An Activist's Guide to Tuberculosis Diagnostic Tools
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Roadmap to Prevent and Combat Drug-Resistant Tuberculosis
Roadmap to prevent and combat drug-resistant tuberculosis ROADMAP TO PREVENT AND COMBAT DRUG-RESISTANT TUBERCULOSIS The Consolidated Action Plan to Prevent and Combat Multidrug- and Extensively Drug-Resistant Tuberculosis in the WHO European Region, 2011-2015 Abstract In response to the alarming problem of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) in the WHO European Region, and in order to scale up a comprehensive response and to prevent and control M/XDR-TB, a consolidated action plan has been developed for 2011–2015 for all 53 Member States of the WHO European Region and partners. The Plan was endorsed by the sixty-first session of the WHO Regional Committee in Baku on 15 September 2011. It has six stra- tegic directions and seven areas of intervention. The strategic directions are cross-cutting and highlight the corporate priori- ties of the Region. The areas of intervention are aligned with the Global Plan to Stop TB 2011–2015 and include the same targets as set by the Global Plan and World Health Assembly resolution WHA62.15, to provide universal access to diagnosis and treatment of MDR-TB. The implementation of the Consolidated Action Plan would mean that the emergence of 250 000 new MDR-TB patients and 13 000 XDR-TB patients would be averted, an estimated 225 000 MDR-TB patients would be diagnosed and at least 127 000 of them would be successfully treated thus interrupting the transmission of M/XDR-TB, and 120 000 lives would be saved. The cost of implementing the Plan is estimated at US$ 5.2 billion. -
Faqs 1. What Is a 2-Step TB Skin Test (TST)? Tuberculin Skin Test (TST
FAQs 1. What is a 2-step TB skin test (TST)? Tuberculin Skin Test (TST) is a screening method developed to evaluate an individual’s status for active Tuberculosis (TB) or Latent TB infection. A 2-Step TST is recommended for initial skin testing of adults who will be periodically retested, such as healthcare workers. A 2 step is defined as two TST’s done within 1month of each other. 2. What is the procedure for 2-step TB skin test? Both step 1 and step 2 of the 2 step TB skin test must be completed within 28 days. See the description below. STEP 1 Visit 1, Day 1 Administer first TST following proper protocol A dose of PPD antigen is applied under the skin Visit 2, Day 3 (or 48-72 hours after placement of PPD) The TST test is read o Negative - a second TST is needed. Retest in 1 to 3 weeks after first TST result is read. o Positive - consider TB infected, no second TST needed; the following is needed: - A chest X-ray and medical evaluation by a physician is necessary. If the individual is asymptomatic and the chest X-ray indicates no active disease, the individual will be referred to the health department. STEP 2 Visit 3, Day 7-21 (TST may be repeated 7-21 days after first TB skin test is re ad) A second TST is performed: another dose of PPD antigen is applied under the skin Visit 4, 48-72 hours after the second TST placement The second test is read. -
Tuberculosis Diagnosis Xpert MTB/Rif®
Tuberculosis Diagnosis Xpert MTB/Rif® Xpert MTB/Rif®: New technology to diagnose TB and rifampicin resistance Fully automated molecular test. It simultaneously detects Mycobacterium tuberculosis and rifampicin resistance. Results in less than two hours from sample reception, allows health personnel to prescribe proper treatment on the same day. It has minimal bio-safety and training requirements for laboratory staff. The test benefits outweigh its cost: early diagnosis allowing adequate treatment (shortens the transmission, reduces the risk of death and provides equity in diagnosis). Countries using Xpert MTB/Rif® 2013 Countries with purchase order with differential prices* for Xpert MTB/Rif® 2014 By 2013: Brazil, Colombia, Costa Rica, Haiti, Guatemala, Guyana, Paraguay, Surinam, Mexico, Panama, El Salvador and Venezuela implemented Xpert MTB/Rif® requested Xpert MTB/Rif®. No Xpert