Recommendation on C-Band Meteorological Radars Design to Ensure Global and Long-Term Coexistence with 5 Ghz RLAN
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Importance of European Cooperation for Rainfall-Induced Hazards
The importance of European cooperation for rainfall-induced hazards. Who are we? • Members are the National Meteorological Services of European States • Provides for internal and external cooperation and collaboration • The primary governing body is the Assembly of Members • Two advisory bodies: • Science & Technology Advisory Committee (STAC) • Policy & Finance Advisory Committee (PFAC) GIE/EIG EUMETNET, Registered Number 0818.801.249 - RPM Bruxelles 30 EUMETNET Members The National Met Services of: Austria Latvia Belgium Luxemburg Croatia Malta Cyprus Montenegro Czech Rep. Netherlands Denmark Norway Estonia Poland Finland Portugal France Serbia Germany Slovenia Greece Spain Hungary Sweden Iceland The FYROM Ireland Switzerland Italy United Kingdom GIE/EIG EUMETNET, Registered Number 0818.801.249 - RPM Bruxelles EUMETNET Mission To help its Members to develop and share their individual and joint capabilities through cooperation programmes that enable enhanced networking, interoperability, optimisation and integration within Europe; and also to enable collective representation with European bodies in order that these capabilities can be exploited effectively. From EUMETNET Strategy GIE/EIG EUMETNET, Registered Number 0818.801.249 - RPM Bruxelles EUMETNET Vision By 2020 EUMETNET will have enabled its Members to provide a cost efficient, world-class, shared infrastructure that is significantly more interoperable and integrated with shared basic services. These improvements will enable Members to better fulfil their official duties, enhance -
ERA4CS Additional Activities: Mapping of European and International Activities
ERA4CS Additional Activities: Mapping of European and International Activities Work Package 7 - Deliverable 3 Delivery date: 30.1.2017 (revision 6.10.2017) Dissemination Level: Public Authors: Mikko Strahlendorff (FMI, Patrick Monfray (ANR), Jörg Cortekar (GERICS), Bart van den Hurk (KNMI), Thanasis Sfetsos (DEMOKRITOS), Chris Hewitt (UKMO), Fernando Belda (AEMET) and Harilaos Loukos (Climate-KIC) Lead beneficiary: FMI Project full title: ERA-NET Cofund “European Research Area for Climate Services” Project acronym: ERA4CS Grant Agreement number: 690462 Project start date: 1st January 2016 Funding scheme: Horizon 2020 SC5-02-2015 Duration: 60 months Table of contents Introduction ........................................................................................................................................................................ 4 Global initiatives ............................................................................................................................................................... 5 World Meteorological Organisation ..................................................................................................................... 5 Global Framework for Climate Services ......................................................................................................... 5 Global Climate Observing System ..................................................................................................................... 5 World Climate Research Program ................................................................................................................... -
Quality of Composites
EUMETNET OPERA 4 Work Package OD12 12/10/2018 /2015 Quality of composites Günther Haase, Swedish Meteorological and Hydrological Institute Daniel Johnson, Swedish Meteorological and Hydrological Institute Page 1 of 2 EUMETNET OPERA 4 Work Package OD12 12/10/2018 /2015 Page 2 of 2 OD12: Quality of composites Günther Haase and Daniel Johnson Swedish Meteorological and Hydrological Institute, Norrköping, Sweden on behalf of EUMETNET OPERA OPERA Working Document WD_XXX May 15, 2018 1 Objective The bid for EUMETNET OPERA 4 describes the OD12 work package (Quality of composites) as follows: Monitoring of the quality of the composites. The bidders are requested to indicate how the quality is mea- sured. Note that some monitoring tools are proposed to be developed already when completing OD1-OD8. It is advisible to co-operate with users of radar composite data, such as NWP and hydrological modelers. The EUMETNET H-SAF, for instance, has tools (CAVAL Work Package) which are useful to assess the quality of rainfall composites. 2 Data 2.1 OPERA composites OPERA produces three different composites (Matthews et al., 2012) which are updated every quarter of an hour (at minute 00, 15, 30, and 45) and issued ca. 15 minutes after data time: • Precipitation intensity: each composite pixel is a weighted average of the lowest valid pixels of the contributing radars, weighted by the inverse of the beam altitude. Polar cells within a search radius of 2.5 km of the composite pixel are considered. Data measured below 200 m altitude are not used. Measured reflectivity values are converted to rainfall (mm/h) using the Marshall-Palmer equation. -
Monitoring Rainfall Accumulations Laurent Delobbe, RMI
