The Aral Sea: an Ecological Disaster By: I

Total Page:16

File Type:pdf, Size:1020Kb

The Aral Sea: an Ecological Disaster By: I The Aral Sea: An Ecological Disaster By: I. Rudenko and J. P. A. Lamers CASE STUDY #8-6 OF THE PROGRAM: "FOOD POLICY FOR DEVELOPING COUNTRIES: THE ROLE OF GOVERNMENT IN THE GLOBAL FOOD SYSTEM" 2010 Edited by: Per Pinstrup-Andersen ([email protected]) Cornell University In collaboration with: Soren E. Frandsen, FOI, University of Copenhagen Arie Kuyvenhoven, Wageningen University Joachim von Braun, International Food Policy Research Institute Executive Summary The dimension of the human-induced ecological annually yielded 40,000 metric tons1 of fish, while disaster in Central Asia is probably best illustrated the deltas of its major tributaries hosted dozens of in the desiccation of the Aral Sea. In I960 this smaller lakes and biologically rich marshes and water body had a surface area of more than wetlands covering 550,000 hectares (ha). The Aral 68,000 square kilometers [km2) and was the Sea Basin extends not only to five Central Asian fourth-Iargest freshwater lake in the world. In 2009 countries, but also to Afghanistan and a small part only the “Small Aral," the western part of the of Iran (Figure I). The total area of the ASB is 180 "Large Aral," and a little pond from the eastern million hectares, of which 7.9 million hectares are part of the "Large Aral" remained. irrigated with more than 95 km3 of water annually (Dukhovny and Sokolov 2003; Kijne 2005; Micklin Much has been written and said on the causes and 2008). Irrigation water is delivered through consequences of the vanishing Aral Sea. Numerous 323,000 km of canals [Orlovsky, Glantz, and donors and international organizations have imple­ Orlovsky 2000), and water outflow from irrigated mented more than 20 large-scale projects worth fields is channeled through 190,000 km of drainage about US$500 million in the Aral Sea Basin (ASB). collectors and drains (Severskiy et al. 2005). Most Concurrently, much research has focused on how of the people in the ASB reside within the area to reverse the negative trend or mitigate its nega­ drained by the Syr Darya and the Amu Darya, the tive impact on the environment, economy, and two rivers that once flowed into the Aral Sea and health of the people. Nonetheless, the Aral Sea has whose waters originate in the Pamir and Tian Shan not been restored. Worse, in the past decade the mountains in Tajikistan, Kyrgyzstan, and remnants of the Aral Sea have desiccated even Afghanistan. faster than calculations and model simulations pre­ dicted. The complete loss of the economical use of Feeding Rivers and Water Supply the Aral Sea threatens the livelihood and health of The size of the Aral Sea depends largely on the the population. The disastrous degradation of the balance between inflows from the two main feeding ecosystems has led to the virtual extinction of rivers [Figure 1) and the sea's net evaporation (that unique flora and fauna and to a dramatic increase is, the difference between evaporation from the in human illnesses such as respiratory diseases, sea's surface and precipitation) (Micklin 2008). The hepatitis, and anemia. Have all of the research and ASB is characterized by high evaporation and low the efforts to save the Aral Sea been in vain? Can precipitation (Jarsjo et al. 2008). For centuries, the the Aral Sea, or at least part of it, still be saved? freshwater from the two rivers kept the Aral's Or must the local and global communities focus water and salt at tolerable levels. In the middle of merely on mitigating the severe environmental and the 20th century the Amu Darya had an average human consequences of the sea's desiccation? And annual flow of 77 km3 and the Syr Darya had a flow if so, how? of 34 km3, whereas water use in the ASB amounted to about 117 km3 annually (Nandalal and Simonovic Your assignment is to formulate policy recom­ 2003). Between 80 and 95 percent of this water mendations for the riparian states in Central Asia was used for irrigated agriculture and hence did to deal with the problems identified in this case. not reach the Aral Sea (Kipshakbayev and Sokolov 2002; Horinkova and Dukhovny 2004; Severskiy Background et al. 2005). The drive for economic development by the The Aral Sea lies between the two great deserts of former Soviet Union starting in the second half of Central Asia. Until the 1960s, the Aral Sea was the the 20th century triggered the expansion of fourth-Iargest freshwater inland lake in the world, irrigated (cotton) production. Large dams were with a surface of 68,000 km2 and a volume of built in the upper reaches of both feeding rivers, 1,056 cubic kilometers (km3). This water body 1 All tons in this case study are metric tons, unless otherwise noted. Figure 1: The A ra l Sea Basin and a vast system of feeding canals was constructed [Oriental Express Central Asia n.d.]