Chapter Four Anti-Tnfα Antibodies Induce Regulatory Macrophages in an Fc Region Dependent Manner

Total Page:16

File Type:pdf, Size:1020Kb

Chapter Four Anti-Tnfα Antibodies Induce Regulatory Macrophages in an Fc Region Dependent Manner Towards therapeutic disease control in inflammatory bowel diseases Vos, A.C.W. Citation Vos, A. C. W. (2011, September 8). Towards therapeutic disease control in inflammatory bowel diseases. Retrieved from https://hdl.handle.net/1887/17819 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral License: thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/17819 Note: To cite this publication please use the final published version (if applicable). Chapter four Anti-TNFα antibodies induce regulatory macrophages in an Fc region dependent manner Anne Christine W. Vos, Manon E. Wildenberg, Marjolijn Duijvestein, Auke P. Verhaar, Gijs R. van den Brink and Daniel W. Hommes Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands Gastroenterology 2011;140:221-230 74 Chapter 4 Abstract Anti-TNFα antibodies are effective in Crohn’s disease whereas soluble TNFα receptors have failed to show clinical efficacy. The molecular mechanism that underlies the differences between these compounds has not been elucidated. Here we aimed to examine the mecha- nism of action of the immunosuppressive effect of anti-TNFα antibodies on activated T cells. We studied the effect of anti-TNFα antibodies infliximab and adalimumab, the soluble TNFα receptor etanercept, pegylated F(ab’) fragment certolizumab and certolizumab-IgG on primary activated T cells. T cells were grown in isolation or in a mixed lymphocyte reac- tion (MLR). Proliferation was measured by 3H thymidine incorporation and apoptosis was examined using Annexin V labeling and a colorimetric assay for activated caspase-3. Mac- rophage phenotype was assayed by flow cytometry and cytokine secretion. Infliximab and adalimumab reduced proliferation in an MLR, whereas etanercept and cer- tolizumab did not. This effect was completely abolished after blocking Fc receptors. Inflixi- mab F(ab’)2 fragment failed to inhibit proliferation whereas certolizumab-IgG gained the ability to inhibit proliferation. In the MLR anti-TNFs induced a new population of mac- rophages in an Fc region dependent manner. These macrophages were found to have an immunosuppressive phenotype, in terms of their capacity to inhibit proliferation of acti- vated T cells, production of anti-inflammatory cytokines and the expression of the regula- tory macrophage marker CD206. Regulatory macrophages have immunosuppressive properties and play an important role in wound healing. Our data show that anti-TNFs induce regulatory macrophages in an Fc region dependent manner. This mechanism of action of anti-TNFs may contribute to the resolution of inflammation. Anti-TNF antibodies induce regulatory macrophages in an Fc region dependent manner 75 Introduction Crohn’s disease (CD) is a chronic inflammatory bowel disease that results from a dysregu- lated immune response of unknown aetiology. 1-3 Tumour necrosis factor alpha (TNFα), a cytokine produced by activated macrophages, monocytes and T cells, 4 is a key mediator in immune responses and is increased in serum and intestine in CD and synovium in rheu- matoid arthritis (RA). 5-7 Since their introduction in the ’90s, anti-TNFα antibodies are commonly used for the treat- ment of Crohn’s disease. Various classes of anti-TNFs have been introduced, and although all classes efficiently neutralize TNFα, they show different efficacy profiles. The antibodies infliximab 8, 9 and adalimumab 10, 11 were shown to be effective in both inducing and main- taining remission in CD patients. On the other hand, two soluble receptors; etanercept and onercept were ineffective in inducing remission in CD patients. 