How to Use Floodplains for Flood Risk Reduction

Total Page:16

File Type:pdf, Size:1020Kb

How to Use Floodplains for Flood Risk Reduction EUROPEAN COMMISSION Ecoflood Guidelines HOW TO USE FLOODPLAINS FOR FLOOD RISK REDUCTION Edited by M.S.A. Blackwell and E. Maltby with A.L. Gerritsen, M. Haasnoot, C.C. Hoffmann, W. Kotowski, E.J.T.M. Leenen, T. Okruszko, W.E. Penning, H. Piórkowski, M. Platteeuw, E.P. Querner, T. Siedlecki and E.O.A.M. de Swart Directorate-General for Research 2006 Sustainable Development, Global Change and Ecosystems EUR 22001 Europe Direct is a service to help you find answers to your questions about the European Union Freephone number: 00 800 6 7 8 9 10 11 LEGAL NOTICE: Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. The views expressed in this publication are the sole responsibility of the author and do not necessarily reflect the views of the European Commission. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int). Cataloguing data can be found at the end of this publication. Luxembourg: Office for Official Publications of the European Communities, 2006 ISBN 92-79-00962-1 © European Communities, 2006 Reproduction is authorised provided the source is acknowledged. Printed in Belgium PRINTED ON WHITE CHLORINE-FREE PAPER The Ecoflood Project This document is the result of the Ecoflood Project “Towards natural flood reduction strategies” funded by the European Commission. Ecoflood Consortium Partners Grontmij, Consulting Engineers, The Netherlands (Project Co-ordinators) Evalyne de Swart, Imke Leenen, Frank Vliegenthart Department of Nature Protection in Rural Areas – Institute for Land Reclamation and Grassland Farming IMUZ,Poland Wiktor Kotowski, Hubert Piórkowski, Tomasz Siedlecki Research Institute for Inland Water Management and Waste Water Treatment (RIZA), The Netherlands Maarten Platteeuw Department of Hydraulic Engineering and Environmental Recultivation - Warsaw Agricultural University (SGGW), Poland Tomasz Okruszko, Dorota Morawska WL Delft Hydraulics, The Netherlands Ellis Penning, Harm Duel, Marjolijn Haasnoot National Environment Research Institute (NERI), Denmark Carlos Hoffmann Alterra, The Netherlands Erik Querner, Alwin Gerritsen Royal Holloway, University of London, UK Edward Maltby, Martin Blackwell Now: Institute for Sustainable Water, Integrated Management and Ecosystem Research (SWIMMER), University of Liverpool Graphic design and layout of inside pages: Wydawnictwo IMUZ, Falenty, Poland 7∆ΕΟΗ&ΡΙ&&ΡΘΩΗΘΩς& Acknowledgements..........................................................................................................................................7 Executive summary (Edward Maltby, Martin Blackwell) .................................................................................9 3∃57&,&″&,ΘΩΥΡΓΞΦΩΛΡΘ...................................................................................................................15 About these guidelines (Martin Blackwell, Edward Maltby)...........................................................................17 What are the objectives of this publication?...........................................................................................17 Who should use these guidelines?.........................................................................................................17 What is the scope of the guidelines?......................................................................................................18 3∃57&,,&″&%∆ΦΝϑΥΡΞΘΓ ...................................................................................................................19 Flooding in Europe (Evalyne de Swart) .........................................................................................................21 Why do we need to do something about flooding? ................................................................................21 Why has flood risk and vulnerability increased? ....................................................................................22 Restoration of flooding on floodplains (Martin Blackwell, Edward Maltby).................................................24 Why should we restore flooding on floodplains? ...................................................................................24 How have floodplains been impacted?...................................................................................................24 Flood risk management (Evalyne de Swart)..................................................................................................27 What are flood risk and risk management? ...........................................................................................27 What approaches can be taken to flood risk management? .................................................................27 What problems are associated with technical flood risk reduction measures? .....................................30 What is a natural flood defence? ...........................................................................................................30 Floodplain processes, functions, values and characteristics (Edward Maltby, Martin Blackwell)............33 What are floodplain processes and functions? ......................................................................................33 How can we benefit from restoring naturally functioning floodplains? ...................................................34 What is floodplain rejuvenation? ............................................................................................................34 The main characteristics of naturally functioning floodplains (Evalyne de Swart, Tomasz Okruszko, Hubert