MTB/Rif® requested Does not qualify for differential prices * Differential prices for low and middle income countries Source: www.stoptb.org Source: PAHO/WHO 2013 regional data PAHO/WHO recommendations for Xpert MTB/Rif® use for the programmatic management of MDR-TB in the Americas Patient characteristics Xpert MTB/Rif® indication Xpert MTB/Rif® location‡ MDR-TB: As diagnostic test for TB and • Hospitals Adult or child** with suspected MDR- MDR-TB • Health facilities with high demand TB Strong recommendation HIV: As 1st diagnostic test for TB and • Health facilities with high demand Adult or child** with HIV and MDR-TB • Healthcare centers for HIV patients suspected TB or MDR-TB and/or populations at high risk for Strong recommendation TB TB suspect* with: As additional diagnostic test for • Health facilities with high demand. -
Latent Tuberculosis Infection
© National HIV Curriculum PDF created September 27, 2021, 4:20 am Latent Tuberculosis Infection This is a PDF version of the following document: Module 4: Co-Occurring Conditions Lesson 1: Latent Tuberculosis Infection You can always find the most up to date version of this document at https://www.hiv.uw.edu/go/co-occurring-conditions/latent-tuberculosis/core-concept/all. Background Epidemiology of Tuberculosis in the United States Although the incidence of tuberculosis in the United States has substantially decreased since the early 1990s (Figure 1), tuberculosis continues to occur at a significant rate among certain populations, including persons from tuberculosis-endemic settings, individual in correctional facilities, persons experiencing homelessness, persons who use drugs, and individuals with HIV.[1,2] In recent years, the majority of tuberculosis cases in the United States were among the persons who were non-U.S.-born (71% in 2019), with an incidence rate approximately 16 times higher than among persons born in the United States (Figure 2).[2] Cases of tuberculosis in the United States have occurred at higher rates among persons who are Asian, Hispanic/Latino, or Black/African American (Figure 3).[1,2] In the general United States population, the prevalence of latent tuberculosis infection (LTBI) is estimated between 3.4 to 5.8%, based on the 2011 and 2012 National Health and Nutrition Examination Survey (NHANES).[3,4] Another study estimated LTBI prevalence within the United States at 3.1%, which corresponds to 8.9 million persons -
Quantiferon-TB Gold In-Tube Blood Test, Tuberculosis
OFFICE OF DISEASE PREVENTION AND EPIDEMIOLOGY QuantiFERON™-TB Gold In-Tube How do people catch tuberculosis? What is a Tuberculosis (TB) is spread through the air from one person to another. The TB germs go into the air QuantiFERON test? whenever someone with TB disease in their lungs QuantiFERON (also called QFT) coughs or sneezes. People nearby may breathe in is a blood test to detect infection these germs and become infected. with tuberculosis. For the test, a health care worker will take some blood (less than a teaspoon) from your vein. The blood is then sent to a lab for testing. How soon will I have my test result? The test result will be available in 5–7 days. What is the difference between latent How are the test TB infection and TB disease? results interpreted? If the test is positive, it is likely People with latent TB infection (also called LTBI) you were exposed to tuberculosis are infected with the TB germ, but they do not feel and that you have latent sick or have any symptoms. They cannot spread tuberculosis infection (LTBI). TB to others because the TB germ is sleeping and not active. The only sign of LTBI is a positive A chest X-ray should be done reaction to the TB skin test or a TB blood test, to make sure you do not have such as QuantiFERON. TB disease in your lungs. QuantiFERON, like the TB Without treatment, LTBI can sometimes become skin test, can sometimes give TB disease. This occurs when the “sleeping” germs false results. -
Quantiferon®-TB Gold