12, 13 Also, the humanized anti-TNFα antibody CDP571 which was designed as an IgG4 to reduce interaction with Fc receptors in the hope to reduce side effects also failed to show effectiveness in CD. 14 These clinical data strongly suggest that neutralizing TNFα may not be the sole mechanism of action of anti-TNFα treatment in Crohn’s disease. Several effector mechanisms of anti-TNFα treatment have been proposed that are independ- ent of TNFα neutralizing activity. Examples are the induction of apoptosis in T cells and monocytes via binding of membrane bound TNFα (mTNFα), 15-17 antibody-dependent-cell- mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity. 18, 19 Furthermore, a role for Fc receptors has been proposed based on the association between a polymorphism in the Fc gamma receptor IIIa and the biological response to infliximab.20 Fc receptors bind the Fc region of an antibody or antibody-complex, resulting in myeloid cell activation, phagocytosis and cytokine secretion. The importance of Fc receptors in the mechanism of action of other antibody therapies such as anti-CD20 and anti-Human Epidermal growth factor Receptor 2 (Her2) has been described before. 21, 22 In Fcγ-/- mice which are unable to bind Fc regions, both anti-CD20 and anti-Her2 lost their efficacy in reducing tumor size, demonstrating a key role for the Fc receptor in the mechanism of action of these antibodies. Although a number of mechanisms have been suggested, it is still unclear why certain anti-TNFs are effective in Crohn’s disease and other anti-TNFs are not. Many studies on the mechanism of action of anti-TNFα focus on binding to mTNFα and reverse signaling in T cells, 18, 23 whereas the effect and importance of binding to Fc receptors has not been established thus far. In this study, we found that in order for an anti-TNFα to inhibit T cell proliferation in vitro, the compound needs to bind to mTNFα on activated T cells and posses an Fc region to interact with the Fc receptor on antigen presenting cells. Upon this binding, a distinct mac- rophage subset is induced with immunosuppressive capacities, including the production of anti-inflammatory cytokines and inhibition of T cell proliferation. 76 Chapter 4 Material and methods Antibodies and Reagents Infliximab, certolizumab, adalimumab and etanercept were prepared according to manu- facturers’ recommendations. Certolizumab-IgG was obtained from UCB (UCB, Belgium), and IgG1k was obtained from Sigma. Cell isolation and culture Peripheral blood mononuclear cells (PBMCs) from healthy volunteers were isolated by Ficoll Paque density-gradient centrifugation. After washing, monocytes were isolated by Percoll density-gradient centrifugation. CD3 positive T cells were isolated from PBMCs using nega- tive magnetic bead separation (Invitrogen). For T cell activation, cells were activated with αCD3/αCD28 antibodies (Sanquin) at the indicated concentration or αCD3/αCD28 beads (Invitrogen) (1 bead/5 cells). PBMCs and T cells were cultured in RPMI 1640 containing 10% heat-inactivated FCS. Dendritic cells (DCs) were obtained by culturing monocytes with GM-CSF (50 ng/mL, R&D), IL-4 (50 ng/mL, R&D) for 7 days in AIM-V medium. To generate macrophages, monocytes were cultured in 6 wells plates for 5 days. Infliximab induced macrophages (Mφind) were isolated from MLR cultures using CD14 microbeads according to manufacturer’s protocol (Miltenyi). Next, cells were cultured in RPMI 1640, containing 10% heat-inactivated FCS. For light microscopy, cells were adhered to poly-L-lysine coated coverslips and stained using DiffQuick. Binding to membrane TNFα For mTNFα binding assays, infliximab, certolizumab, adalimumab, etanercept and control IgG were labeled with a fluorescent dye using a commercially available kit according to the manufacturers’ instructions (Alexa Fluor 647 protein labeling kit, Pierce). CD3 positive T cells were activated with αCD3/CD28 antibodies for 48 hours. Cells were collected, washed three times in FACS buffer (PBS containing 1% BSA) and incubated with various amounts of labeled anti-TNFα compound or IgG control