Florida Fossil Horse Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dental Basics: the Who, What, When, How and Why of Floating Teeth
> I , :-- 1 .\I IY I IJIIII ' \ IIY 1111 •1 ental Basics: The Who, What, When, How and D Why of Floating Teeth By Brad Tanner, Rood and Riddle Equine Hospital Reprint from the Dutch Harness Horse Magazine Article ~ Why float teeth - ancient wild horses seem to have done upper cheek teeth to not be worn away from chewing. the same fin e without a dentist? is true of the inside of the lower cheek teeth. The lack of attrition ood point and l agree it seems ancient wild horses did o-reat to these areas of the teeth coupled with the fact that the horse ·s Gwithout rasping of their teeth. The horse has evolved 7o be tooth continues to erupt (grow) approximately 3mm annually a grass consuming machine. Through the course of millennia, is the reason horses fonn sharp points and require floating. they have developed long teeth that continue to erupt (grow) throughout life. It is important to know that the horse evolved to When should my horse have a dental exam andfloating graze and chew up to 16 hours daily on coarse, fibrous grasses. performed? Modem domesticated horses may spend much of their time in stalls, eating concentrates and hay, chewing much less than those on pasture. Modern domesticated horses with p asture access typically graze on manicured grasses that are comparati ve ly delicate and lack the gritty silica content consumed by their ancestors and cause less tooth wear. Additionally. as a horse chews grain its lower jaw does not move side to side with th e same amount of travel as when chewing grass. -
Carnivora from the Late Miocene Love Bone Bed of Florida
Bull. Fla. Mus. Nat. Hist. (2005) 45(4): 413-434 413 CARNIVORA FROM THE LATE MIOCENE LOVE BONE BED OF FLORIDA Jon A. Baskin1 Eleven genera and twelve species of Carnivora are known from the late Miocene Love Bone Bed Local Fauna, Alachua County, Florida. Taxa from there described in detail for the first time include the canid cf. Urocyon sp., the hemicyonine ursid cf. Plithocyon sp., and the mustelids Leptarctus webbi n. sp., Hoplictis sp., and ?Sthenictis near ?S. lacota. Postcrania of the nimravid Barbourofelis indicate that it had a subdigitigrade posture and most likely stalked and ambushed its prey in dense cover. The postcranial morphology of Nimravides (Felidae) is most similar to the jaguar, Panthera onca. The carnivorans strongly support a latest Clarendonian age assignment for the Love Bone Bed. Although the Love Bone Bed local fauna does show some evidence of endemism at the species level, it demonstrates that by the late Clarendonian, Florida had become part of the Clarendonian chronofauna of the midcontinent, in contrast to the higher endemism present in the early Miocene and in the later Miocene and Pliocene of Florida. Key Words: Carnivora; Miocene; Clarendonian; Florida; Love Bone Bed; Leptarctus webbi n. sp. INTRODUCTION can Museum of Natural History, New York; F:AM, Frick The Love Bone Bed Local Fauna, Alachua County, fossil mammal collection, part of the AMNH; UF, Florida Florida, has produced the largest and most diverse late Museum of Natural History, University of Florida. Miocene vertebrate fauna known from eastern North All measurements are in millimeters. The follow- America, including 43 species of mammals (Webb et al. -
Three-Toed Browsing Horse Anchitherium (Equidae) from the Miocene of Panama
J. Paleonl., 83(3), 2009, pp. 489-492 Copyright © 2009, The Paleontological Society 0022-3360/09/0083-489S03.00 THREE-TOED BROWSING HORSE ANCHITHERIUM (EQUIDAE) FROM THE MIOCENE OF PANAMA BRUCE J. MACFADDEN Florida Museum of Natural History, University of Florida, Gainesville FL 32611, <[email protected]> INTRODUCTION (CRNHT/APL); L, left; M, upper molar; R upper premolar; R, DURING THE Cenozoic, the New World tropics supported a rich right; TRN, greatest transverse width. biodiversity of mammals. However, because of the dense SYSTEMATIC PALEONTOLOGY vegetative ground cover, today relatively little is known about extinct mammals from this region (MacFadden, 2006a). In an Class MAMMALIA Linnaeus, 1758 exception to this generalization, fossil vertebrates have been col- Order PERISSODACTYLA Owen, 1848 lected since the second half of the twentieth century from Neo- Family EQUIDAE Gray, 1821 gene exposures along the Panama Canal. Whitmore and Stewart Genus ANCHITHERIUM Meyer, 1844 (1965) briefly reported on the extinct land mammals collected ANCHITHERIUM CLARENCI Simpson, 1932 from the Miocene Cucaracha Formation that crops out in the Gail- Figures 1, 2, Table 1 lard Cut along the southern reaches of the Canal. MacFadden Referred specimen.