QuantiFERON®-TB Gold ERADICATING TUBERCULOSIS THROUGH PROPER DIAGNOSIS AND DISEASE PREVENTION TUBERCULOSIS Tuberculosis (TB) is caused by exposure to Mycobacterium tuberculosis (M. tuberculosis), which is spread through the air from one person to another. At least two billion people are thought to be infected with TB and it is one of the top 10 causes of death worldwide. To fight TB effectively and prevent future disease, accurate detection and treatment of Latent Tuberculosis Infection (LTBI) and Active TB disease are vital. TRANSMISSION M. tuberculosis is put into the air when an infected person coughs, speaks, sneezes, spits or sings. People within close proximity may inhale these bacteria and become infected. M. tuberculosis usually grows in the lungs, and can attack any part of the body, such as the brain, kidney and spine. SYMPTOMS People with LTBI have no symptoms. People with Other symptoms can include: TB disease show symptoms depending on the infected area of the body. TB disease in the lungs ■ Chills may cause symptoms such as: ■ Fatigue ■ Fever ■ A cough lasting 3 weeks or longer ■ Weight loss and/or loss of appetite ■ Coughing up blood or sputum ■ Night sweats ■ Chest pain SCREENING To reduce disparities related to TB, screening, prevention and control efforts should be targeted to the populations at greatest risk, including: ■ HEALTHCARE ■ INTERNATIONAL ■ PERSONS WORKERS TRAVELERS LIVING IN CORRECTIONAL ■ MILITARY ■ RESIDENTS OF FACILITIES PERSONNEL LONG-TERM CARE OR OTHER FACILITIES CONGREGATE ■ ELDERLY PEOPLE SETTINGS ■ PEOPLE WITH ■ ■ STUDENTS WEAKENED CLOSE CONTACTS IMMUNE SYSTEMS OF PERSONS KNOWN OR ■ IMMIGRANTS SUSPECTED TO HAVE ACTIVE TB BIOCHEMISTRY T-lymphocytes of individuals infected with M. -
Chest X-Ray Finding of Pulmonary Tuberculosis and Nontuberculous Mycobacterial Lung Diseases in Patients with Acid-Fast Bacilli Smear-Positive Sputum
Open Access Austin Tuberculosis: Research & Treatment Special Article - Tuberculosis Screening Chest X-Ray Finding of Pulmonary Tuberculosis and Nontuberculous Mycobacterial Lung Diseases in Patients with Acid-Fast Bacilli Smear-Positive Sputum Yuan MK1,2, Lai YC3, Chang CY4 and Chang SC3,5* 1Department of Radiology, Zuoying Branch of Kaohsiung Abstract Armed Forced General Hospital, Taiwan Aim: The early diagnosis of Pulmonary Tuberculosis (PTB) and non- 2College of Health and Nursing, Meiho University, Taiwan tuberculous mycobacterial lung diseases (NTM-LD) are important clinical issues. 3Department of Internal Medicine, National Yang-Ming The present study aimed to compare and identify chest X-ray characteristics University Hospital, Taiwan that help to distinguish NTM-LD from PTB in patients with Acid-Fast Bacilli 4Department of Internal Medicine, Far Eastern Memorial (AFB) smear-positive sputum. Hospital, Taiwan 5Department of Critical Care Medicine, National Yang- Methods: From January 2008 to April 2012, we received 578 AFB smear- Ming University Hospital, Taiwan positive sputum specimens. The typical chest X-ray findings of mycobacterial diseases such as pleural effusion and lesions, consolidation, cavity formation, *Corresponding author: Chang Shih-Chieh, reticulonodular infiltration, atelactasis, miliary nodules and honeycombing were Department of Internal Medicine, National Yang-Ming analyzed. University Hospital, #152, Xin-Min Road, Yilan City 260, Taiwan Results: A total of 133 patients had proven PTB and 25 proven NTM-LD. Seventy two (72) patients with PTB (54.1%) had consolidation vs. 5 (20.0%) in Received: September 20, 2017; Accepted: November patients with NTM (P = 0.002). Four (4) patients with NTM lung diseases (16.0%) 27, 2017; Published: December 06, 2017 had a honeycomb appearance vs. -
Chapter 2, Transmission and Pathogenesis of Tuberculosis (TB)