Piórkowski).................................................................................................................................36 What are the interactions between river channels and floodplains?......................................................36 Which factors shape floodplains? ..........................................................................................................36 3∃57&,,,&″&∗ΞΛΓΗΟΛΘΗς....................................................................................................................39 Natural flood defences can contribute to flood risk management (Tomasz Okruszko, Erik Querner).....41 What are the main hydrological functions of naturally functioning floodplains?.....................................41 What hydrological factors should I consider when implementing a natural flood defence scheme? ....46 How can I determine the effectiveness of different measures? .............................................................46 Naturally functioning floodplains affect water and soil quality (Carlos Hoffmann, Martin Blackwell)......46 What are the main functions and processes performed by floodplains that affect water and soil quality? ..............................................................................................................................48 What should I consider with regard to floodplain biogeochemistry when restoring floodplain functioning?............................................................................................................................55 Floodplain restoration contributes to nature conservation (Maarten Platteeuw, Wiktor Kotowski) .........60 How do plants and animals respond to natural river dynamics?............................................................60 What has been lost and why? ................................................................................................................64 What should I consider with regard to nature conservation when restoring floodplain functioning? .....64 The roles of floodplains from a socio-economic perspective (Ellis Penning, Alwin Gerritsen, Erik Querner, Evalyne de Swart, Marjolijn Haasnoot, Imke Leenen).....................................................71 How can I assess the socio-economic values of floodplains? ...............................................................71 How can I assess the socio-economic consequences of changing floodplain use? .............................71 What should I consider with regard to socio-economics when restoring floodplain functioning? ..........74 What should I consider with regard to floodplain landscape when restoring floodplain functioning? ....74 What should I consider with regard to human health when restoring floodplain functioning? ...............79 Organising a floodplain restoration project (Ellis Penning, Maarten Platteeuw, Carlos Hoffman).............83 Where do I start?....................................................................................................................................83 What are the main things I should do?...................................................................................................86 What are the main obstacles I am likely to encounter?..........................................................................90 How can I fund a floodplain restoration project? ...................................................................................90 What are the characteristics of a successful floodplain restoration scheme?........................................93 Existing international policy and floodplain management? (Maarten Platteeuw, Tomasz Okruszko, Edward Maltby).......................................................................................................................................94
Recommended publications
  • Urban Water Management (ESRM 311 & SEFS 507)
    Urban Water Management (ESRM 311 & SEFS 507) Cougar Mtn Regional Wildland Park & Lakemont Blvd, Bellevue WA Lecture Today • Urban Water management terms • Examples of water management in urban areas • Field trip sites Urban Water Management terms • A retention basin is used to manage stormwater runoff to prevent flooding and downstream erosion, and improve water quality in an adjacent river, stream, lake or bay. Sometimes called a wet pond or wet detention basin, it is an artificial lake with vegetation around the perimeter, and includes a permanent pool of water in its design • A detention basin, sometimes called a "dry pond," which temporarily stores water after a storm, but eventually empties out at a controlled rate to a downstream water body. • Infiltration basin which is designed to direct stormwater to groundwater through permeable soils 3 Urban Water Management terms • Stormwater management pond is an artificial pond that is designed to collect and retain urban stormwater. They are frequently built into urban areas in North America to also retain sediments and other materials • Stormwater detention vault is an underground structure designed to manage excess stormwater runoff on a developed site, often in an urban setting. This type of best management practice may be selected when there is insufficient space on the site to infiltrate the runoff or build a surface facility such as a detention basin or retention basin.[1] Detention vaults manage stormwater quantity flowing to nearby surface waters. They help prevent flooding and can reduce erosion in rivers and streams. They do not provide treatment to improve water quality, though some are attached to a media filter bank to remove pollutants 4 Bioretention Basins Bioretention basins are landscaped depressions or shallow basins used to slow and treat on-site stormwater runoff.
