International Standards for Tuberculosis Care (ISTC)

Total Page:16

File Type:pdf, Size:1020Kb

International Standards for Tuberculosis Care (ISTC) INTERNATIONAL STANDARDS FOR Tuberculosis Care DIAGNOSIS TREATMENT PUBLIC HEALTH 3RD EDITION, 2014 Developed by TB CARE I with funding by the United States Agency for International Development (USAID) TB CARE I Organizations Disclaimer: The Global Health Bureau, Office of Health, Infectious Disease and Nutrition (HIDN), US Agency for International Development, financially supports this publication through TB CARE I under the terms of Agreement No. AID-OAA-A-10-00020. This publication is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of TB CARE I and do not necessarily reflect the views of USAID or the United States Government. Suggested citation: TB CARE I. International Standards for Tuberculosis Care, Edition 3. TB CARE I, The Hague, 2014. Contact information: Philip C. Hopewell, MD Curry International Tuberculosis Center University of California, San Francisco San Francisco General Hospital San Francisco, CA 94110, USA Email: [email protected] Available at the following web sites: http://www.tbcare1.org/publications http://www.istcweb.org http://www.currytbcenter.ucsf.edu/international http://www.who.int/tb/publications To access a mobile version of ISTC, go to www.walimu.org/istc INTERNATIONAL STANDARDS FOR Tuberculosis Care DIAGNOSIS TREATMENT PUBLIC HEALTH 3RD EDITION, 2014 Table of Contents Acknowledgments . 1 List of Abbreviations . 2 Preface . 4 Summary . 8 Introduction . 14 Standards for Diagnosis . 20 Standards for Treatment . 34 Standards for Addressing HIV Infection and Other Co-morbid Conditions . 50 Standards for Public Health and Prevention . 57 References . 64 Annexes . 77 ISTC 3RD EDITION, 2014 TABLE OF CONTENTS Acknowledgments Development of the third edition of the International Standards for Tuberculosis Care was guided by a steering committee of World Health Organization Global Tuberculosis Pro- gramme staff and by an expert committee whose members were chosen to represent perspectives and areas of expertise relevant to tuberculosis care and control. Both com- mittees are listed below. The expert committees for editions 1 and 2 are in Annex 1. Steering Committee (WHO) • Haileyesus Getahun • Chris Gilpin • Malgosia Grzemska • Ernesto Jaramillo • Knut Lönnroth • Mario Raviglione • Mukund Uplekar • Diana Weil Expert Committee • RV Asokan, India • Knut Lönnroth, WHO • Erlina Burhan, Indonesia • G. B. Migliori, Italy • J.M. Chakaya, Kenya • Dyah Mustikawati, Indonesia • Gavin Churchyard, South Africa • Rick O’Brien, USA • Marcus Conde, Brazil • Madhukar Pai, Canada • Charles Daley, USA • Rose Pray, USA • Saidi Egwaga, Tanzania • Mario Raviglione, WHO • Elizabeth Fair, USA • Elizabeth Soares, Brazil • Paula Fujiwara, USA • Mukund Uplekar, WHO (Co-Chair) • Haileyesus Getahun, WHO • Marieke van der Werf, ECDC • Chris Gilpin, WHO • Dalene Von Delft, South Africa • Steve Graham, Australia • Jan Voskens, Netherlands • Malgosia Grzemska, WHO • Diana Weil, WHO • Philip Hopewell, USA (Co-chair) • Gini Williams, UK • Ernesto Jaramillo, WHO • Mohammed Yassin, GFATM • Aamir Khan, Pakistan • Charles Yu, Philippines Elizabeth Fair (University of California, San Francisco) in addition to being a member of the expert committee, provided scientific staffing and coordination. Fran Du Melle (American Thoracic Society) provided administrative coordination as well as guidance on dissemination and implementation. Cecily Miller and Baby Djojonegoro (University of California, San Francisco) provided assis- tance in organizing and preparing the document. In addition to the committees, many individuals have provided valuable input. All comments received were given serious consideration by the co-chairs, although not all were incorporated into the document. 