Chapter 2 Transmission and Pathogenesis of Tuberculosis Table of Contents Chapter Objectives . 19 Introduction . 21 Transmission of TB . 21 Pathogenesis of TB . 26 Drug-Resistant TB (MDR and XDR) . 35 TB Classification System . 39 Chapter Summary . 41 References . 43 Chapter Objectives After working through this chapter, you should be able to • Identify ways in which tuberculosis (TB) is spread; • Describe the pathogenesis of TB; • Identify conditions that increase the risk of TB infection progressing to TB disease; • Define drug resistance; and • Describe the TB classification system. Chapter 2: Transmission and Pathogenesis of Tuberculosis 19 Introduction TB is an airborne disease caused by the bacterium Mycobacterium tuberculosis (M. tuberculosis) (Figure 2.1). M. tuberculosis and seven very closely related mycobacterial species (M. bovis, M. africanum, M. microti, M. caprae, M. pinnipedii, M. canetti and M. mungi) together comprise what is known as the M. tuberculosis complex. Most, but not all, of these species have been found to cause disease in humans. In the United States, the majority of TB cases are caused by M. tuberculosis. M. tuberculosis organisms are also called tubercle bacilli. Figure 2.1 Mycobacterium tuberculosis Transmission of TB M. tuberculosis is carried in airborne particles, called droplet nuclei, of 1– 5 microns in diameter. Infectious droplet nuclei are generated when persons who have pulmonary or laryngeal TB disease cough, sneeze, shout, or sing. Depending on the environment, these tiny particles can remain suspended in the air for several hours. M. tuberculosis is transmitted through the air, not by surface contact. Transmission occurs when a person inhales droplet nuclei containing M. -
Diagnosis of Active and Latent Tuberculosis
PRACTICE GUIDELINES Diagnosis of active and latent tuberculosis: summary of NICE guidance Ibrahim Abubakar,1 Chris Griffiths,2 Peter Ormerod,3 on behalf of the Guideline Development Group 1Research Department of Infections Tuberculosis is a major preventable infectious cause of six weeks and repeat the Mantoux test to reduce the and Population Health, University morbidity and mortality globally, which has re-emerged rate of false negative results for latent infection. College London, London 2 in high risk groups such as migrants, homeless people, Centre for Primary Care and Public 1 Health, Queen Mary University of problem drug users, and prisoners in the UK. This arti- Household contacts younger than 2 years and older than London cle summarises the most recent recommendations (2011) 4 weeks 3Royal Blackburn Hospital, from the National Institute for Health and Clinical Excel- • If contact was with a person whose sputum smear is Blackburn, UK lence (NICE)2 on the diagnosis of latent tuberculosis positive for acid fast bacilli: Correspondence to: I Abubakar [email protected] (including the use of new tests) and of active tuberculo- – For children not vaccinated with BCG, perform a Cite this as: BMJ 2012;345:e6828 sis. Although this summary focuses on diagnosis, the full Mantoux test and offer isoniazid doi: 10.1136/bmj.e6828 guidelines cover the public health and clinical manage- – If the Mantoux test is positive, assess the child ment of tuberculosis and replaced the guidelines pub- for active tuberculosis. If active tuberculosis is This is one of a series of BMJ 3 summaries of new guidelines lished in 2006. -
A Cross Study of Cutaneous Tuberculosis: a Still Relevant Disease in Morocco (A Study of 146 Cases)
ISSN: 2639-4553 Madridge Journal of Case Reports and Studies Research Article Open Access A Cross study of Cutaneous Tuberculosis: A still relevant Disease in Morocco (A Study of 146 Cases) Safae Zinoune, Hannane Baybay, Ibtissam Louizi Assenhaji, Mohammed Chaouche, Zakia Douhi, Sara Elloudi, and Fatima-Zahra Mernissi Department of Dermatology, University Hospital Hassan II, Fez, Morocco Article Info Abstract *Corresponding author: Background: Burden of tuberculosis still persists in Morocco despite major advances in Safae Zinoune its treatment strategies. Cutaneous tuberculosis (CTB) is rare, and underdiagnosed, due Doctor Department of Dermatology to its clinical and histopathological polymorphism. The purpose of this multi-center Hassan II University Hospital retrospective study is to describe the epidemiological, clinical, histopathological and Fès, Morocco evolutionary aspects of CTB in Fez (Morocco). E-mail: [email protected] Methods: We conducted a cross-sectional