    [Show full text]
  • Building Resilient Infrastructure for the Future
    Technical Assistance Consultant’s Report Project Number: 50159-001 December 2019 Technical Assistance Number: 9461 Regional: Protecting and Investing in Natural Capital in Asia and the Pacific (Cofinanced by the Climate Change Fund and the Global Environment Facility) Prepared by: Bregje van Wesenbeeck, Christa van IJzendoorn, and Ana Nunez Sanchez Deltares, Delft, Netherlands Asian Development Bank is the executing and implementing agency. This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. GUIDELINES FOR MAINSTREAMING NATURAL RIVER MANAGEMENT IN ADB WATER SECTOR INVESTMENTS Dr. Bregie K. van Wesenbeeck, Christa van IJzendoorn, Ana Nunez Sanchez ASIAN DEVELOPMENT BANK GUIDELINES FOR MAINSTREAMING NATURAL RIVER MANAGEMENT IN ADB WATER SECTOR INVESTMENTS Dr. Bregie K. van Wesenbeeck, Christa van IJzendoorn, Ana Nunez Sanchez ASIAN DEVELOPMENT BANK With contributions of: Iris Niesten Sien Kok Stéphanie IJff Hans de Vroeg Femke Schasfoort Status: final This is a final report as delivered to ADB on December 2019. Keywords: River management, nature-based solutions, integrated river basin management (IRBM), flood risk management (FRM), integrated water resource management (IWRM), ecosystem services. Summary: River basins throughout Asia face increasing populations numbers and rapid economic and infrastructure development. Overall, infrastructure development often neglects dynamics and natural functions of river basins. Therefore, river management is becoming increasingly expensive, may not be sustainable on the long- term and negatively affects people that depend on the river for their livelihoods.
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]
  • Bioretention Basins/Rain Gardens
    Florida Field Guide to Low Impact Development Bioretention Basins/Rain Gardens Depiction of typical bioretention area design illustrating shallow slopes, well drained soil profile and location of plant material along hydrologic gradient. Basins with large catchments should include an over drain or provide a spillway in case of high flow event, and underdrains can be used in areas with low conductivity soils. Definition: Objectives: A bioretention area or rain garden is a shallow Bioretention basins/rain gardens retain, filter, and planted depression designed to retain or detain treat stormwater runoff using a shallow depression stormwater before it is infiltrated or discharged of conditioned soil topped with a layer of mulch downstream. While the terms “rain garden” and or high carbon soil layer and vegetation tolerant “bioretention basin” may be used interchangeably, of short-term flooding. Depending on the design, they can be considered along a continuum of size, they can provide retention or detention of runoff where the term “rain garden” is typically used to water and will trap and remove suspended solids describe a planted depression on an individual and filter or absorb pollutants to soils and plant homeowner’s lot, where the lot comprises the material. extent of the catchment area. Bioretention basins serve the same purpose but that more technical Overview: term typically describes larger projects in Bioretention basins can be installed at various community common areas as well as non- scales, for example, integrated with traffic calming residential applications. measures in suburban parks and in retarding basins. In larger applications, it is considered good practice to have pretreatment measures (e.g.