1 ISTC 3RD EDITION, 2014 ACKNOWLEDGMENTS List of Abbreviations AFB Acid-fast bacilli AIDS Acquired immunodeficiency syndrome ART Antiretroviral therapy ATS American Thoracic Society BCG Bacille Calmette-Guérin CDC Centers for Disease Control and Prevention CI Confidence interval COPD Chronic obstructive pulmonary disease CPT Cotrimoxazole CRI Colorimetric redox-indicator DOT Directly observed treatment DOTS The internationally recommended strategy for tuberculosis control DR Drug-resistant DST Drug susceptibility testing EMB Ethambutol FDA Food and Drug Administration (US) FDC Fixed-dose combination FHI 360 Formerly Family Health International FM Fluorescence microscopy HAART Highly active antiretroviral therapy HIV Human immunodeficiency virus IDSA Infectious Diseases Society of America IGRA Interferon-gamma release assay INH Isoniazid IMAAI Integrated Management of Adolescent and Adult Illness IMCI Integrated Management of Childhood Illness IPT Isoniazid preventive therapy IRIS Immune reconstitution inflammatory syndrome ISTC International Standards for Tuberculosis Care IUATLD International Union Against Tuberculosis and Lung Disease (The Union) JATA Japan Anti-tuberculosis Association KNCV KNCV Tuberculosis Foundation LED Light emitting diode LPA Line probe assay LTBI Latent tuberculosis infection M&E Monitoring and Evaluation MDR Multidrug-resistant MIC Minimal inhibitory concentration 2 ISTC 3RD EDITION, 2014 LIST OF ABBREVIATIONS MODS Microscopic observation drug susceptibility MSH Management Sciences for Health NAAT Nucleic acid amplification test NALC N-acetyl L-cysteine NaOH Sodium hydroxide NIOSH National Institute for Occupational Services and Health NNRTI Non-nucleoside reverse transcriptase inhibitors NRA Nitrate reductase assay NTM Non-tuberculous mycobacteria NTP National tuberculosis control program PCTC Patients’ Charter for Tuberculosis Care PI Protease inhibitor PLHIV People living with HIV PPM Public-private mix PZA Pyrazinamide RIF Rifampicin RR Risk ratio STI Sexually transmitted infection TB Tuberculosis TBCTA Tuberculosis Coalition for Technical Assistance TNF Tumor necrosis factor TST Tuberculin skin test (Mantoux) USAID United States Agency for International Development WHO World Health Organization XDR Extensively drug-resistant ZN Ziehl-Neelsen staining 3 ISTC 3RD EDITION, 2014 LIST OF ABBREVIATIONS Preface to Edition 3 Development Process The standards in Development of the first edition of the International Standards for Tuberculosis Care (ISTC) the ISTC are all was funded by the United States Agency for International Development (USAID) via the Tuberculosis Coalition for Technical Assistance (TBCTA) and was guided by an expert supported by committee of 28 members from 14 countries representing relevant perspectives and existing WHO areas of expertise. The committee was co-chaired by Mario Raviglione of the World Health Organization (WHO) and Philip Hopewell of the American Thoracic Society (ATS). The guidelines and group first agreed on a content outline and then identified areas in which systematic policy statements, reviews were needed. Six reviews, largely related to approaches to diagnosis, were con- ducted and subsequently published in peer-reviewed publications. many of which had recently been Development of Edition 2 of the ISTC was also funded by USAID via its TB Control Assis- tance Program (TBCAP). A new expert committee of 56 persons from 15 countries, plus developed using WHO, chaired by Drs. Raviglione and Hopewell guided the process. Only one systematic rigorous review, related to contact investigation (subsequently published), was identified. methodology. Edition 3 was again funded by USAID via TB CARE I and was developed using essentially the same process. Development was led by Mukund Uplekar (WHO) and Philip Hopewell (ATS). A steering committee from the staff of the Global TB Programme at the WHO iden- tified areas in which revisions were needed. It was felt that no new systematic reviews were needed for this edition. The standards in the ISTC are all supported by existing WHO guidelines and policy statements, many of which had recently been developed using rig- orous methodology, including systematic reviews. The draft document was then reviewed by an expert committee of 27 members from 13 countries, co-chaired by Drs. Uplekar and Hopewell. Subsequent drafts were also reviewed and approved by the expert com- mittee. The final draft was reviewed and approved by the TB CARE I member organiza- tions (ATS, FHI 360, the Japan Antituberculosis Association [JATA], KNCV Tuberculosis Foundation [KNCV], Management Sciences for Health [MSH], the International Union against Tuberculosis and Lung Disease [The Union], and WHO). 