Others • ggplot: – (Original) R version: http://docs.ggplot2.org/current/ – A recent python port: http://ggplot.yhathq.com/ – Elegant syntax for compactly specifying plots – but, they can be hard to tweak – We'll discuss this on the R side tomorrow, both the basics of both work similarly. • Bokeh – Live, clickable plots in your browser! – http://bokeh.pydata.org/en/latest/ -
R from a Programmer's Perspective Accompanying Manual for an R Course Held by M
DSMZ R programming course R from a programmer's perspective Accompanying manual for an R course held by M. Göker at the DSMZ, 11/05/2012 & 25/05/2012. Slightly improved version, 10/09/2012. This document is distributed under the CC BY 3.0 license. See http://creativecommons.org/licenses/by/3.0 for details. Introduction The purpose of this course is to cover aspects of R programming that are either unlikely to be covered elsewhere or likely to be surprising for programmers who have worked with other languages. The course thus tries not be comprehensive but sort of complementary to other sources of information. Also, the material needed to by compiled in short time and perhaps suffers from important omissions. For the same reason, potential participants should not expect a fully fleshed out presentation but a combination of a text-only document (this one) with example code comprising the solutions of the exercises. The topics covered include R's general features as a programming language, a recapitulation of R's type system, advanced coding of functions, error handling, the use of attributes in R, object-oriented programming in the S3 system, and constructing R packages (in this order). The expected audience comprises R users whose own code largely consists of self-written functions, as well as programmers who are fluent in other languages and have some experience with R. Interactive users of R without programming experience elsewhere are unlikely to benefit from this course because quite a few programming skills cannot be covered here but have to be presupposed. -
Data Structure
EDUSAT LEARNING RESOURCE MATERIAL ON DATA STRUCTURE (For 3rd Semester CSE & IT) Contributors : 1. Er. Subhanga Kishore Das, Sr. Lect CSE 2. Mrs. Pranati Pattanaik, Lect CSE 3. Mrs. Swetalina Das, Lect CA 4. Mrs Manisha Rath, Lect CA 5. Er. Dillip Kumar Mishra, Lect 6. Ms. Supriti Mohapatra, Lect 7. Ms Soma Paikaray, Lect Copy Right DTE&T,Odisha Page 1 Data Structure (Syllabus) Semester & Branch: 3rd sem CSE/IT Teachers Assessment : 10 Marks Theory: 4 Periods per Week Class Test : 20 Marks Total Periods: 60 Periods per Semester End Semester Exam : 70 Marks Examination: 3 Hours TOTAL MARKS : 100 Marks Objective : The effectiveness of implementation of any application in computer mainly depends on the that how effectively its information can be stored in the computer. For this purpose various -structures are used. This paper will expose the students to various fundamentals structures arrays, stacks, queues, trees etc. It will also expose the students to some fundamental, I/0 manipulation techniques like sorting, searching etc 1.0 INTRODUCTION: 04 1.1 Explain Data, Information, data types 1.2 Define data structure & Explain different operations 1.3 Explain Abstract data types 1.4 Discuss Algorithm & its complexity 1.5 Explain Time, space tradeoff 2.0 STRING PROCESSING 03 2.1 Explain Basic Terminology, Storing Strings 2.2 State Character Data Type, 2.3 Discuss String Operations 3.0 ARRAYS 07 3.1 Give Introduction about array, 3.2 Discuss Linear arrays, representation of linear array In memory 3.3 Explain traversing linear arrays, inserting & deleting elements 3.4 Discuss multidimensional arrays, representation of two dimensional arrays in memory (row major order & column major order), and pointers 3.5 Explain sparse matrices. -
Research of Register Pressure Aware Loop Unrolling Optimizations for Compiler
MATEC Web of Conferences 228, 03008 (2018) https://doi.org/10.1051/matecconf/201822803008 CAS 2018 Research of Register Pressure Aware Loop Unrolling Optimizations for Compiler Xuehua Liu1,2, Liping Ding1,3 , Yanfeng Li1,2 , Guangxuan Chen1,4 , Jin Du5 1Laboratory of Parallel Software and Computational Science, Institute of Software, Chinese Academy of Sciences, Beijing, China 2University of Chinese Academy of Sciences, Beijing, China 3Digital Forensics Lab, Institute of Software Application Technology, Guangzhou & Chinese Academy of Sciences, Guangzhou, China 4Zhejiang Police College, Hangzhou, China 5Yunnan Police College, Kunming, China Abstract. Register pressure problem has been a known problem for compiler because of the mismatch between the infinite number of pseudo registers and the finite number of hard registers. Too heavy register pressure may results in register spilling and then leads to performance degradation. There are a lot of optimizations, especially loop optimizations suffer from register spilling in compiler. In order to fight register pressure and therefore improve the effectiveness of compiler, this research takes the register pressure into account to improve loop unrolling optimization during the transformation process. In addition, a register pressure aware transformation is able to reduce the performance overhead of some fine-grained randomization transformations which can be used to defend against ROP attacks. Experiments showed a peak improvement of about 3.6% and an average improvement of about 1% for SPEC CPU 2006 benchmarks and a peak improvement of about 3% and an average improvement of about 1% for the LINPACK benchmark. 1 Introduction fundamental transformations, because it is not only performed individually at least twice during the Register pressure is the number of hard registers needed compilation process, it is also an important part of to store values in the pseudo registers at given program optimizations like vectorization, module scheduling and point [1] during the compilation process. -