for 30 minutes on ice. Binding of inflixi- mab F(ab’)2 fragment was assessed in a competition assay; activated T cells were incubated with labeled infliximab (10μ g/mL) and increasing concentrations of unlabeled infliximab F(ab’)2 fragment at the same time. After washing, binding to mTNFα was analyzed by flow cytometry. Allogeneic mixed lymphocyte reaction (MLR) PBMCs from two healthy donors were cultured in a 1:1 ratio in RPMI 1640 culture medium. After 48 hours of activation, cells were treated with the indicated compound (infliximab, adalimumab, certolizumab, etanercept, Certolizumab-IgG or IgG control, all at 10 μg/mL) for up to 7 days where indicated. When appropriate, Fc receptors were saturated by treating MLRs with IgG (10 μg/mL, Sigma) for 6 – 16 hours and next treated with anti-TNF com- pound or IgG control for 2 days. Finally, proliferation was measured using a 3H-thymidine incorporation assay. Anti-TNF antibodies induce regulatory macrophages in an Fc region dependent manner 77 Assays for apoptosis PBMCs or isolated T cells were activated in an MLR or with CD3/CD28 antibodies for 48 hr, and treated with anti-TNF compound or control (10 μg/mL). Cells were collected, washed three times, and stained with Annexin V and Pi and analyzed by flowcytometry. For measurement of caspase-3 enzymatic activity, a colorimetric assay was used as described before. 24 Cell lysates were generated from MLR cultures and protein concentration was determined by BCA analysis (Pierce). Lysates were incubated with a saturating concen- tration of 25μM specific enzyme substrate Ac-Aps-Glu-Val-Asp-AMC (Ac-DEVD-AMC, Bachem, Germany) in 100mM HEPES buffer with 10% sucrose, 10mM dithiothreitol and 0.1% Nonidet-P40. Samples were incubated at 37°C and fluorescent AMC release was moni- tored (Fluostar Optima plate reader). FACS analysis Human monocytes and DCs were plated in 6 well plates (2 x 106 cells/well) and cultured with or without LPS (Sigma, 100 ng/mL) for 16 hours, and treated with anti-TNFα com- pound or IgG control (Sigma, 10 μg/mL) for 25 – 48 hours. Cells were harvested, washed, and stained for αCD14-FITC, αCD40-FITC, αCD80-Pe, αCD83-APC, αCD86-APC, αHLA- DR-FITC and appropriate controls (all BD) for 30 minutes on ice.
Recommended publications
  • Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses
    cells Review Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses Clément Anfray 1, Aldo Ummarino 2 , Fernando Torres Andón 1,3 and Paola Allavena 1,* 1 IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy; [email protected] (C.A.); [email protected] (F.T.A.) 2 Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; [email protected] 3 Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Universidade, de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain * Correspondence: [email protected] Received: 4 December 2019; Accepted: 20 December 2019; Published: 23 December 2019 Abstract: Established evidence demonstrates that tumor-infiltrating myeloid cells promote rather than stop-cancer progression. Tumor-associated macrophages (TAMs) are abundantly present at tumor sites, and here they support cancer proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Their pro-tumor activities hamper the response of cancer patients to conventional therapies, such as chemotherapy or radiotherapy, and also to immunotherapies based on checkpoint inhibition. Active research frontlines of the last years have investigated novel therapeutic strategies aimed at depleting TAMs and/or at reprogramming their tumor-promoting effects, with the goal of re-establishing a favorable immunological anti-tumor response within the tumor tissue. In recent years, numerous clinical trials have included pharmacological strategies to target TAMs alone or in combination with other therapies. This review summarizes the past and current knowledge available on experimental tumor models and human clinical studies targeting TAMs for cancer treatment.