EUMETNET OPERA 4 Work Package OD11 18/09/2017 Monitoring rainfall accumulations Laurent Delobbe, RMI Maryna Lukach, RMI Page 1 of 1 OPERA Development Task OD11b Monitoring rainfall accumulations Final report September 18, 2017 Laurent Delobbe and Maryna Lukach Royal Meteorological Institute of Belgium (RMIB) Introduction The OPERA Data Center (ODC) started the production of the OPERA composite in June 2011. Since then, the number of radars included in the composite increased considerably and some changes were implemented in the ODC processing. Within OPERA 4, the development task OD11 aims at improving the harmonization of the OPERA network in terms of reflectivity and rainfall accumulations. OD 11 has been split into three sub- tasks which have been originally formulated as follows: OD 11a : Monitoring and harmonization of reflectivity levels (DWD, 4 PM) OD 11b : Monitoring of individual radar accumulations (RMI, 2 PM) OD 11c : Gauge data for monitoring rainrates (UKMO, 2 PM) It must be pointed out that single radar accumulations are not produced by the OPERA Data Centre (ODC). The ODC accumulation product is generated by summation of the 15-min rainfall composites. Generating a new ODC single radar accumulation product is beyond the scope of OD11. Therefore, we focus in the present study on the evaluation of rainfall accumulations based on the 15-min rainfall rate composite. The final goal is to develop monitoring tools allowing to evaluate and to improve the quality of the ODC composite. In OD11b, we investigate evaluation tools which do not make use of raingauge stations. The evaluation based on comparison with raingauge measurements is addressed in OD 11c and OD12. -
Maintenance of Remote Communication Facility (Rcf)
ORDER rlll,, J MAINTENANCE OF REMOTE commucf~TIoN FACILITY (RCF) EQUIPMENTS OCTOBER 16, 1989 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION AbMINISTRATION Distribution: Selected Airway Facilities Field Initiated By: ASM- 156 and Regional Offices, ZAF-600 10/16/89 6580.5 FOREWORD 1. PURPOSE. direction authorized by the Systems Maintenance Service. This handbook provides guidance and prescribes techni- Referenceslocated in the chapters of this handbook entitled cal standardsand tolerances,and proceduresapplicable to the Standardsand Tolerances,Periodic Maintenance, and Main- maintenance and inspection of remote communication tenance Procedures shall indicate to the user whether this facility (RCF) equipment. It also provides information on handbook and/or the equipment instruction books shall be special methodsand techniquesthat will enablemaintenance consulted for a particular standard,key inspection element or personnel to achieve optimum performancefrom the equip- performance parameter, performance check, maintenance ment. This information augmentsinformation available in in- task, or maintenanceprocedure. struction books and other handbooks, and complements b. Order 6032.1A, Modifications to Ground Facilities, Order 6000.15A, General Maintenance Handbook for Air- Systems,and Equipment in the National Airspace System, way Facilities. contains comprehensivepolicy and direction concerning the development, authorization, implementation, and recording 2. DISTRIBUTION. of modifications to facilities, systems,andequipment in com- This directive is distributed to selectedoffices and services missioned status. It supersedesall instructions published in within Washington headquarters,the FAA Technical Center, earlier editions of maintenance technical handbooksand re- the Mike Monroney Aeronautical Center, regional Airway lated directives . Facilities divisions, and Airway Facilities field offices having the following facilities/equipment: AFSS, ARTCC, ATCT, 6. FORMS LISTING. EARTS, FSS, MAPS, RAPCO, TRACO, IFST, RCAG, RCO, RTR, and SSO. -
Technical Characteristics for Telemetry, Tracking and Command in the Space Operation Service Below 1 Ghz for Non-GSO Satellites with Short Duration Missions
Report ITU-R SA.2426-0 (09/2018) Technical characteristics for telemetry, tracking and command in the space operation service below 1 GHz for non-GSO satellites with short duration missions SA Series Space applications and meteorology ii Rep. ITU-R SA.2426-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1. -
Ecc Report 157 the Impact of Spurious Emissions Of
ECC REPORT 157 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC REPORT 157 THE IMPACT OF SPURIOUS EMISSIONS OF RADARS AT 2.8, 5.6 AND 9.0 GHz ON OTHER RADIOCOMMUNICATION SERVICES/SYSTEMS Cardiff, January 2011 ECC REPORT 157 Page 2 0 EXECUTIVE SUMMARY This ECC Report presents detailed analysis of the impact of fixed radiodetermination systems on other services/systems (i.e. Fixed service (P-P application), Mobile service (RLAN in 5 GHz band) and Radioastronomy service) operating in adjacent or different bands. This analysis was done on a theoretical approach, but results of some measurements of existing filtering solutions were also considered. A number of cases have been considered of major importance for defining levels of unwanted emissions in the spurious domain giving confidence of reasonably low occurrence probability of interference. Particular attention has been given to meteorological radars, which represent the majority of fixed installations presently subject to the 100 dBPEP attenuation required in ERC/REC 74-01. Further consideration was given to the levels in ERC/REC 74-01. In relation to FS, the Report considered: the impact of spurious emission, the very high power of the primary radars under consideration confirm the common assumption that, whichever would be the spurious limit in dBc, main-beam to main-beam coupling between radars and FS stations is not possible because in all cases the protection distance is in the order of several tens of km (in most cases lies beyond the horizon). Therefore, it is assumed that information about the FS and radar locations are known to administrations licensing their use; the impact of typical C band meteo radars on the variation of the potentially blocked azimuth angles for FS stations in the 6-8 GHz band was considered as more representative case. -
Steering Committee Meeting of the Phase II of SEE-MHEWS-A Project