Jupyter Notebooks—A Publishing Format for Reproducible Computational Workflows
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elpub digital library Jupyter Notebooks—a publishing format for reproducible computational workflows Thomas KLUYVERa,1, Benjamin RAGAN-KELLEYb,1, Fernando PÉREZc, Brian GRANGERd, Matthias BUSSONNIERc, Jonathan FREDERICd, Kyle KELLEYe, Jessica HAMRICKc, Jason GROUTf, Sylvain CORLAYf, Paul IVANOVg, Damián h i d j AVILA , Safia ABDALLA , Carol WILLING and Jupyter Development Team a University of Southampton, UK b Simula Research Lab, Norway c University of California, Berkeley, USA d California Polytechnic State University, San Luis Obispo, USA e Rackspace f Bloomberg LP g Disqus h Continuum Analytics i Project Jupyter j Worldwide Abstract. It is increasingly necessary for researchers in all fields to write computer code, and in order to reproduce research results, it is important that this code is published. We present Jupyter notebooks, a document format for publishing code, results and explanations in a form that is both readable and executable. We discuss various tools and use cases for notebook documents. Keywords. Notebook, reproducibility, research code 1. Introduction Researchers today across all academic disciplines often need to write computer code in order to collect and process data, carry out statistical tests, run simulations or draw figures. The widely applicable libraries and tools for this are often developed as open source projects (such as NumPy, Julia, or FEniCS), but the specific code researchers write for a particular piece of work is often left unpublished, hindering reproducibility. Some authors may describe computational methods in prose, as part of a general description of research methods. -
Parallel Functional Programming with APL
Parallel Functional Programming, APL Lecture 1 Parallel Functional Programming with APL Martin Elsman Department of Computer Science University of Copenhagen DIKU December 19, 2016 Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 1 / 18 Outline 1 Outline Course Outline 2 Introduction to APL What is APL APL Implementations and Material APL Scalar Operations APL (1-Dimensional) Vector Computations Declaring APL Functions (dfns) APL Multi-Dimensional Arrays Iterations Declaring APL Operators Function Trains Examples Reading Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 2 / 18 Outline Course Outline Teachers Martin Elsman (ME), Ken Friis Larsen (KFL), Andrzej Filinski (AF), and Troels Henriksen (TH) Location Lectures in Small Aud, Universitetsparken 1 (UP1); Labs in Old Library, UP1 Course Description See http://kurser.ku.dk/course/ndak14009u/2016-2017 Course Outline Week 47 48 49 50 51 1–3 Mon 13–15 Intro, Futhark Parallel SNESL APL (ME) Project Futhark (ME) Haskell (AF) (ME) (KFL) Mon 15–17 Lab Lab Lab Lab Project Wed 13–15 Futhark Parallel SNESL Invited APL Project (ME) Haskell (AF) Lecture (ME) / (KFL) (John Projects Reppy) Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 3 / 18 Introduction to APL What is APL APL—An Ancient Array Programming Language—But Still Used! Pioneered by Ken E. Iverson in the 1960’s. E. Dijkstra: “APL is a mistake, carried through to perfection.” There are quite a few APL programmers around (e.g., HIPERFIT partners). Very concise notation for expressing array operations. Has a large set of functional, essentially parallel, multi- dimensional, second-order array combinators. -
Deep Dive on Project Jupyter
A I M 4 1 3 Deep dive on Project Jupyter Dr. Brian E. Granger Principal Technical Program Manager Co-Founder and Leader Amazon Web Services Project Jupyter © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Project Jupyter exists to develop open-source software, open standards and services for interactive and reproducible computing. https://jupyter.org/ Overview • Project Jupyter is a multi-stakeholder, open source project. • Jupyter’s flagship application is the Text Math Jupyter Notebook. • Notebook document format: • Live code, narrative text, equations, images, visualizations, audio. • ~100 programming languages supported. Live code • Over 500 contributors across >100 GitHub repositories. • Part of the NumFOCUS Foundation: • Along with NumPy, Pandas, Julia, Matplotlib,… Charts Who uses Jupyter and how? Students/Teachers Data science Data Engineers Machine learning Data Scientists Scientific computing Researchers Data cleaning and transformation Scientists Exploratory data analysis ML Engineers Analytics ML Researchers Simulation Analysts Algorithm development Reporting Data visualization Jupyter has a large and diverse user community • Many millions of Jupyter users worldwide • Thousands of AWS customers • Highly international • Over 5M public notebooks on GitHub alone Example: Dive into Deep Learning • Dive into Deep Learning is a free, open-source book about deep learning. • Zhang, Lipton, Li, Smola from AWS • All content is Jupyter Notebooks on GitHub. • 890 page PDF, hundreds of notebooks • https://d2l.ai/ © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Common threads • Jupyter serves an extremely broad range of personas, usage cases, industries, and applications • What do these have in common? Ideas of Jupyter • Computational narrative • “Real-time thinking” with a computer • Direct manipulation user interfaces that augment the writing of code “Computers are good at consuming, producing, and processing data.