4 ISTC 3RD EDITION, 2014 PREFACE TO EDITION 3 Key differences between ISTC Edition 2 and Edition 3 Edition 1 of the ISTC stated, “The Standards should be viewed as a living document that will be revised as technology, resources, and circumstances change.” It has now been five years since Edition 2 of the ISTC was published (2009); new information has emerged; new approaches are now feasible; and new guidelines have been written. These changes warrant an updating of the ISTC to be consistent with the concept of a “living document.” It was also stated in Edition 1 that, “As written, the Standards are presented within a con- text of what is generally considered to be feasible now or in the near future.” There is continued recognition that not all of the standards in this edition can be met in all places at this time. However, given the rapidity of technical advances and deployment of new technologies and approaches, it is anticipated that compliance with the standards will be possible in most
Recommended publications
  • Bacille Calmette–Guérin Vaccination: the Current Situation in Europe
    EDITORIAL BCG VACCINATION POLICY IN EUROPE | Bacille Calmette–Gue´rin vaccination: the current situation in Europe Masoud Dara1,5, Colleen D. Acosta1,5, Valiantsin Rusovich2, Jean Pierre Zellweger3, Rosella Centis4 and Giovanni Battista Migliori4 on behalf of the WHO EURO Childhood Task Force members6 Affiliations: 1World Health Organization Regional Office for Europe, Copenhagen, Denmark. 2World Health Organization Country Office, Minsk, Belarus. 3Swiss Lung Association, Vaud section (LPVD), Lausanne, Switzerland. 4World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy. 5These authors contributed equally. 6For a list of the WHO EURO Childhood Task Force members and their affiliations, please see the acknowledgements section. Correspondence: G.B. Migliori, World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Via Roncaccio 16, 21049, Tradate, Italy. E-mail: [email protected] @ERSpublications A WHO EURO Task Force provides the latest evidence and a coherent policy to use BCG vaccination in Europe http://ow.ly/pusIU Tuberculosis is a major public health priority. This is not only because of its daunting morbidity and mortality rates, both globally and in Europe (summarised in figs 1 and 2)[1, 3–5], but also because of the natural history of the disease. Active (contagious) tuberculosis disease occurs after a period of latency (or subclinical infection), and different risk factors [6–13], in combination with latent infection, introduce challenges to prevention, diagnosis and treatment of the disease. Vaccination against tuberculosis, if effective, would be therefore critical to control and elimination strategies [14–16].
    [Show full text]
  • Roadmap to Prevent and Combat Drug-Resistant Tuberculosis
    Roadmap to prevent and combat drug-resistant tuberculosis ROADMAP TO PREVENT AND COMBAT DRUG-RESISTANT TUBERCULOSIS The Consolidated Action Plan to Prevent and Combat Multidrug- and Extensively Drug-Resistant Tuberculosis in the WHO European Region, 2011-2015 Abstract In response to the alarming problem of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) in the WHO European Region, and in order to scale up a comprehensive response and to prevent and control M/XDR-TB, a consolidated action plan has been developed for 2011–2015 for all 53 Member States of the WHO European Region and partners. The Plan was endorsed by the sixty-first session of the WHO Regional Committee in Baku on 15 September 2011. It has six stra- tegic directions and seven areas of intervention. The strategic directions are cross-cutting and highlight the corporate priori- ties of the Region. The areas of intervention are aligned with the Global Plan to Stop TB 2011–2015 and include the same targets as set by the Global Plan and World Health Assembly resolution WHA62.15, to provide universal access to diagnosis and treatment of MDR-TB. The implementation of the Consolidated Action Plan would mean that the emergence of 250 000 new MDR-TB patients and 13 000 XDR-TB patients would be averted, an estimated 225 000 MDR-TB patients would be diagnosed and at least 127 000 of them would be successfully treated thus interrupting the transmission of M/XDR-TB, and 120 000 lives would be saved. The cost of implementing the Plan is estimated at US$ 5.2 billion.