. After the to divert water to the most remote regions, mainly gradual receding of the water, a broad plain of to enhance cotton production. The establishment highly saline soil became exposed, with a few of this impressive irrigation network added millions remaining intermittent water bodies. One remnant of hectares for agricultural production in this arid of this ancient sea became the Aral Sea.2 The region. evidence further shows that in the past 9,000 years the surface has been completely or partly The present water supply to irrigated areas in the flooded and desiccated at least eight times [Aladin ASB includes not only the actual water diverted and Plotnikov 1995; Aladin, Micklin, and Plotnikov from the rivers, but also drainage water resulting 2008], At times, the level of the Aral Sea has from agricultural return flow and wastewater. The fluctuated by up to 30-35 meters. All previous remarkable increase in cotton production since the episodes of desiccation have been caused by 1960s cemented a livelihood for many but depleted climatic alteration and natural diversions of the water supplies and neglected the preservation of feeding rivers away from the sea. The potential role precious natural resources: the entire ASB is at of rainfall variations is unclear, yet there is a con­ present saddled with a water and environmental sensus that they played a smaller role than the crisis. From both a quantity and quality or safety migration of the rivers [Kes and Klyukanova 1990], perspective, the ASB now faces one of the world's Anthropogenic contributions to the dying of the most critical shortages of water resources, whether sea are also undeniable. Starting about 3,000 years for irrigation or for drinking. ago, the region's population increased and irrigated agriculture commenced, leading to sizable with­ drawals and diversions of river water for irrigation History of the Aral Sea [Micklin 1988], Historical, geophysical, and anecdotal evidence sug­ gest that the "drying" of the Aral Sea must have occurred previously. It is argued that millions of years ago the northwestern part of present Uzbekistan and the southern parts of present 2 The sea was called the Aral Tengizi ["Sea of Islands" in Kazakhstan were covered by a vast inland sea Kazakh] because it used to contain more than 1,000 islands. The most recent recession of the Aral Sea, how­ bodies: the North or "Small" Aral in Kazakhstan ever, dwarfs the previous events. In the past and the "Large" Aral in Uzbekistan, which later century two short periods of record high flows became the "West" and "East" Aral [Micklin 2008], were offset by three longer dry spells in the 1960s, The desiccated sea floor created a new desert called the mid-1970s, and the early 1980s. Although the the Aralkum Desert. By 2007 the sea's area had most recent desiccation may be partly natural in further shrunk to only 10 percent of its size in the origin, stemming from droughts or even climate 1960s, and the salinity of the remaining sea sur­ change, it has also resulted from human mis­ passed 100 grams per liter. With continuing water management of water and ever-increasing water withdrawals from the feeding rivers, the sea was withdrawals since the 1960s from the Amu Darya expected to contract even further by the second or and Syr Darya rivers for the production of "white third decade of the 21st century, but a changing gold"—cotton [Micklin 1988; Brookfield 1999], The climate has sped up the drying even further. In combined effects of natural and human causes have 2009 the eastern part of the "Large Aral" turned provoked the dramatic decline of available water into a pond [Figure 2] and the western part also resources, which in turn has resulted in the present shrank considerably. In contrast, concerted efforts shrinkage of the Aral Sea [Saiko and Zonn 2000], by the Kazakh government and international or­ ganizations restored the "Small Aral," through the construction in 2005 of the 13-kilometer-Iong, Recent Shrinkage of the Sea US$85.5 million Kok-Aral Dam and dike, which In 2004 the remainder of the Aral Sea's surface presently regulate the flow from the Small into the amounted to about 17,000 km2, or 25 percent of Large Aral. Underground water discharge from the its size in 1960. The water volume had decreased by original sources may find its way to the sea 80 percent, whereas the salt concentration had in­ through geological layers. Yet with an estimated 4 creased at least five times, eradicating unique flora km3 of water per year, this underground inflow will and fauna and preventing the survival of most of not stop, let alone reverse, the desiccation.