REPORT Steering Committee Meeting of the Phase II of SEE-MHEWS-A Project 12 June 2020 1. INTRODUCTION Following the successful conclusion of the project “Building Resilience to Disasters in the Western Balkans and Turkey” in 2014, and responding to the needs identified by the beneficiaries the World Meteorological Organization (WMO) in cooperation with the U.S. Agency for International Development (USAID) initiated a project “South-East European Multi-Hazard Early Warning Advisory System (SEE-MHEWS-A)”, which aims to strengthen existing early warning capacities in the South- East Europe region. During the first phase of the project, an Implementation Plan was prepared outlining the concept and guidelines for the development of the regional advisory system. The second phase of the SEE-MHEWS-A project commenced in February 2018 and is supported by the World Bank through the Global Facility for Disaster Reduction and Recovery and Instrument for Pre- Accession Assistance (IPA) of the European Commission. This project phase will be the beginning of implementation of the SEE-MHEWS-A, as broadly outlined in the Implementation Plan. The fourth Project Steering Committee (PSC) meeting of the second phase of the project was organized as a teleconference on 12th June 2020. The meeting aimed to discuss the current status and plans for implementation of the project. The meeting was attended by 62 participants from project partners, stakeholders and WMO Secretariat (participant list is attached as Annex I). The agenda of the meeting is included as Annex II. The meeting was opened by Michael Staudinger (President of RA VI, Director of Zentralanstalt für Meteorologie und Geodynamik (ZAMG) and Chair of Project Steering Committee (PSC)), Florence Rabier, (Director-General, ECMWF), Eric Petermann, (Executive Director, EUMETNET), Daniel Kull (Senior Disaster Risk Management Specialist, World Bank) and Milan Dacić (WMO Representative for Europe and SEE-MHEWS-A Project Executive). -
RF Engineering for Wireless Networks
DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page i RF Engineering for Wireless Networks DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page ii DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page iii RF Engineering for Wireless Networks Hardware, Antennas, and Propagation Daniel M. Dobkin AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page iv Newnes is an imprint of Elsevier. 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK ϱ This book is printed on acid-free paper. Copyright # 2005, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (þ44) 1865 843830, fax: (þ44) 1865 853333, e-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting ‘‘Customer Support’’ and then ‘‘Obtaining Permissions.’’ Library of Congress Cataloging-in-Publication Data Application submitted British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN: 0-7506-7873-9 For all information on all Newnes/Elsevier Science publications visit our Web site at www.books.elsevier.com Printed in the United States of America 04050607080910987654321 DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page v Contents Chapter 1: Introduction ............................. -
Isolation Between Antennas of IMT Base Stations in the Land Mobile Service
Report ITU-R M.2244 (11/2011) Isolation between antennas of IMT base stations in the land mobile service M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2244 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1. -
TR 101 036-1 V1.3.1 (2002-08) Technical Report
ETSI TR 101 036-1 V1.3.1 (2002-08) Technical Report Fixed Radio Systems; Generic wordings for standards on DFRS (Digital Fixed Radio Systems) characteristics; Part 1: General aspects and point-to-point equipment parameters 2 ETSI TR 101 036-1 V1.3.1 (2002-08) Reference RTR/TM-04093 Keywords DFRS, DRRS, FWA, point-to-point, radio ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. -
2 European Nowcasting Conference
2nd European Nowcasting Conference BOOK OF ABSTRACT 03 - 05 May 2017, Offenbach, Headquarters of DWD Table of contents The importance of nowcasting in the WMO WWRP strategy 3 The EUMETNET ASIST project 3 Use of Applications in Nowcasting and Very Short Range Forecasting in Europe – a Study within the Framework of the EUMETNET ASIST Project 4 Observations as basis for Nowcasting 5 Radar data - processing and their application in thunderstorm nowcasting at ZAMG 5 Potential uses of the SESAR 3D Radar Reflectivity Mosaic for Aviation Applications in UK Airspace 5 Prediction of Observation Uncertainty using Data Assimilation in an Ensemble-Nowcasting System 6 Aircraft Moisture Observations: Their importance in Nowcasting and NWP 6 The potential of the S-NPP VIIRS DNB from a forecaster’s perspective 7 Potential of the Lightning Mapping Array for the Nowcasting of Severe Weather 7 Lightning characteristics during hailstorms 8 Multi-sensor insight into severe convective events: potential for improving the nowcasting of hailstorms 8 Convective storm nowcasting by remote sensing data combination 9 Convective growth and glaciation with Meteosat in relation to precipitation formation 9 Validation of the satellite-based Thunderstorm Detection and Nowcasting System Cb-global with IAGOS Onboard Measurements 10 A novel multispectral algorithm for the detection, tracking and nowcasting of the thunderstorms using the Meteosat Second Generation images 10 SATICUS - A novel approach for the detection and short-term forecast of thunderstorms. 11 Improving Satellite-based Convective Weather Nowcasts by coupling short-range GOES-R Legacy Sounding NearCasts to Convective Initiation Products 11 Nowcasting technics and systems 12 The Nowcasting SAF (NWC SAF): products and user services.