    [Show full text]
  • IL-10 Responsiveness and Anti-TNF Therapy in Inflammatory Bowel Disease
    https://www.scientificarchives.com/journal/journal-of-cellular-immunology Journal of Cellular Immunology Short Communication IL-10 Responsiveness and Anti-TNF Therapy in Inflammatory Bowel Disease Felicia M. Bloemendaal1,2, Charlotte P. Peters1, Anje A. te Velde1,2, Cyriel Y. Ponsioen1, Gijs R. van den Brink1,2,3, Manon E. Wildenberg1,2#, Pim J. Koelink2#* 1Department of Gastroenterology and Hepatology, University of Amsterdam, Amsterdam, the Netherlands 2Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, AG&M Amsterdam, University of Amsterdam, Amsterdam, the Netherlands 3Current address: Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland #Contributed equally *Correspondence should be addressed to Pim J. Koelink; [email protected] Received date: December 05, 2020, Accepted date: January 28, 2021 Copyright: © 2021 Bloemendaal FM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Keywords: IBD, IL-10, Anti-TNF, Macrophages, developing IBD [6]. Colitis While initially it was assumed that IL-10 suppressed inflammatory responses by directly affecting T-cells [7], Macrophages, IL-10 and Anti-TNF Therapy in further experimental studies pointed out a pivotal role for IBD IL-10 signaling within the myeloid compartment as the absence of IL-10 Rα in intestinal macrophages resulted Inflammatory bowel disease (IBD) is a multifactorial in spontaneous colitis [8,9]. Therefore, IL-10 signaling disease in which both genetic and environmental factors within macrophages plays a central role in the regulation play an important role, although the precise cause remains of intestinal mucosal homeostasis.
    [Show full text]
  • Macrophage PD-L1 Strikes Back: PD-1/PD-L1 Interaction Drives Macrophages Toward Regulatory Subsets
    Advances in Bioscience and Biotechnology, 2013, 4, 19-29 ABB http://dx.doi.org/10.4236/abb.2013.48A3003 Published Online August 2013 (http://www.scirp.org/journal/abb/) Macrophage PD-L1 strikes back: PD-1/PD-L1 interaction drives macrophages toward regulatory subsets Yun-Jung Lee, Young-Hye Moon, Kyeong Eun Hyung, Jong-Sun Yoo, Mi Ji Lee, Ik Hee Lee, Byung Sung Go, Kwang Woo Hwang* Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, Seoul, Korea Email: *[email protected] Received 21 May 2013; revised 25 June 2013; accepted 19 July 2013 Copyright © 2013 Yun-Jung Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Keywords: Regulatory Macrophage; PD-1; PD-L1 Activated macrophages have been simply defined as cells that secrete inflammatory mediators and kill 1. INTRODUCTION intracellular pathogens until few years ago. Recent Macrophages are innate immune cells, and are the first studies have proposed a new classification system to line of defense against invading pathogens [1], and they separate activated macrophages based on their func- are also antigen presenting cells (APCs), participating in tional phenotypes: host defense, wound healing, and adaptive immunity. Macrophages have versatile abilities, immune regulation. Regulatory macrophages can including phagocytosis, antigen presentation, antimicro- arise following innate or adaptive immune responses bial toxicity, and tissue remodeling as well as the secre- and hinder macrophage-mediated host defense and tion of a wide range of growth factors, cytokines, com- inflammatory functions by inhibiting the production plement components, prostaglandins, and enzymes [2].
    [Show full text]
  • 33653-Macrophages-GB-P4.Pdf
    BEYOND BIG CIRCULATION-DERIVED AND TISSUE-RESIDENT MACROPHAGES 1 Most macrophages in the body come from circulating monocytes that differentiate after leaving the vasculature. However, tissue-resident macrophage populations are permanent residents of most major organs1. These macrophages exhibit EATERS significant genetic and functional heterogeneity THE MANY TYPES OF MACROPHAGES depending on their origin and local environment2. By Nathan Ni, PhD Origin: Most tissue-resident macrophages develop during Researchers originally believed that macrophages existed in only pro- and embryogenesis and maintain their populations throughout anti-inflammatory varieties. Over time, it became clear that many different adulthood1,3. However, some come from circulating monocyte differentiation3. These monocyte-derived macrophages may macrophage types and subtypes exist in physiological and pathological replenish depleted tissue-resident macrophage niches3. situations. Macrophage heterogeneity brings incredible diversity to the Common Markers: Murine tissue-resident macrophages are F4/80hiCD11blo, although a monocyte-derived purpose and function of these remarkable cells, but also complicates F4/80hiCD11bint subset exists3. Macrophages are also Ly6C- in understanding how macrophages affect health and disease. contrast to monocytes, which are Ly6C+4. Further tissue- specific variations may exist. For example, brain-resident macrophages are CD45lo as opposed to CD45hi found in other CLASSICALLY ACTIVATED tissues5, and three distinct cardiac populations (MHCloCCR2-, PRO-INFLAMMATORY MACROPHAGES MHCIIhiCCR2-, and CCR2+) are known6. 2 Function: Tissue-resident macrophages are vital for Classically activated macrophages, also known as proper angiogenesis, morphogenesis, and dead cell removal 4 “M1” macrophages, were the first to be discovered, during tissue/organ development . In mature organs, in addition and therefore are the best-known macrophage to removing apoptotic and necrotic cells, they contribute to homeostatic maintenance and stem cell survival5.