—UF 236937, partial palate (maxilla) with (2006b) formally described this assemblage, referred to as the L P1-M3, R P1-P3, and small fragment of anterointernal part of Gaillard Cut Local Fauna (L.E, e.g., Tedford et al., 2004), which P4 (Fig. 1). Collected by Aldo Rincon of the Smithsonian Tropical consists of at least 10 species of carnivores, artiodactyls (also see Research Institute, Republic of Panama, on 15 May 2008. -
Download Download
European Journal of Taxonomy 753: 1–80 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.753.1389 www.europeanjournaloftaxonomy.eu 2021 · Tissier J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:8009DD3B-53B0-45C9-921E-58D04C9C0B48 New species, revision, and phylogeny of Ronzotherium Aymard, 1854 (Perissodactyla, Rhinocerotidae) Jérémy TISSIER 1,*, Pierre-Olivier ANTOINE 2 & Damien BECKER 3 1,3 Route de Fontenais 21, JURASSICA Museum, 2900 Porrentruy, Switzerland & Chemin du musée 4, Université de Fribourg, Department of Geosciences, 1700 Fribourg, Switzerland. 2 Place Eugène Bataillon, Institut des sciences de l’évolution de Montpellier-CNRS-IRD-RPHE, Université de Montpellier, 34095 Montpellier, France. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:7418361D-FAA0-4D7D-AE4A-80B5C9288B31 2 urn:lsid:zoobank.org:author:61FBD377-963B-4530-A4BC-0AB4CBCAD967 3 urn:lsid:zoobank.org:author:E1D8E6B2-6F92-4B0B-A772-4F5C561851DB Abstract. Ronzotherium is one of the earliest Rhinocerotidae in Europe, which fi rst appeared just after the Eocene/Oligocene transition (Grande Coupure), and became extinct at the end of the Oligocene. It is a large-sized rhinocerotid, with a special position in the phylogeny of this group, as being one of the earliest-branching true Rhinocerotidae. However, its intra-generic systematics has never been tested through computational phylogenetic methods and it is basically unknown. Its taxonomical history has gone through numerous complications, and thus we aim to provide here a complete revision of this genus, through phylogenetic methods. -
Unit-V Evolution of Horse
UNIT-V EVOLUTION OF HORSE Horses (Equus) are odd-toed hooped mammals belong- ing to the order Perissodactyla. Horse evolution is a straight line evolution and is a suitable example for orthogenesis. It started from Eocene period. The entire evolutionary sequence of horse history is recorded in North America. " Place of Origin The place of origin of horse is North America. From here, horses migrated to Europe and Asia. By the end of Pleis- tocene period, horses became extinct in the motherland (N. America). The horses now living in N. America are the de- scendants of migrants from other continents. Time of Origin The horse evolution started some 58 million years ago, m the beginning of Eocene period of Coenozoic era. The modem horse Equus originated in Pleistocene period about 2 million years ago. Evolutionary Trends The fossils of horses that lived in different periods, show that the body parts exhibited progressive changes towards a particular direction. These directional changes are called evo- lutionary trends. The evolutionary trends of horse evolution are summarized below: 1. Increase in size. 2. Increase in the length of limbs. 3. Increase in the length of the neck. 4. Increase in the length of preorbital region (face). 5. Increase in the length and size of III digit. 6. Increase in the size and complexity of brain. 7. Molarization of premolars. Olfactory bulb Hyracotherium Mesohippus Equus Fig.: Evolution of brain in horse. 8. Development of high crowns in premolars and molars. 9. Change of plantigrade gait to unguligrade gait. 10. Formation of diastema. 11. Disappearance of lateral digits. -