    [Show full text]
  • Tuberculosis Diagnosis Xpert MTB/Rif®
    Tuberculosis Diagnosis Xpert MTB/Rif® Xpert MTB/Rif®: New technology to diagnose TB and rifampicin resistance Fully automated molecular test. It simultaneously detects Mycobacterium tuberculosis and rifampicin resistance. Results in less than two hours from sample reception, allows health personnel to prescribe proper treatment on the same day. It has minimal bio-safety and training requirements for laboratory staff. The test benefits outweigh its cost: early diagnosis allowing adequate treatment (shortens the transmission, reduces the risk of death and provides equity in diagnosis). Countries using Xpert MTB/Rif® 2013 Countries with purchase order with differential prices* for Xpert MTB/Rif® 2014 By 2013: Brazil, Colombia, Costa Rica, Haiti, Guatemala, Guyana, Paraguay, Surinam, Mexico, Panama, El Salvador and Venezuela implemented Xpert MTB/Rif® requested Xpert MTB/Rif®. No Xpert MTB/Rif® requested Does not qualify for differential prices * Differential prices for low and middle income countries Source: www.stoptb.org Source: PAHO/WHO 2013 regional data PAHO/WHO recommendations for Xpert MTB/Rif® use for the programmatic management of MDR-TB in the Americas Patient characteristics Xpert MTB/Rif® indication Xpert MTB/Rif® location‡ MDR-TB: As diagnostic test for TB and • Hospitals Adult or child** with suspected MDR- MDR-TB • Health facilities with high demand TB Strong recommendation HIV: As 1st diagnostic test for TB and • Health facilities with high demand Adult or child** with HIV and MDR-TB • Healthcare centers for HIV patients suspected TB or MDR-TB and/or populations at high risk for Strong recommendation TB TB suspect* with: As additional diagnostic test for • Health facilities with high demand.
    [Show full text]
  • Latent Tuberculosis Infection
    © National HIV Curriculum PDF created September 27, 2021, 4:20 am Latent Tuberculosis Infection This is a PDF version of the following document: Module 4: Co-Occurring Conditions Lesson 1: Latent Tuberculosis Infection You can always find the most up to date version of this document at https://www.hiv.uw.edu/go/co-occurring-conditions/latent-tuberculosis/core-concept/all. Background Epidemiology of Tuberculosis in the United States Although the incidence of tuberculosis in the United States has substantially decreased since the early 1990s (Figure 1), tuberculosis continues to occur at a significant rate among certain populations, including persons from tuberculosis-endemic settings, individual in correctional facilities, persons experiencing homelessness, persons who use drugs, and individuals with HIV.[1,2] In recent years, the majority of tuberculosis cases in the United States were among the persons who were non-U.S.-born (71% in 2019), with an incidence rate approximately 16 times higher than among persons born in the United States (Figure 2).[2] Cases of tuberculosis in the United States have occurred at higher rates among persons who are Asian, Hispanic/Latino, or Black/African American (Figure 3).[1,2] In the general United States population, the prevalence of latent tuberculosis infection (LTBI) is estimated between 3.4 to 5.8%, based on the 2011 and 2012 National Health and Nutrition Examination Survey (NHANES).[3,4] Another study estimated LTBI prevalence within the United States at 3.1%, which corresponds to 8.9 million persons
    [Show full text]
  • Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis ISBN 978 92 4 154880 9
    Companion handbookCompanion tofor the the WHO programmatic guidelines management of drug-resistant tuberculosis Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis ISBN 978 92 4 154880 9 Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis This book is a companion handbook to existing WHO policy guidance on the management of multidrug-resistant tuberculosis, including the WHO guidelines for the programmatic management of drug-resistant tuberculosis, WHO interim policy guidance on the use of bedaquiline in the treatment of multidrug-resistant tuberculosis, and the WHO interim policy guidance on the use of delamanid in the treatment of multidrug-resistant tuberculosis which were developed in compliance with the process for evidence gathering, assessment and formulation of recommendations, as outlined in the WHO Handbook for Guideline Development (version March 2010; available at http://apps.who.int/iris/ bitstream/10665/75146/1/9789241548441_eng.pdf ). WHO Library Cataloguing-in-Publication Data Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. 1.Antitubercular agents – administration and dosage. 2.Tuberculosis, Multidrug-Resistant – drug therapy. 3.Treatment outcome. 4.Guideline. I.World Health Organization. ISBN 978 92 4 154880 9 (NLM classification: WF 360) © World Health Organization 2014 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.
