Programme Guidebook 2018 – 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jupyter Notebooks—A Publishing Format for Reproducible Computational Workflows
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elpub digital library Jupyter Notebooks—a publishing format for reproducible computational workflows Thomas KLUYVERa,1, Benjamin RAGAN-KELLEYb,1, Fernando PÉREZc, Brian GRANGERd, Matthias BUSSONNIERc, Jonathan FREDERICd, Kyle KELLEYe, Jessica HAMRICKc, Jason GROUTf, Sylvain CORLAYf, Paul IVANOVg, Damián h i d j AVILA , Safia ABDALLA , Carol WILLING and Jupyter Development Team a University of Southampton, UK b Simula Research Lab, Norway c University of California, Berkeley, USA d California Polytechnic State University, San Luis Obispo, USA e Rackspace f Bloomberg LP g Disqus h Continuum Analytics i Project Jupyter j Worldwide Abstract. It is increasingly necessary for researchers in all fields to write computer code, and in order to reproduce research results, it is important that this code is published. We present Jupyter notebooks, a document format for publishing code, results and explanations in a form that is both readable and executable. We discuss various tools and use cases for notebook documents. Keywords. Notebook, reproducibility, research code 1. Introduction Researchers today across all academic disciplines often need to write computer code in order to collect and process data, carry out statistical tests, run simulations or draw figures. The widely applicable libraries and tools for this are often developed as open source projects (such as NumPy, Julia, or FEniCS), but the specific code researchers write for a particular piece of work is often left unpublished, hindering reproducibility. Some authors may describe computational methods in prose, as part of a general description of research methods. -
Deep Dive on Project Jupyter
A I M 4 1 3 Deep dive on Project Jupyter Dr. Brian E. Granger Principal Technical Program Manager Co-Founder and Leader Amazon Web Services Project Jupyter © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Project Jupyter exists to develop open-source software, open standards and services for interactive and reproducible computing. https://jupyter.org/ Overview • Project Jupyter is a multi-stakeholder, open source project. • Jupyter’s flagship application is the Text Math Jupyter Notebook. • Notebook document format: • Live code, narrative text, equations, images, visualizations, audio. • ~100 programming languages supported. Live code • Over 500 contributors across >100 GitHub repositories. • Part of the NumFOCUS Foundation: • Along with NumPy, Pandas, Julia, Matplotlib,… Charts Who uses Jupyter and how? Students/Teachers Data science Data Engineers Machine learning Data Scientists Scientific computing Researchers Data cleaning and transformation Scientists Exploratory data analysis ML Engineers Analytics ML Researchers Simulation Analysts Algorithm development Reporting Data visualization Jupyter has a large and diverse user community • Many millions of Jupyter users worldwide • Thousands of AWS customers • Highly international • Over 5M public notebooks on GitHub alone Example: Dive into Deep Learning • Dive into Deep Learning is a free, open-source book about deep learning. • Zhang, Lipton, Li, Smola from AWS • All content is Jupyter Notebooks on GitHub. • 890 page PDF, hundreds of notebooks • https://d2l.ai/ © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Common threads • Jupyter serves an extremely broad range of personas, usage cases, industries, and applications • What do these have in common? Ideas of Jupyter • Computational narrative • “Real-time thinking” with a computer • Direct manipulation user interfaces that augment the writing of code “Computers are good at consuming, producing, and processing data. -
Admb Package
Using AD Model Builder and R together: getting started with the R2admb package Ben Bolker March 9, 2020 1 Introduction AD Model Builder (ADMB: http://admb-project.org) is a standalone program, developed by Dave Fournier continuously since the 1980s and re- leased as an open source project in 2007, that takes as input an objective function (typically a negative log-likelihood function) and outputs the co- efficients that minimize the objective function, along with various auxiliary information. AD Model Builder uses automatic differentiation (that's what \AD" stands for), a powerful algorithm for computing the derivatives of a specified objective function efficiently and without the typical errors due to finite differencing. Because of this algorithm, and because the objective function is compiled into machine code before optimization, ADMB can solve large, difficult likelihood problems efficiently. ADMB also has the capability to fit random-effects models (typically via Laplace approximation). To the average R user, however, ADMB represents a challenge. The first (unavoidable) challenge is that the objective function needs to be written in a superset of C++; the second is learning the particular sequence of steps that need to be followed in order to output data in a suitable format for ADMB; compile and run the ADMB model; and read the data into R for analysis. The R2admb package aims to eliminate the second challenge by automating the R{ADMB interface as much as possible. 2 Installation The R2admb package can be installed in R in the standard way (with install.packages() or via a Packages menu, depending on your platform. -