From the Late–Middle Eocene of Eastern Thrace
G Model PALEVO-993; No. of Pages 15 ARTICLE IN PRESS C. R. Palevol xxx (2017) xxx–xxx Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) First occurrence of Palaeotheriidae (Perissodactyla) from the late–middle Eocene of eastern Thrace (Greece) Première occurrence de Palaeotheriidae (Perissodactyla) du Miocène moyen–tardif de Thrace orientale (Grèce) a,b,∗ a Grégoire Métais , Sevket Sen a CR2P, Paléobiodiversité et Paléoenvironnements, UMR 7207 (CNRS, MNHN, UPMC), Sorbonne Université, Muséum national d’histoire naturelle, 8, rue Buffon, 75005 Paris, France b Department of Ecology and Evolutionary Biology, University of Kansas, 66045 Lawrence, Kansas, USA a b s t r a c t a r t i c l e i n f o Article history: A detailed assessment of postcranial fossils collected at Balouk Keui (Thrace, Greece) in the Received 11 July 2016 mid-19th Century by the naturalist Auguste Viquesnel enabled us to identify the material Accepted after revision 10 January 2017 as pertaining to Palaeotherium sp., cf. P. magnum, which constitutes the easternmost occur- Available online xxx rence of the genus during the Eocene. We have constrained the geographic and stratigraphic provenance of the fossil by reassessing information about Viquesnel’s itinerary and observa- Handled by Lars vanden Hoek Ostende tions. Although the exact age of the fossil remains uncertain, the occurrence of a palaeothere in the Thrace Basin during the Eocene indicates a wider geographic distribution for the Keywords: genus, which had previously been restricted to western and central Europe. The palaeothere Palaeotherium of Balouk Keui confirms that the palaeogeographic range of this group included the Balkans Thrace during the middle–late Eocene. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
Paleobiology of Archaeohippus (Mammalia; Equidae), a Three-Toed Horse from the Oligocene-Miocene of North America
PALEOBIOLOGY OF ARCHAEOHIPPUS (MAMMALIA; EQUIDAE), A THREE-TOED HORSE FROM THE OLIGOCENE-MIOCENE OF NORTH AMERICA JAY ALFRED O’SULLIVAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2002 Copyright 2002 by Jay Alfred O’Sullivan This study is dedicated to my wife, Kym. She provided all of the love, strength, patience, and encouragement I needed to get this started and to see it through to completion. She also provided me with the incentive to make this investment of time and energy in the pursuit of my dream to become a scientist and teacher. That incentive comes with a variety of names - Sylvan, Joanna, Quinn. This effort is dedicated to them also. Additionally, I would like to recognize the people who planted the first seeds of a dream that has come to fruition - my parents, Joseph and Joan. Support (emotional, and financial!) came to my rescue also from my other parents—Dot O’Sullivan, Jim Jaffe and Leslie Sewell, Bill and Lois Grigsby, and Jerry Sewell. To all of these people, this work is dedicated, with love. ACKNOWLEDGMENTS I thank Dr. Bruce J. MacFadden for suggesting that I take a look at an interesting little fossil horse, for always having fresh ideas when mine were dry, and for keeping me moving ever forward. I thank also Drs. S. David Webb and Riehard C. Hulbert Jr. for completing the Triple Threat of Florida Museum vertebrate paleontology. In each his own way, these three men are an inspiration for their professionalism and their scholarly devotion to Florida paleontology. -
On the Validity of Equus Laurentius Hay, 1913 Eric Scott, Division of Geological Sciences, San Bernardino County Museum, Redlands, California Thomas W