Recommended publications
  • North America Other Continents
    Arctic Ocean Europe North Asia America Atlantic Ocean Pacific Ocean Africa Pacific Ocean South Indian America Ocean Oceania Southern Ocean Antarctica LAND & WATER • The surface of the Earth is covered by approximately 71% water and 29% land. • It contains 7 continents and 5 oceans. Land Water EARTH’S HEMISPHERES • The planet Earth can be divided into four different sections or hemispheres. The Equator is an imaginary horizontal line (latitude) that divides the earth into the Northern and Southern hemispheres, while the Prime Meridian is the imaginary vertical line (longitude) that divides the earth into the Eastern and Western hemispheres. • North America, Earth’s 3rd largest continent, includes 23 countries. It contains Bermuda, Canada, Mexico, the United States of America, all Caribbean and Central America countries, as well as Greenland, which is the world’s largest island. North West East LOCATION South • The continent of North America is located in both the Northern and Western hemispheres. It is surrounded by the Arctic Ocean in the north, by the Atlantic Ocean in the east, and by the Pacific Ocean in the west. • It measures 24,256,000 sq. km and takes up a little more than 16% of the land on Earth. North America 16% Other Continents 84% • North America has an approximate population of almost 529 million people, which is about 8% of the World’s total population. 92% 8% North America Other Continents • The Atlantic Ocean is the second largest of Earth’s Oceans. It covers about 15% of the Earth’s total surface area and approximately 21% of its water surface area.
    [Show full text]
  • Kyzylorda Oblast, Kazakhstan Challenges
    for Kyzylorda Oblast Youth Health Center Oblast Youth for Kyzylorda © Umirbai Tumenbayev, official photographer © Umirbai Tumenbayev, The Kyzylorda Oblast Medical Center, Kyzylorda Oblast, Kazakhstan Kyzylorda City General overview Kyzylorda Oblast (region) is situated along the summer, precipitation generally evaporates, and Syrdariya River in the south-western part of the it is only in winter that the soil receives moisture. Republic of Kazakhstan in central Eurasia. The There are many days with strong wind, and dust region covers an area of 226 000 km2 with a storms can occur in summer. The remaining part distance of 1000 km between its northernmost of the shrinking Aral Sea – the Small Aral Sea – is and southernmost borders (1). Comprising seven located in the southern part of the region. The districts and the capital city – also called Kyzylorda Aral Sea has been described as “one of the worst – the region is more than 190 years old, one of environmental disasters of the world”(2). The the oldest in the country. It borders on Aktobe salinity of the remaining water exceeds 100 g/l. Oblast in the north-west, Karaganda Oblast in In 2008, a project to construct a seawall made the north, South Kazakhstani Oblast in the south- it possible to increase the water level slowly in east, and the Republic of Uzbekistan in the south. the northern part of the Aral. Currently, the level It has a wide range of mineral resources, the of salinity is decreasing, which has resulted in most important being hydrocarbons, non-ferrous the appearance of some species of fish.
    [Show full text]
  • The Aral Sea
    The Aral Sea edited by David L. Alles Western Washington University e-mail: [email protected] Last Updated 2011-11-4 Note: In PDF format most of the images in this web paper can be enlarged for greater detail. 1 Introduction The Aral Sea was once the world's fourth largest lake, slightly bigger than Lake Huron, and one of the world's most fertile regions. Today it is little more than a string of lakes scattered across central Asia east of the Caspian Sea. The sea disappeared for several reasons. One is that the Aral Sea is surrounded by the Central Asian deserts, whose heat evaporates 60 square kilometers (23 sq. miles) of water from its surface every year. Second is four decades of agricultural development and mismanagement along the Syr Darya and Amu Darya rivers that have drastically reduced the amount of fresh water flowing into the sea. The two rivers were diverted starting in the 1960s in a Soviet scheme to grow cotton in the desert. Cotton still provides a major portion of foreign currency for many of the countries along the Syr Darya and Amu Darya rivers. By 2003, the Aral Sea had lost approximately 75% of its area and 90% of its pre- 1960 volume. Between 1960 and January 2005, the level of the northern Aral Sea fell by 13 meters (~ 43 ft) and the larger southern portion of the sea by 23 meters (75.5 ft) which means that water can now only flow from the north basin to the south (Roll, et al., 2006).