    [Show full text]
  • Macrophage Inflammatory State Influences Susceptibility to Lysosomal Damage
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.122390; this version posted May 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Macrophage Inflammatory State Influences Susceptibility to Lysosomal Damage Amanda O. Wong*, †, ‡, Matangi Marthi*, Irene A. Owusu*, §, Christiane E. Wobus*, †, and Joel A. Swanson*, † *Department of Microbiology and Immunology; †Graduate Program in Immunology; ‡Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-5620 §West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana Correspondence to: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; 734-647-6339; [email protected] Summary sentence: Macrophages of distinct polarization states exhibit varying degrees of susceptibility to lysosomal damage reflecting their functional roles in host defense and immune regulation bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.122390; this version posted May 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abbreviations A2bR, adenosine 2b receptor; AA-Mφ, alternatively activated
    [Show full text]
  • Activation Response Upregulation to Sustain the Macrophage Prevents Adenosine Receptor (A2br) Γ IFN
    IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response This information is current as Heather B. Cohen, Amanda Ward, Kajal Hamidzadeh, Katya of October 1, 2021. Ravid and David M. Mosser J Immunol 2015; 195:3828-3837; Prepublished online 9 September 2015; doi: 10.4049/jimmunol.1501139 http://www.jimmunol.org/content/195/8/3828 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/09/09/jimmunol.150113 Material 9.DCSupplemental http://www.jimmunol.org/ References This article cites 31 articles, 8 of which you can access for free at: http://www.jimmunol.org/content/195/8/3828.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IFN-g Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response Heather B. Cohen,*,†,1 Amanda Ward,*,† Kajal Hamidzadeh,*,† Katya Ravid,‡ and David M.
    [Show full text]
  • Recovery from Lipopolysaccharide Tolerance Macrophage
    Identification of a Unique Hybrid Macrophage-Polarization State following Recovery from Lipopolysaccharide Tolerance This information is current as Christine O'Carroll, Ailís Fagan, Fergus Shanahan and of September 30, 2021. Ruaidhrí J. Carmody J Immunol 2014; 192:427-436; Prepublished online 11 December 2013; doi: 10.4049/jimmunol.1301722 http://www.jimmunol.org/content/192/1/427 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/12/27/jimmunol.130172 Material 2.DC1 http://www.jimmunol.org/ References This article cites 62 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/192/1/427.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 30, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of a Unique Hybrid Macrophage-Polarization State following Recovery from Lipopolysaccharide Tolerance Christine O’Carroll,* Ailı´s Fagan,† Fergus Shanahan,* and Ruaidhrı´ J.