On the Validity of Equus laurentius Hay, 1913 Eric Scott, Division of Geological Sciences, San Bernardino County Museum, Redlands, California Thomas W. Stafford, Jr., Stafford Research Laboratories, Boulder, Colorado Russell W. Graham, Department of Earth and Space Sciences, Denver Museum of Nature and Sciences, Denver, Colorado Larry D. Martin, Division of Vertebrate Paleontology, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas ABSTRACT BACKGROUND The species Equus laurentius Hay, 1913 has been controversial since its The species Equus laurentius was named from an associated skull and mandible recovered from a sandbar on the north side of the Kansas River near Lawrence in Douglas County, inception. Authorities have differed over the interpretation of this taxon; Kansas (Hay, 1913). The specimen (KUVP 347) was presumed to be of Pleistocene age, as it was found in apparent association with a femur assigned to Smilodon from the same some have considered it a legitimate Pleistocene horse species, while sandbar and appeared mineralized. E. laurentius was considered by Hay (1913) to be a horse similar in size to smaller domestic breeds, with rather small cheek teeth that exhibited others have proposed that the name is invalid on the basis that the relatively simple enamel infoldings or plications. Measurements provided by Hay (1913) for KUVP 347 did not distinguish the specimen from extant E. caballus (Hay, 1927). holotype specimen is a mineralized skull of a recent horse. As the taxon is still frequently employed in studies of Pleistocene equids, it is important Several subsequent authors (Matthew, 1926; Savage, 1951; Winans, 1985, 1989) considered the holotype of Equus laurentius to be a skull of a modern horse, Equus caballus to correctly assess its validity. -
Coversheet for Thesis in Sussex Research Online
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Cuvier in Context: Literature and Science in the Long Nineteenth Century Charles Paul Keeling DPhil English Literature University of Sussex December 2016 I hereby declare that this thesis has not been and will not be, submitted in whole or in part to an- other University for the award of any other degree. Signature:……………………………………… UNIVERSITY OF SUSSEX CHARLES PAUL KEELING DPHIL ENGLISH LITERATURE CUVIER IN CONTEXT: LITERATURE AND SCIENCE IN THE LONG NINETEENTH CENTURY This study investigates the role and significance of Cuvier’s science, its knowledge and practice, in British science and literature in the first half of the nineteenth century. It asks what the current account of science or grand science narrative is, and how voicing Cuvier changes that account. The field of literature and science studies has seen healthy debate between literary critics and historians of science representing a combination of differing critical approaches. -
La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles. -
Hipparion” Cf
©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 30:15-24, Wien 2006 Hooijer’s Hypodigm for “ Hipparion” cf. ethiopicum (Equidae, Hipparioninae) from Olduvai, Tanzania and comparative Material from the East African Plio-Pleistocene by Miranda A rmour -Chelu 1}, Raymond L. Bernor 1} & Hans-Walter Mittmann * 2) A rmour -C helu , M., Bernor , R.L. & M ittmann , H.-W., 2006. Hooijer’s Hypodigm for “ Hipparion” cf. ethiopicum (Equidae, Hipparioninae) from Olduvai, Tanzania and comparative Material from the East African Plio-Pleistocene. — Beitr. Palaont., 30:15-24, Wien. Abstract cranialen Elemente die Hooijer zu diesem Taxon gestellt hat, auf die er sich bezogen hat oder die in irgendeiner We review here the problematic history of the nomen Beziehung dazu stehen, haben wir wiedergefunden. Selbst “Hipparion”cf. ethiopicum and Hooijer’s efforts to bring zusätzliche Fundstücke aus zeitgleichen Horizonten haben some taxonomic sense to the later Pliocene - Pleistocene wir miteinbezogen, in der Absicht, die Gültigkeit von Eu hipparion record. We review his reasoning, and the shifts rygnathohippus cf.“ethiopicum" und seines Verwandten in taxonomic allocation made by him and other equid Eurygnathohippus cornelianus und weiterer Formen, von researchers during the 1970’s. We have relocated many denen Hooijer geglaubt hat, dass sie in einem evolutionären of the postcranial specimens attributed by Hooijer to Zusammenhang mit „ Hipparion“ cf. ethiopicum stehen, “Hipparion” cf. ethiopicum, as well as other specimens zu testen. Wir machen statistische und vergleichende which he referred to, or related to this species. We have Analysen um dieses Hypodigma zu klären. also considered additional specimens from contempo raneous horizons, in order to reevaluate the efficacy of Eurygnathohippus cf “ethiopicum” and its apparent rela 1.