    [Show full text]
  • Economic Outcomes of Urban Floodplain Restoration
    ECONOMIC OUTCOMES OF URBAN FLOODPLAIN RESTORATION IMPLICATIONS FOR PUGET SOUND JUNE 2020 PREPARED BY BRANDON PARSONS American Rivers LAURA MARSHALL ECONorthwest MARK BUCKLEY ECONorthwest Lower Snoqualmie Valley near Duvall,WA, JONATHON LOOS December 9, 2015 fl ood Dartmouth College Source: King County, WA A Acknowledgments For over 40 years ECONorthwest has helped its clients make sound decisions based on rigorous economic, planning, and fi nancial analysis. For more information about ECONorthwest: www.econw.com. ECONorthwest prepared this report for American Rivers. We received substantial assistance and contributions to the report from Brandon Parsons, PLA with American Rivers, Jonathon Loos (Ph.D. Candidate, Dartmouth College), as well as Spencer Easton and Susan O’Neil with Environmental Science Associates. Other fi rms, agencies, and staff contributed to other research that this report relied on. Signifi cant input and review was provided by the steering committee members, who include: • Doug Osterman, WRIA 9 Salmon Recovery Manager • Jason Mulvihill-Kuntz, WRIA 8 Salmon Recovery • Suzanna Smith, WRIA 9 Habitat Projects Coordinator Manager • Matt Goehring, WRIA 9 Planning and Technical • Weston Brinkley, Principal, Street Sounds Ecology Coordinator • Tracy Stanton, Executive Director, The Emerald Alliance We specifi cally want to acknowledge the former Chair of the WRIA 9 Management Committee and Tukwila City Council Member - Dennis Robertson for his years of service. Dennis has devoted himself to restoring the Green-Duwamish River to benefi t the salmon and people that rely on it. Dennis is a strong proponent of healthy rivers that support healthy communities and tirelessly works to improve the environment for future generations which helped inspire this project.
    [Show full text]
  • Johnson Creek Restoration Project Effectiveness Monitoring
    Bureau of Environmental Services • City of Portland Johnson Creek Restoration Projects Effectiveness Monitoring Reporting on data collected from 1997 through 2010 DECEMBER 2012 Dan Saltzman, Commissioner Dean Marriott, Director Dan Saltzman, Commissioner • Dean Marriott, Director Acknowledgements Implementation of the effectiveness monitoring program for restoration projects in the Johnson Creek Watershed has drawn on the expertise, support, and dedication of a number of individuals. We thank them for making this report possible. City of Portland, Environmental Services Staff Jennifer Antak, Johnson Creek Effectiveness Monitoring Program Lead Sean Bistoff Trevor Diemer Mathew Dorfman Steven Kass Theophilus Malone Chris Prescott Gregory Savage Wendy Sletten Maggie Skenderian Ali Young Supporting Organizations and Consultants Oregon Watershed Enhancement Board Salmon River Engineering ‐ Janet Corsale, PE CPESC Portland State University ‐ Denisse Fisher Contents Introduction .........................................................................................................................1 Johnson Creek Overview ...................................................................................................1 Project Effectiveness Monitoring Program....................................................................12 Overview ........................................................................................................................12 Monitoring Methods.....................................................................................................13
    [Show full text]
  • Wet Pond/Retention Basin
    Pennsylvania Stormwater Best Management Practices Manual Chapter 6 BMP 6.6.2: Wet Pond/Retention Basin Wet Ponds/Retention Basins are stormwater basins that include a substantial permanent pool for water quality treatment and additional capacity above the permanent pool for temporary runoff storage. Key Design Elements Potential Applications Residential: Yes Commercial: Yes Ultra Urban: Yes Industrial: Yes Retrofit: Yes Highway/Road: Yes · Adequate drainage area (usually 5 to 10 acres minimum) or proof of sustained baseflow Stormwater Functions · Natural high groundwater table · Maintenance of permanent water surface · Should have at least 2 to 1 length to width ratio Volume Reduction: Low Recharge: Low Robust and diverse vegetation surrounding wet pond · Peak Rate Control: High · Relatively impermeable soils Water Quality: Medium · Forebay for sediment collection and removal · Dewatering mechanism Water Quality Functions TSS: 70% TP: 60% NO3: 30% 363-0300-002 / December 30, 2006 Page 163 of 257 Pennsylvania Stormwater Best Management Practices Manual Chapter 6 Description Wet Detention Ponds are stormwater basins that include a permanent pool for water quality treatment and additional capacity above the permanent pool for temporary storage. Wet Ponds should include one or more forebays that trap course sediment, prevent short-circuiting, and facilitate maintenance. The pond perimeter should generally be covered by a dense stand of emergent wetland vegetation. While they do not achieve significant groundwater recharge or volume reduction, they can be effective for pollutant removal and peak rate mitigation. Wet Ponds (WPs) can also provide aesthetic and wildlife benefits. WPs require an adequate source of inflow to maintain the permanent water surface.