    [Show full text]
  • Oberhänsli, H., Boroffka, N., Sorrel, P., Krivonogov, S. (2007)
    Originally published as: Oberhänsli, H., Boroffka, N., Sorrel, P., Krivonogov, S. (2007): Climate variability during the past 2,000 years and past economic and irrigation activities in the Aral Sea basin. - Irrigation and Drainage Systems, 21, 3-4, 167-183 DOI: 10.1007/s10795-007-9031-5. Irrigation and Drainage Systems, 21, 3-4, 167-183, 10.1007/s10795-007-9031-5 1 Climate variability during the past 2000 years and past economic and irrigation 2 activities in the Aral Sea basin 3 4 Hedi Oberhänsli1, Nikolaus Boroffka2, Philippe Sorrel3, Sergey Krivonogov,4 5 6 1) GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany. 7 2) Deutsches Archäologisches Institut, Im Dol 2-6, D-14195 Berlin, Germany. 8 3) Laboratoire "Morphodynamique Continentale et Côtière" (UMR 6143 CNRS), 9 Université de Caen Basse-Normandie, 24 rue des Tilleuls, F-14000 CAEN, France. 10 4) United Institute of Geoloy, Geophysics and Mineralogy of the Russian Academy of 11 Sciences, Siberian Division, Novosibirsk regional Center of Geoinformational 12 Technologies, Academic Koptyug prospekt 3, 630090 Novosibirsk, Russia. 13 14 Abstract 15 The lake level history, here based on the relative abundance of Ca (gypsum), is used for 16 tracing past hydrological conditions in Central Asia. Lake level was close to a minimum 17 before approximately AD 300, at about AD 600, AD 1220 and AD 1400. Since 1960 the 18 lake level is lowering again. Lake water level was lowest during the 14th or early 15th 19 centuries as indicated by a coeval settlement, which today is still under water near the 20 well-dated mausoleum of Kerderi.
    [Show full text]
  • New Siberian Islands Archipelago)
    Detrital zircon ages and provenance of the Upper Paleozoic successions of Kotel’ny Island (New Siberian Islands archipelago) Victoria B. Ershova1,*, Andrei V. Prokopiev2, Andrei K. Khudoley1, Nikolay N. Sobolev3, and Eugeny O. Petrov3 1INSTITUTE OF EARTH SCIENCE, ST. PETERSBURG STATE UNIVERSITY, UNIVERSITETSKAYA NAB. 7/9, ST. PETERSBURG 199034, RUSSIA 2DIAMOND AND PRECIOUS METAL GEOLOGY INSTITUTE, SIBERIAN BRANCH, RUSSIAN ACADEMY OF SCIENCES, LENIN PROSPECT 39, YAKUTSK 677980, RUSSIA 3RUSSIAN GEOLOGICAL RESEARCH INSTITUTE (VSEGEI), SREDNIY PROSPECT 74, ST. PETERSBURG 199106, RUSSIA ABSTRACT Plate-tectonic models for the Paleozoic evolution of the Arctic are numerous and diverse. Our detrital zircon provenance study of Upper Paleozoic sandstones from Kotel’ny Island (New Siberian Island archipelago) provides new data on the provenance of clastic sediments and crustal affinity of the New Siberian Islands. Upper Devonian–Lower Carboniferous deposits yield detrital zircon populations that are consistent with the age of magmatic and metamorphic rocks within the Grenvillian-Sveconorwegian, Timanian, and Caledonian orogenic belts, but not with the Siberian craton. The Kolmogorov-Smirnov test reveals a strong similarity between detrital zircon populations within Devonian–Permian clastics of the New Siberian Islands, Wrangel Island (and possibly Chukotka), and the Severnaya Zemlya Archipelago. These results suggest that the New Siberian Islands, along with Wrangel Island and the Severnaya Zemlya Archipelago, were located along the northern margin of Laurentia-Baltica in the Late Devonian–Mississippian and possibly made up a single tectonic block. Detrital zircon populations from the Permian clastics record a dramatic shift to a Uralian provenance. The data and results presented here provide vital information to aid Paleozoic tectonic reconstructions of the Arctic region prior to opening of the Mesozoic oceanic basins.