    [Show full text]
  • Chest X-Ray Finding of Pulmonary Tuberculosis and Nontuberculous Mycobacterial Lung Diseases in Patients with Acid-Fast Bacilli Smear-Positive Sputum
    Open Access Austin Tuberculosis: Research & Treatment Special Article - Tuberculosis Screening Chest X-Ray Finding of Pulmonary Tuberculosis and Nontuberculous Mycobacterial Lung Diseases in Patients with Acid-Fast Bacilli Smear-Positive Sputum Yuan MK1,2, Lai YC3, Chang CY4 and Chang SC3,5* 1Department of Radiology, Zuoying Branch of Kaohsiung Abstract Armed Forced General Hospital, Taiwan Aim: The early diagnosis of Pulmonary Tuberculosis (PTB) and non- 2College of Health and Nursing, Meiho University, Taiwan tuberculous mycobacterial lung diseases (NTM-LD) are important clinical issues. 3Department of Internal Medicine, National Yang-Ming The present study aimed to compare and identify chest X-ray characteristics University Hospital, Taiwan that help to distinguish NTM-LD from PTB in patients with Acid-Fast Bacilli 4Department of Internal Medicine, Far Eastern Memorial (AFB) smear-positive sputum. Hospital, Taiwan 5Department of Critical Care Medicine, National Yang- Methods: From January 2008 to April 2012, we received 578 AFB smear- Ming University Hospital, Taiwan positive sputum specimens. The typical chest X-ray findings of mycobacterial diseases such as pleural effusion and lesions, consolidation, cavity formation, *Corresponding author: Chang Shih-Chieh, reticulonodular infiltration, atelactasis, miliary nodules and honeycombing were Department of Internal Medicine, National Yang-Ming analyzed. University Hospital, #152, Xin-Min Road, Yilan City 260, Taiwan Results: A total of 133 patients had proven PTB and 25 proven NTM-LD. Seventy two (72) patients with PTB (54.1%) had consolidation vs. 5 (20.0%) in Received: September 20, 2017; Accepted: November patients with NTM (P = 0.002). Four (4) patients with NTM lung diseases (16.0%) 27, 2017; Published: December 06, 2017 had a honeycomb appearance vs.
    [Show full text]
  • Diagnosis of Active and Latent Tuberculosis
    PRACTICE GUIDELINES Diagnosis of active and latent tuberculosis: summary of NICE guidance Ibrahim Abubakar,1 Chris Griffiths,2 Peter Ormerod,3 on behalf of the Guideline Development Group 1Research Department of Infections Tuberculosis is a major preventable infectious cause of six weeks and repeat the Mantoux test to reduce the and Population Health, University morbidity and mortality globally, which has re-emerged rate of false negative results for latent infection. College London, London 2 in high risk groups such as migrants, homeless people, Centre for Primary Care and Public 1 Health, Queen Mary University of problem drug users, and prisoners in the UK. This arti- Household contacts younger than 2 years and older than London cle summarises the most recent recommendations (2011) 4 weeks 3Royal Blackburn Hospital, from the National Institute for Health and Clinical Excel- • If contact was with a person whose sputum smear is Blackburn, UK lence (NICE)2 on the diagnosis of latent tuberculosis positive for acid fast bacilli: Correspondence to: I Abubakar [email protected] (including the use of new tests) and of active tuberculo- – For children not vaccinated with BCG, perform a Cite this as: BMJ 2012;345:e6828 sis. Although this summary focuses on diagnosis, the full Mantoux test and offer isoniazid doi: 10.1136/bmj.e6828 guidelines cover the public health and clinical manage- – If the Mantoux test is positive, assess the child ment of tuberculosis and replaced the guidelines pub- for active tuberculosis. If active tuberculosis is This is one of a series of BMJ 3 summaries of new guidelines lished in 2006.