    [Show full text]
  • Sediment Forebay
    VA DEQ STORMWATER DESIGN SPECIFICATION INTRODUCTION: APPENDIX D: SEDIMENT FOREBAY APPENDIX D SEDIMENT FOREBAY VERSION 1.0 March 1, 2011 SECTION D-1: DESCRIPTION OF PRACTICE A sediment forebay is a settling basin or plunge pool constructed at the incoming discharge points of a stormwater BMP. The purpose of a sediment forebay is to allow sediment to settle from the incoming stormwater runoff before it is delivered to the balance of the BMP. A sediment forebay helps to isolate the sediment deposition in an accessible area, which facilitates BMP maintenance efforts. SECTION D-2: PERFORMANCE CRITERIA Not applicable. Introduction: Appendix D: Sediment Forebay 1 of 7 Version 1.0, March 1, 2011 VA DEQ STORMWATER DESIGN SPECIFICATION INTRODUCTION: APPENDIX D: SEDIMENT FOREBAY SECTION D-3: PRACTICE APPLICATIONS AND FEASIBILITY A sediment forebay is an essential component of most impoundment and infiltration BMPs including retention, detention, extended-detention, constructed wetlands, and infiltration basins. A sediment forebay should be located at each inflow point in the stormwater BMP. Storm drain piping or other conveyances may be aligned to discharge into one forebay or several, as appropriate for the particular site. Forebays should be installed in a location which is accessible by maintenance equipment. Water Quality A sediment forebay not only serves as a maintenance feature in a stormwater BMP, it also enhances the pollutant removal capabilities of the BMP. The volume and depth of the forebay work in concert with the outlet protection at the inflow points to dissipate the energy of incoming stormwater flows. This allows the heavier, course-grained sediments and particulate pollutants to settle out of the runoff.
    [Show full text]
  • Deep Creek Master Drainage Plan Update
    INDICATIVE OF EXPECTED WATER SURFACE ELEVATIONS FOR THE PURPOSES OF FLOODPLAIN MANAGEMENT AND/OR INSURANCE REQUIREMENTS. The SWMM models developed for this study could be adapted for use in the National Flood Insurance Program and submitted to FEMA for approval, but until they are subjected to that process the published flood insurance studies and rate maps remain fully in effect. Back-to-Back Storms Analysis The City of Chesapeake has flood storage requirements regarding back-to-back storms. Simply stated, detention and retention facilities must recover a substantial portion of the available flood storage 48 hours after a 10-Year Type II design storm event begins. A special SWMM analysis was constructed and run to produce the results indicated in Table D-1. As shown in the table, all of the storm water basins in the watershed should recover flood storage capacity adequately within 48 hours after the onset of a 10-year Type II storm, and all of them have excess storage capacity above the peak 10-year water surface elevation. The City’s back-to-back storm analysis requirements are not well understood in the consulting community, and have not been consistently applied from project to project. The ultimate intent is to produce good detention and retention facility designs that can recover a reasonable amount of flood storage capacity so that flood damage can be avoided if one severe storm is followed shortly by another. The development of specific back-to-back storm evaluation criteria is problematic for several reasons. First, back-to-back 10-year (for example) storms comprise a hydrologic design event that has a return period well beyond 10-years, and designs to accommodate such an event can be very expensive to construct, or to retrofit.