    [Show full text]
  • Chapter 6 Evaluation of Classical, Alternative, and Regulatory
    Chapter 6 Evaluation of Classical, Alternative, and Regulatory Functions of Bone Marrow-Derived Macrophages Beckley K. Davis Abstract The role of macrophage subsets in allergic diseases in vivo is under current investigation. These cells perform sentinel functions in the lung, the skin, and the gastrointestinal mucosa. Their interface with environmental cues infl uences the initiation, progression, development, and resolution of allergic diseases. Researchers often culture bone marrow-derived macrophages to study macrophage biology. The in vitro maturation of bone marrow precursor cells into mature macrophages is a powerful technique used to study macrophage biology. The polarization or differential activation of macrophages into functionally distinct subsets can provide insight into allergic disease pathologies. Classically activated, alternatively activated, and regulatory macrophages have different effector functions that can affect allergic responses. Understanding macrophage biology during allergen exposure, host sensitization, and disease progression/ resolution may lead to improved therapeutic interventions. The purpose of this chapter is to outline pro- tocols used for the culture and polarization of classically activated, alternatively activated, and regulatory macrophages. In addition, the techniques to measure macrophage-specifi c effector molecules by ELISA, RT-PCR, and immunoblotting are reviewed. Key words M1 macrophage , M2 macrophage , Regulatory macrophage , Infl ammation , Cytokine , Allergy and asthma 1 Introduction Macrophages may play different roles in allergic responses depend- ing on their location, predisposing genetic factors, and environ- mental factors. Macrophages are a predominant immune cell of tissues exposed to the environment such as the lung, intestine, and skin [ 1 ] and are likely to be one of the fi rst effector cells to come into contact with allergens.
    [Show full text]
  • Transcriptomics Uncovers Substantial Variability Associated with Alterations in Manufacturing Processes of Macrophage Cell Therapy Products Olga L
    www.nature.com/scientificreports OPEN Transcriptomics uncovers substantial variability associated with alterations in manufacturing processes of macrophage cell therapy products Olga L. Gurvich1,3, Katja A. Puttonen1,3, Aubrey Bailey1, Anssi Kailaanmäki1, Vita Skirdenko1, Minna Sivonen1, Sanna Pietikäinen1, Nigel R. Parker2, Seppo Ylä‑Herttuala2 & Tuija Kekarainen1* Gene expression plasticity is central for macrophages’ timely responses to cues from the microenvironment permitting phenotypic adaptation from pro‑infammatory (M1) to wound healing and tissue‑regenerative (M2, with several subclasses). Regulatory macrophages are a distinct macrophage type, possessing immunoregulatory, anti‑infammatory, and angiogenic properties. Due to these features, regulatory macrophages are considered as a potential cell therapy product to treat clinical conditions, e.g., non‑healing diabetic foot ulcers. In this study we characterized two diferently manufactured clinically relevant regulatory macrophages, programmable cells of monocytic origin and comparator macrophages (M1, M2a and M0) using fow‑cytometry, RT‑qPCR, phagocytosis and secretome measurements, and RNA‑Seq. We demonstrate that conventional phenotyping had a limited potential to discriminate diferent types of macrophages which was ameliorated when global transcriptome characterization by RNA‑Seq was employed. Using this approach we confrmed that macrophage manufacturing processes can result in a highly reproducible cell phenotype. At the same time, minor changes introduced in manufacturing
    [Show full text]
  • Macrophage Polarization States in the Tumor Microenvironment
    International Journal of Molecular Sciences Review Macrophage Polarization States in the Tumor Microenvironment Ava J. Boutilier and Sherine F. Elsawa * Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; [email protected] * Correspondence: [email protected] Abstract: The M1/M2 macrophage paradigm plays a key role in tumor progression. M1 macrophages are historically regarded as anti-tumor, while M2-polarized macrophages, commonly deemed tumor- associated macrophages (TAMs), are contributors to many pro-tumorigenic outcomes in cancer through angiogenic and lymphangiogenic regulation, immune suppression, hypoxia induction, tumor cell proliferation, and metastasis. The tumor microenvironment (TME) can influence macrophage recruitment and polarization, giving way to these pro-tumorigenic outcomes. Investigating TME- induced macrophage polarization is critical for further understanding of TAM-related pro-tumor outcomes and potential development of new therapeutic approaches. This review explores the current understanding of TME-induced macrophage polarization and the role of M2-polarized macrophages in promoting tumor progression. Keywords: tumor-associated macrophage; tumor microenvironment; metastasis; cytokine signaling; polarization; malignancy Citation: Boutilier, A.J.; Elsawa, S.F. 1. Introduction Macrophage Polarization States in the Macrophages are myeloid cells that are essential members of the innate immune Tumor Microenvironment. Int. J. Mol. response [1]. These heterogenous cells originate from monocyte precursors in the blood Sci. 2021, 22, 6995. https://doi.org/ and differentiate in the presence of cytokines and growth factors in the tissues they in- 10.3390/ijms22136995 filtrate [2,3]. Macrophages are found in every human tissue in the body and exhibit anatomical and functional diversity [4]. These cells have three key functions: phagocytosis, Academic Editors: Julia Kzhyshkowska exogenous antigen presentation, and immunomodulation through cytokine and growth and Claudiu T.