    [Show full text]
  • Drought and Effect of Vegetation on Aeolian Transport in the Aralkum
    Drought and effect of vegetation on aeolian transport in the Aralkum Timon Smeets 1 2 Drought and effect of vegetation on aeolian transport in the Aralkum MSc Thesis November-2020 Author: Timon Smeets Student number: 5559650 E-mail: [email protected] First supervisor: Geert Sterk Second supervisor: Gerben Ruessink MSc Programme: Earth Surface and Water Faculty of Geosciences Department of Physical Geography Utrecht University 3 Abstract This study focusses on the effects of the desiccation of the Aral Sea, which occurred ~50 years ago. The desiccation of the Aral Sea began a shift in climate and transformed the Aral Sea. The Aral sea that once was the livelihood of many changed into the Aralkum, a dessert which to this day destroys the lives of many. This study focusses on the shift in climate that occurred due to the desiccating of the Aral Sea, the dust storms originating from the Aralkum, and vegetation strategies that can limit the magnitude of these dust storms. This study used precipitation data and satellite imagery to analyse the shift in the meteorological climate and the resulting changes in vegetation. Using the Aerosol optical depth and local wind speed data, the temporal variation of dust storms and high wind events were analysed and linked. The effect of different types of vegetation on reducing wind erosion in the form of suspension and saltation was modelled using a cellular automaton approach. The climate has shifted into a wetter but warmer climate. The regions affected by this are the rangelands in proximity(0-500 km) to the Aral sea, which experienced soil salination and a significant loss in vegetation density.
    [Show full text]
  • Climate Change in the Post-Soviet Space
    ISPI DOSSIER April 2021 CLIMATE CHANGE IN THE POST-SOVIET SPACE edited by Eleonora Tafuro Ambrosetti CLIMATEUNRAVELLING CHANGE THE SAHEL: IN THE STATE, POST-SOVIET POLITICS AND SPACE ARMED VIOLENCE MarchApril 2021 2021 ITALIAN INSTITUTE FOR INTERNATIONAL POLITICAL STUDIES everal post-Soviet states are particularly vulnerable to the effects of climate change. Furthermore, two of the worst environmental disasters of our times – the Chernobyl Snuclear accident and the Aral Sea desertification – happened in the post-Soviet region, with implications that have crossed state and time boundaries. This dossier highlights the major environmental and climate-change-related crises affecting the area and the diverse national and regional approaches to tackle them. What is the approach of Russia — one the biggest energy producers and polluters in the world — with regards to climate change? Can transboundary crises spur regional cooperation in the South Caucasus and Central Asia? What is the role of civil society in holding governments accountable in this domain? * Eleonora Tafuro Ambrosetti is a research fellow at the Russia, Caucasus and Central Asia Centre at ISPI. Her areas of interest include Russian foreign policy, EU-Russia and Russia-Turkey relations, and EU neighbourhood policies (especially with Eastern neighbours). She is a member of WIIS (Women in International Security), an international network dedicated to increasing the influence of women in the field of foreign and defence policy. | 2 CLIMATE CHANGE IN THE POST-SOVIET SPACE April 2021 ITALIAN INSTITUTE FOR INTERNATIONAL POLITICAL STUDIES Table of Contents 1. TIME TO TALK CLIMATE CHANGE IN THE POST-SOVIET REGION Eleonora Tafuro Ambrosetti (ISPI) 2.