descriptive multicenter study from May 2006 Received: March 12, 2019 to May 2016. The study was performed in the department of dermatology at the Accepted: March 18, 2019 University Hospital Hassan II and at diagnosis centers of tuberculosis and respiratory Published: March 22, 2019 diseases of Fez (Morocco). The patients with CTB confirmed by histological and/or biological examination were included in the study. Citation: Zinoune S, Baybay H, Assenhaji LI, et al. A Cross study of Cutaneous Tuberculosis: Results: 146 cases of CTB were identified. Men accounted for 39.8% of the cases (58 A still relevant Disease in Morocco (A Study of 146 Cases). Madridge J Case Rep Stud. 2019; patients) and women 60.2% (88 cases), sex-ratio was 0.65 (M/W). -
Mycobacterium Tuberculosis: Assessing Your Laboratory
A more recent version of this document exists. View the 2019 Edition. Mycobacterium tuberculosis: Assessing Your Laboratory APHL Tool 2013 EDITION The following individuals contributed to the preparation of this edition of Mycobacterium tuberculosis: Assessing Your Laboratory Phyllis Della-Latta, PhD Columbia Presbyterian Medical Center Loretta Gjeltena, MA, MT(ASCP) National Laboratory Training Network Kenneth Jost, Jr. Texas Department of State Health Services Beverly Metchock, DrPH Centers for Disease Control and Prevention Glenn D. Roberts, PhD Mayo Clinic Max Salfinger, MD Florida Department of Health, Florida Bureau of Laboratories Dale Schwab, PhD, D(ABMM) Quest Diagnostics Julie Tans-Kersten Wisconsin State Laboratory of Hygiene Anthony Tran, MPH, MT(ASCP) Association of Public Health Laboratories David Warshauer, PhD, D(ABMM) Wisconsin State Laboratory of Hygiene Gail Woods, MD University of Texas Medical Branch Kelly Wroblewski, MPH, MT(ASCP) Association of Public Health Laboratories This publication was supported by Cooperative Agreement Number #1U60HM000803 between the Centers for Disease Control and Prevention (CDC) and the Association of Public Health Laboratories (APHL). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. © Copyright 2013, Association of Public Health Laboratories. All Rights Reserved. Table of Contents 1.0 Introduction ...................................................4 Background ...................................................4 Intended -
Diagnosis of Tuberculosis in Adults and Children David M
Clinical Infectious Diseases IDSA GUIDELINE Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children David M. Lewinsohn,1,a Michael K. Leonard,2,a Philip A. LoBue,3,a David L. Cohn,4 Charles L. Daley,5 Ed Desmond,6 Joseph Keane,7 Deborah A. Lewinsohn,1 Ann M. Loeffler,8 Gerald H. Mazurek,3 Richard J. O’Brien,9 Madhukar Pai,10 Luca Richeldi,11 Max Salfinger,12 Thomas M. Shinnick,3 Timothy R. Sterling,13 David M. Warshauer,14 and Gail L. Woods15 1Oregon Health & Science University, Portland, Oregon, 2Emory University School of Medicine and 3Centers for Disease Control and Prevention, Atlanta, Georgia, 4Denver Public Health Department, Denver, Colorado, 5National Jewish Health and the University of Colorado Denver, and 6California Department of Public Health, Richmond; 7St James’s Hospital, Dublin, Ireland; 8Francis J. Curry International TB Center, San Francisco, California; 9Foundation for Innovative New Diagnostics, Geneva, Switzerland; 10McGill University and McGill International TB Centre, Montreal, Canada; 11University of Southampton, United Kingdom; 12National Jewish Health, Denver, Colorado, 13Vanderbilt University School of Medicine, Vanderbilt Institute for Global Health, Nashville, Tennessee, 14Wisconsin State Laboratory of Hygiene, Madison, and 15University of Arkansas for Medical Sciences, Little Rock Downloaded from Background. Individuals infected with Mycobacterium tuberculosis (Mtb) may develop symptoms and signs of disease (tuber- culosis disease) or may have no clinical evidence of disease (latent tuberculosis infection [LTBI]). Tuberculosis disease is a leading cause of infectious disease morbidity and mortality worldwide, yet many questions related to its diagnosis remain.