    [Show full text]
  • Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets Without Chronic Immunosuppression
    Published April 6, 2020, doi:10.4049/jimmunol.2000055 The Journal of Immunology Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression Lalit Batra,*,†,1 Pradeep Shrestha,*,†,1 Hong Zhao,*,† Kyle B. Woodward,*,†,2 Alper Togay,*,3 Min Tan,*,† Orlando Grimany-Nuno,*,† Mohammad Tariq Malik,*,† Marı´a M. Coronel,‡ Andre´s J. Garcı´a,‡,x Haval Shirwan,*,†,{,4 and Esma S. Yolcu*,†,{,4 Allogeneic islet transplantation is limited by adverse effects of chronic immunosuppression used to control rejection. The programmed cell death 1 pathway as an important immune checkpoint has the potential to obviate the need for chronic immunosuppression. We generated an oligomeric form of programmed cell death 1 ligand chimeric with core streptavidin (SA-PDL1) that inhibited the T effector cell response to alloantigens and converted T conventional cells into CD4+Foxp3+ T regulatory cells. The SA-PDL1 protein was effectively displayed on the surface of biotinylated mouse islets without a negative impact islet viability and insulin secretion. Transplantation of SA-PDL1–engineered islet grafts with a short course of rapamycin regimen resulted in sustained graft survival and function in >90% of allogeneic recipients over a 100-d observation period. Long-term survival was associated with increased levels of intragraft tran- scripts for innate and adaptive immune regulatory factors, including IDO-1, arginase-1, Foxp3, TGF-b, IL-10, and decreased levels of proinflammatory T-bet, IL-1b,TNF-a,andIFN-g as assessed on day 3 posttransplantation. T cells of long-term graft recipients generated a proliferative response to donor Ags at a similar magnitude to T cells of naive animals, suggestive of the localized nature of tolerance.
    [Show full text]
  • TIGIT+ Itregs Elicited by Human Regulatory Macrophages Control T Cell Immunity
    ARTICLE DOI: 10.1038/s41467-018-05167-8 OPEN TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity Paloma Riquelme 1, Jan Haarer1, Anja Kammler1, Lisa Walter 1, Stefan Tomiuk2, Norbert Ahrens 3, Anja K. Wege 4, Ivan Goecze1, Daniel Zecher5, Bernhard Banas 5, Rainer Spang6, Fred Fändrich7, Manfred B. Lutz8, Birgit Sawitzki9, Hans J. Schlitt 1, Jordi Ochando 10, Edward K. Geissler1 & James A. Hutchinson 1 1234567890():,; Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4+ T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4+ T cells to IL-10-producing, TIGIT+ FoxP3+-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-β, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT+ Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs. 1 Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany. 2 Miltenyi Biotec GmbH, Friedrich- Ebert-Str. 68, 51429 Bergisch Gladbach, Germany. 3 Transfusion Medicine, Institute for Clinical Chemistry, University Hospital Regensburg, Franz-Josef- Strauss-Allee 11, 93053 Regensburg, Germany.
    [Show full text]