    [Show full text]
  • A Cross Study of Cutaneous Tuberculosis: a Still Relevant Disease in Morocco (A Study of 146 Cases)
    ISSN: 2639-4553 Madridge Journal of Case Reports and Studies Research Article Open Access A Cross study of Cutaneous Tuberculosis: A still relevant Disease in Morocco (A Study of 146 Cases) Safae Zinoune, Hannane Baybay, Ibtissam Louizi Assenhaji, Mohammed Chaouche, Zakia Douhi, Sara Elloudi, and Fatima-Zahra Mernissi Department of Dermatology, University Hospital Hassan II, Fez, Morocco Article Info Abstract *Corresponding author: Background: Burden of tuberculosis still persists in Morocco despite major advances in Safae Zinoune its treatment strategies. Cutaneous tuberculosis (CTB) is rare, and underdiagnosed, due Doctor Department of Dermatology to its clinical and histopathological polymorphism. The purpose of this multi-center Hassan II University Hospital retrospective study is to describe the epidemiological, clinical, histopathological and Fès, Morocco evolutionary aspects of CTB in Fez (Morocco). E-mail: [email protected] Methods: We conducted a cross-sectional descriptive multicenter study from May 2006 Received: March 12, 2019 to May 2016. The study was performed in the department of dermatology at the Accepted: March 18, 2019 University Hospital Hassan II and at diagnosis centers of tuberculosis and respiratory Published: March 22, 2019 diseases of Fez (Morocco). The patients with CTB confirmed by histological and/or biological examination were included in the study. Citation: Zinoune S, Baybay H, Assenhaji LI, et al. A Cross study of Cutaneous Tuberculosis: Results: 146 cases of CTB were identified. Men accounted for 39.8% of the cases (58 A still relevant Disease in Morocco (A Study of 146 Cases). Madridge J Case Rep Stud. 2019; patients) and women 60.2% (88 cases), sex-ratio was 0.65 (M/W).
    [Show full text]
  • Diagnosis of Tuberculosis in Adults and Children David M
    Clinical Infectious Diseases IDSA GUIDELINE Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children David M. Lewinsohn,1,a Michael K. Leonard,2,a Philip A. LoBue,3,a David L. Cohn,4 Charles L. Daley,5 Ed Desmond,6 Joseph Keane,7 Deborah A. Lewinsohn,1 Ann M. Loeffler,8 Gerald H. Mazurek,3 Richard J. O’Brien,9 Madhukar Pai,10 Luca Richeldi,11 Max Salfinger,12 Thomas M. Shinnick,3 Timothy R. Sterling,13 David M. Warshauer,14 and Gail L. Woods15 1Oregon Health & Science University, Portland, Oregon, 2Emory University School of Medicine and 3Centers for Disease Control and Prevention, Atlanta, Georgia, 4Denver Public Health Department, Denver, Colorado, 5National Jewish Health and the University of Colorado Denver, and 6California Department of Public Health, Richmond; 7St James’s Hospital, Dublin, Ireland; 8Francis J. Curry International TB Center, San Francisco, California; 9Foundation for Innovative New Diagnostics, Geneva, Switzerland; 10McGill University and McGill International TB Centre, Montreal, Canada; 11University of Southampton, United Kingdom; 12National Jewish Health, Denver, Colorado, 13Vanderbilt University School of Medicine, Vanderbilt Institute for Global Health, Nashville, Tennessee, 14Wisconsin State Laboratory of Hygiene, Madison, and 15University of Arkansas for Medical Sciences, Little Rock Downloaded from Background. Individuals infected with Mycobacterium tuberculosis (Mtb) may develop symptoms and signs of disease (tuber- culosis disease) or may have no clinical evidence of disease (latent tuberculosis infection [LTBI]). Tuberculosis disease is a leading cause of infectious disease morbidity and mortality worldwide, yet many questions related to its diagnosis remain.
    [Show full text]
  • Management of Patients with Multidrug-Resistant Tuberculosis
    INT J TUBERC LUNG DIS 23(6):645–662 STATE OF THE ART Q 2019 The Union http://dx.doi.org/10.5588/ijtld.18.0622 STATE OF THE ART SERIES MDR-TB Series editors: C Horsburgh, Christoph Lange and Carole Mitnick NUMBER 4 IN THE SERIES Management of patients with multidrug-resistant tuberculosis C. Lange, R. E. Aarnoutse, J. W. C. Alffenaar, G. Bothamley, F. Brinkmann, J. Costa, D. Chesov, R. van Crevel, M. Dedicoat, J. Dominguez, R. Duarte, H. P. Grobbel, G. Gunther,¨ L. Guglielmetti, J. Heyckendorf, A. W. Kay, O. Kirakosyan, O. Kirk, R. A. Koczulla, G. G. Kudriashov, L. Kuksa, F. van Leth, C. Magis-Escurra, A. M. Mandalakas, B. Molina-Moya, C. A. Peloquin, M. Reimann, R. Rumetshofer, H. S. Schaaf, T. Schon, ¨ S. Tiberi, J. Valda, P. K. Yablonskii, K. Dheda Please see Supplementary Data for details of all author affiliations. SUMMARY The emergence of multidrug-resistant tuberculosis availability of novel drugs such as bedaquiline allow us to (MDR-TB; defined as resistance to at least rifampicin design potent and well-tolerated personalised MDR-TB and isoniazid) represents a growing threat to public treatment regimens based solely on oral drugs. In this health and economic growth. Never before in the history article, we present management guidance to optimise the of mankind have more patients been affected by MDR- diagnosis, algorithm-based treatment, drug dosing and TB than is the case today. The World Health Organiza- therapeutic drug monitoring, and the management of tion reports that MDR-TB outcomes are poor despite adverse events and comorbidities, associated with MDR- staggeringly high management costs.