    [Show full text]
  • Fluvial Geomorphic Assessment of the South River Watershed, MA
    Fluvial Geomorphic Assessment of the South River Watershed, MA Prepared for Franklin Regional Council of Governments Greenfield, MA South River Prepared by John Field Field Geology Services Farmington, ME February 2013 South River geomorphic assessment - February 2013 Page 2 of 108 Table of Contents EXECUTIVE SUMMARY ................................................................................................ 6 1.0 INTRODUCTION ........................................................................................................ 8 2.0 FLUVIAL GEOMORPHIC ASSESSMENT ............................................................... 8 2.1 Reach and segment delineation ................................................................................. 9 2.2 Review of existing studies ...................................................................................... 10 2.3 Watershed characterization ..................................................................................... 11 2.4 Historical aerial photographs and topographic maps .............................................. 12 2.5 Mapping of channel features ................................................................................... 13 2.5a Mill dams and impoundment sediments ............................................................ 14 2.5b Bar deposition ................................................................................................... 15 2.5c Bank erosion, mass wasting, and bank armoring ............................................. 15 2.5c Wood
    [Show full text]
  • A Geomorphic Monitoring and Adaptive Assessment Framework to Assess the Effect of Lowland Floodplain River Restoration on Channel–Floodplain Sediment Continuity
    RIVER RESEARCH AND APPLICATIONS River Res. Applic. (in press) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rra.911 A GEOMORPHIC MONITORING AND ADAPTIVE ASSESSMENT FRAMEWORK TO ASSESS THE EFFECT OF LOWLAND FLOODPLAIN RIVER RESTORATION ON CHANNEL–FLOODPLAIN SEDIMENT CONTINUITY J. L. FLORSHEIM,a* J. F. MOUNTa and C. R. CONSTANTINEb a Geology Department and Center for Integrated Watershed Science and Management, University of California, One Shields Avenue, Davis, CA 95616, USA b Now at Department of Geological Sciences, University of California, Santa Barbara, CA 93106, USA ABSTRACT The state of the science of lowland river floodplain restoration reflects the relatively new and experimental nature of large river floodplain rehabilitation efforts. Based on results of a case study of floodplain restoration at the lowland Cosumnes River, California, we present a geomorphic monitoring and adaptive assessment framework that addresses the need to inform and utilize scientific knowledge in lowland floodplain river restoration activities. Highlighting hydrogeomorphic processes that lead to habitat creation, we identify a discharge threshold for connectivity and sediment transfer from the channel to the floodplain and integrate discharge magnitude and duration to quantify a threshold to aid determination of when geomorphic monitoring is warranted. Using floodplain sand deposition volume in splay complexes as one indicator of dynamic floodplain habitat, we develop a model to aid prediction of the sand deposition volume as an assessment tool to use to analyze future monitoring data. Because geomorphic processes that form the physical structure of a habitat are dynamic, and because the most successful restoration projects accommodate this fundamental characteristic of ecosystems, monitoring designs must both identify trends and be adapted iteratively so that relevant features continue to be measured.
    [Show full text]
  • Restoration Opportunities at Tributary Confluences: Critical Habitat Assessment of the Big Chico Creek/Mud Creek/Sacramento River Confluence Area
    Restoration Opportunities at Tributary Confluences: Critical Habitat Assessment of the Big Chico Creek/Mud Creek/Sacramento River Confluence Area A report to: The Nature Conservancy, Sacramento River Project1 By: Eric M. Ginney2 Bidwell Environmental Institute, California State University, Chico December 2001. 1Please direct correspondence to: TNC, Sac. River Project Attn: D. Peterson 505 Main Street, Chico CA 95928 [email protected] 2Bidwell Environmental Institute CSU, Chico, Chico, CA 95929-0555 [email protected] Cover: An abstract view of the Sacramento River, looking upstream. Big Chico Creek enters from the east, in the lower portion of the image. Photograph and image manipulation by the author. Table of Contents Section I Study Purpose, Methods, and Objectives 1 Purpose 1 Methods and Objectives 2 Section II Tributary Confluences: Restoration 3 Opportunities Waiting to Happen Ecological Importance of Tributary Confluences and 3 Adjacent Floodplain Importance of Sacramento River Confluence Areas in 5 Collaborative Restoration Efforts Conservation by Design 7 Site-Specific Planning 8 Section III Critical Habitat Identification and Analysis 10 of Physical Processes Location and Description of Study Area 10 Landscape Level 10 Historic Conditions of Study Area and Changes 10 Through Time Current Conditions and Identification of Critical Habitat 16 Hydrologic Data 16 Soils 17 Hydro-geomorphic Processes 17 Site-Level Description: Singh Orchard Parcel 18 On-The-Ground Observations: Singh Parcel 19 Critical Habitat for Species of Concern
    [Show full text]