    [Show full text]
  • The Eu and the Arctic
    MAGAZINE Dealing the Seal 8 No. 1 Piloting Arctic Passages 14 2016 THE CIRCLE The EU & Indigenous Peoples 20 THE EU AND THE ARCTIC PUBLISHED BY THE WWF GLOBAL ARCTIC PROGRAMME TheCircle0116.indd 1 25.02.2016 10.53 THE CIRCLE 1.2016 THE EU AND THE ARCTIC Contents EDITORIAL Leaving a legacy 3 IN BRIEF 4 ALYSON BAILES What does the EU want, what can it offer? 6 DIANA WALLIS Dealing the seal 8 ROBIN TEVERSON ‘High time’ EU gets observer status: UK 10 ADAM STEPIEN A call for a two-tier EU policy 12 MARIA DELIGIANNI Piloting the Arctic Passages 14 TIMO KOIVUROVA Finland: wearing two hats 16 Greenland – walking the middle path 18 FERNANDO GARCES DE LOS FAYOS The European Parliament & EU Arctic policy 19 CHRISTINA HENRIKSEN The EU and Arctic Indigenous peoples 20 NICOLE BIEBOW A driving force: The EU & polar research 22 THE PICTURE 24 The Circle is published quar- Publisher: Editor in Chief: Clive Tesar, COVER: terly by the WWF Global Arctic WWF Global Arctic Programme [email protected] (Top:) Local on sea ice in Uumman- Programme. Reproduction and 8th floor, 275 Slater St., Ottawa, naq, Greenland. quotation with appropriate credit ON, Canada K1P 5H9. Managing Editor: Becky Rynor, Photo: Lawrence Hislop, www.grida.no are encouraged. Articles by non- Tel: +1 613-232-8706 [email protected] (Bottom:) European Parliament, affiliated sources do not neces- Fax: +1 613-232-4181 Strasbourg, France. sarily reflect the views or policies Design and production: Photo: Diliff, Wikimedia Commonss of WWF. Send change of address Internet: www.panda.org/arctic Film & Form/Ketill Berger, and subscription queries to the [email protected] ABOVE: Sarek glacier, Sarek National address on the right.
    [Show full text]
  • Hydrographic Development of the Aral Sea During the Last 2000 Years Based on a Quantitative Analysis of Dinoflagellate Cysts
    Palaeogeography, Palaeoclimatology, Palaeoecology 234 (2006) 304–327 www.elsevier.com/locate/palaeo Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts P. Sorrel a,b,*, S.-M. Popescu b, M.J. Head c,1, J.P. Suc b, S. Klotz b,d, H. Oberha¨nsli a a GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany b Laboratoire Pale´oEnvironnements et Pale´obioSphe`re (UMR CNRS 5125), Universite´ Claude Bernard—Lyon 1, 27-43, boulevard du 11 Novembre, 69622 Villeurbanne Cedex, France c Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK d Institut fu¨r Geowissenschaften, Universita¨t Tu¨bingen, Sigwartstrasse 10, 72070 Tu¨bingen, Germany Received 30 June 2005; received in revised form 4 October 2005; accepted 13 October 2005 Abstract The Aral Sea Basin is a critical area for studying the influence of climate and anthropogenic impact on the development of hydrographic conditions in an endorheic basin. We present organic-walled dinoflagellate cyst analyses with a sampling resolution of 15 to 20 years from a core retrieved at Chernyshov Bay in the NW Large Aral Sea (Kazakhstan). Cysts are present throughout, but species richness is low (seven taxa). The dominant morphotypes are Lingulodinium machaerophorum with varied process length and Impagidinium caspienense, a species recently described from the Caspian Sea. Subordinate species are Caspidinium rugosum, Romanodinium areolatum, Spiniferites cruciformis, cysts of Pentapharsodinium dalei, and round brownish protoper- idiniacean cysts. The chlorococcalean algae Botryococcus and Pediastrum are taken to represent freshwater inflow into the Aral Sea. The data are used to reconstruct salinity as expressed in lake level changes during the past 2000 years.