    [Show full text]
  • Evans Sagwa Aukje K
    Optimizing the Safety of Multidrug-resistant Tuberculosis Therapy in Namibia Evans L. Sagwa Sagwa, EL Optimizing the Safety of Multidrug-resistant Tuberculosis Therapy in Namibia Thesis Utrecht University -with ref.- with summary in Dutch Copyright © 2017 EL Sagwa. All rights reserved. The research presented in this PhD thesis was conducted under the umbrella of the Utrecht World Health Organization (WHO) Collaborating Centre for Pharmaceutical Policy and Regulation, which is based at the Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht Uni- versity, The Netherlands. The Collaborating Centre aims to develop new methods for independent pharmaceutical policy research, evidence-based policy analysis and conceptual innovation in the area of policy making and evaluation in general. ISBN: 978-94-92683-40-3 Layout and printed by: Optima Grafische Communicatie, Rotterdam, the Netherlands Optimizing the Safety of Multidrug-resistant Tuberculosis Therapy in Namibia Verbeteren van de veiligheid van de behandeling van multiresistente tuberculose in Namibië (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op donderdag 24 augustus 2017 des middags te 12.45 uur door Evans Luvaha Sagwa geboren op 17 november 1972 te Kakamega, Kenia Promotor: Prof.dr. H.G.M. Leufkens Copromotor: Dr. A.K. Mantel-Teeuwisse A Quote by Donna Flagg: When the Cure Is Worse Than the Disease “Not only are the folks popping these pills not happy, but they now suffer from new problems that are caused by the drugs themselves”.
    [Show full text]
  • The Diagnosis of Tuberculosis
    ESPID REPORTS AND REVIEWS CONTENTS The Diagnosis of Tuberculosis EDITORIAL BOARD Co-Editors: Delane Shingadia and Irja Lutsar Board Members David Burgner (Melbourne, Australia) Nicol Ritz (Basel, Switzerland) Tobias Tenenbaum (Mannhein, Germany) Luisa Galli (Rome, Italy) Ira Shah (Mumbai, India) Marc Terbruegge (Southampton, UK) Christiana Nascimento-Carvalho Matthew Snape (Oxford, UK) Marceline van Furth (Amsterdam, (Bahia, Brazil) George Syrogiannopoulos The Netherlands) Ville Peltola (Turku, Finland) (Larissa, Greece) Anne Vergison (Brussels, Belgium) The Diagnosis of Tuberculosis Delane Shingadia, MPH, MRCP, FRCPCH Abstract: Childhood tuberculosis accounts for a ESTABLISHED DIAGNOSTIC in place. Nasopharyngeal aspiration (NPA) significant proportion of the global tuberculosis METHODS has also been used to obtain respiratory sam- disease burden. However, tuberculosis in children ples, as the passage of a nasal cannula may is difficult to diagnose, because disease tends to be Microscopy and Culture elicit a cough reflex. The culture yield from paucibacillary and sputum samples are often not Microscopic examination of respira- NPA (19/64; 30%) was similar to that of easy to obtain. The diagnosis of tuberculosis in tory samples for acid-fast bacilli using the gastric aspirates (24/64; 38%) among Peru- 8 children is traditionally based on chest radiogra- Ziehl-Neelsen and fluorochrome stains, such vian children. However, subsequent studies phy, tuberculin skin testing, and mycobacterial as the auramine and rhodamine, have been have shown relatively poor yields from staining/culture from appropriate samples. Newer the standard and rapid diagnostic tools for NPA samples compared with gastric aspi- 1,2 9,10 diagnostic strategies have included improved bacte- tuberculosis (TB) diagnosis. Recent ad- rate. Since young children tend to swal- vances in light-emitting diode (LED) tech- riologic and molecular methods, as well as new low their sputum rather than expectorate it, nology have widened the applicability of methods for sample collection from children.
    [Show full text]