    [Show full text]
  • Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series
    remote sensing Article Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series Fabian Löw 1,2,* ID , Alexander V. Prishchepov 3,4,5, François Waldner 6,7, Olena Dubovyk 8, Akmal Akramkhanov 1 ID , Chandrashekhar Biradar 1 and John P. A. Lamers 8 1 International Centre for Agricultural Research in Dry Areas (ICARDA), 11431 Cairo, Egypt; [email protected] (A.A.); [email protected] (C.B.) 2 MapTailor Geospatial Consulting, 53113 Bonn, Germany 3 Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, 1165 København, Denmark; [email protected] 4 Leibniz Institute of Agricultural Development in Transition Economies (IAMO), 06120 Halle (Saale), Germany 5 Institute of Environmental Sciences, Kazan Federal University, 420008 Kazan, Russia 6 Earth and Life Institute-Environment, Université Catholique de Louvain, 2 Croix du Sud, 1348 Louvain-la-Neuve, Belgium; [email protected] 7 CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, QLD 4067, Australia 8 Department of Geography, Rheinische-Friedrich-Wilhelms-Universität, 53113 Bonn, Germany; [email protected] (O.D.); [email protected] (J.P.A.L.) * Correspondence: [email protected] Received: 18 November 2017; Accepted: 16 January 2018; Published: 23 January 2018 Abstract: Cropland abandonment is globally widespread and has strong repercussions for regional food security and the environment. Statistics suggest that one of the hotspots of abandoned cropland is located in the drylands of the Aral Sea Basin (ASB), which covers parts of post-Soviet Central Asia, Afghanistan and Iran. To date, the exact spatial and temporal extents of abandoned cropland remain unclear, which hampers land-use planning.
    [Show full text]
  • The Aral Sea Basin Crisis and Sustainable Water Resource Management in Central Asia 1
    The Aral Sea Basin Crisis and Sustainable Water Resource Management in Central Asia 1 1 THE ARAL SEA BASIN CRISIS AND SUSTAINABLE WATER RESOURCE MANAGEMENT IN CENTRAL ASIA Everett J. Peachey This article traces the historical development of water resource management in Central Asia, focusing on the causes of the cur- rent Aral Sea Basin crisis. It examines the obstacles facing the Central Asian republics in addressing this problem and offers predictions regarding the future state of the region’s ecology, economy, and stability, as well as the health of the region’s people. The article also explains how existing plans of action have been largely ineffective and why restoring the Aral Sea to its original state is an impossible task. Finally, it provides feasible policy recommendations on how to prevent the further mismanagement of the region’s water while maintaining viable levels of economic development and population growth. “That which is common to the greatest number has the least care bestowed on it” (Aristotle, Politics, Book II, Chapter 3). The five Central Asian republics of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan are facing a nearly unsolvable crisis in the Aral Sea Basin, the site of an environmental and human catastrophe. Given economic and time constraints, the mitigation of the catastrophe, rather than the reconstruction of the Basin’s original ecosystem, is the only viable Everett J. Peachey is a Master of Arts in Law and Diplomacy candidate at the Fletcher School of Law and Diplomacy, Tufts University ([email protected]). Journal of Public and International Affairs, Volume 15/Spring 2004 Copyright © 2004, the Trustees of Princeton University 7 http://www.princeton.edu/~jpia The Aral Sea Basin Crisis and 2 Everett J.
    [Show full text]
  • Kadukin A.I., Klige R.K. the Water Balance of the Caspian Sea and Aral Sea / Hydrologeofnaamil
    HydrologeofNaamil and Manmade Lakes (Proceeding ol the Vienna Symposium, August 1991). IAHS Publ. no. 206,1991. The water balance of the Caspian Sea and Aral Sea A. I. KADUKIN & R. K. KLIGE Water Problems Institute, USSR Academy of Sciences, 13/3 Sadovaya-Chernogryazskaya St., 103064 Moscow, USSR ABSTRACT The effect of water vapour, trans­ ferred from irrigated lands of the USSR Cent­ ral Asia, on the evaporation from the Caspian Sea surface has "been proved. The fresh water flowing to the Aral Sea was used for irrigati­ on. The other processes influencing the moist­ ure content of air masses over the Caspian Sea surface have been discussed as well. The pos­ sible changes in the Caspian Sea level fluctu­ ations under the effect of changes in the mo­ isture content over the sea surface by 12.5% and 6% have been determined. Beginning from 1930 to 1975 the Caspian Sea level con­ stantly droped from an elevation of -26.08 to -29.0 m. Since 1978 the sea level began to rise and this rise continues until present. The sea level rose by 1.2 m and reached an elevation of 27.8 m for the period under con­ sideration. The water volume accumulated for these years amounted to about 450 cu km. The Aral Sea level from I860 to I960 was relatively constant and amounted to 53 m. After i960 a sharp de­ crease in the sea level began and at present it is ap­ proaching an elevation of 43 m, i.e. lowered by almost 10 m. The water volume of the Aral Sea decreased by abo­ ut 450 cu km for the same period (Table 1).
    [Show full text]