Automated Likelihood Based Inference for Stochastic Volatility Models H
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Knowledge at Singapore Management University Singapore Management University Institutional Knowledge at Singapore Management University Research Collection School Of Economics School of Economics 11-2009 Automated Likelihood Based Inference for Stochastic Volatility Models H. Skaug Jun YU Singapore Management University, [email protected] Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research Part of the Econometrics Commons Citation Skaug, H. and YU, Jun. Automated Likelihood Based Inference for Stochastic Volatility Models. (2009). 1-28. Research Collection School Of Economics. Available at: https://ink.library.smu.edu.sg/soe_research/1151 This Working Paper is brought to you for free and open access by the School of Economics at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For more information, please email [email protected]. Automated Likelihood Based Inference for Stochastic Volatility Models Hans J. SKAUG , Jun YU November 2009 Paper No. 15-2009 ANY OPINIONS EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF THE SCHOOL OF ECONOMICS, SMU Automated Likelihood Based Inference for Stochastic Volatility Models¤ Hans J. Skaug,y Jun Yuz October 7, 2008 Abstract: In this paper the Laplace approximation is used to perform classical and Bayesian analyses of univariate and multivariate stochastic volatility (SV) models. We show that imple- mentation of the Laplace approximation is greatly simpli¯ed by the use of a numerical technique known as automatic di®erentiation (AD). -
Multivariate Statistical Methods to Analyse Multidimensional Data in Applied Life Science
Multivariate statistical methods to analyse multidimensional data in applied life science Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakult¨atIII Agrar- und Ern¨ahrungswissenschaften, Geowissenschaften und Informatik der Martin-Luther-Universit¨atHalle-Wittenberg vorgelegt von Frau Trutschel (geb. Boronczyk), Diana Geb. am 18.02.1979 in Hohenm¨olsen Gutachter: 1. Prof. Dr. Ivo Grosse, MLU Halle/Saale 2. Dr. Steffen Neumann, IPB alle/Saale 3. Prof. Dr. Andr´eScherag, FSU Jena Datum der Verteidigung: 18.04.2019 I Eidesstattliche Erklärung / Declaration under Oath Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. I declare under penalty of perjury that this thesis is my own work entirely and has been written without any help from other people. I used only the sources mentioned and included all the citations correctly both in word or content. __________________________ ____________________________________________ Datum / Date Unterschrift des Antragstellers / Signature of the applicant III This thesis is a cumulative thesis, including five research articles that have previously been published in peer-reviewed international journals. In the following these publications are listed, whereby the first authors are underlined and my name (Trutschel) is marked in bold. 1. Trutschel, Diana and Schmidt, Stephan and Grosse, Ivo and Neumann, Steffen, "Ex- periment design beyond gut feeling: statistical tests and power to detect differential metabolites in mass spectrometry data", Metabolomics, 2015, available at: https:// link.springer.com/content/pdf/10.1007/s11306-014-0742-y.pdf 2. -
SENTINEL-2 DATA PROCESSING USING R Case Study: Imperial Valley, USA
TRAINING KIT – R01 DFSDFGAGRIAGRA SENTINEL-2 DATA PROCESSING USING R Case Study: Imperial Valley, USA Research and User Support for Sentinel Core Products The RUS Service is funded by the European Commission, managed by the European Space Agency and operated by CSSI and its partners. Authors would be glad to receive your feedback or suggestions and to know how this material was used. Please, contact us on [email protected] Cover image credits: ESA The following training material has been prepared by Serco Italia S.p.A. within the RUS Copernicus project. Date of publication: November 2020 Version: 1.1 Suggested citation: Serco Italia SPA (2020). Sentinel-2 data processing using R (version 1.1). Retrieved from RUS Lectures at https://rus-copernicus.eu/portal/the-rus-library/learn-by-yourself/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. DISCLAIMER While every effort has been made to ensure the accuracy of the information contained in this publication, RUS Copernicus does not warrant its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or unforeseeable use made of this publication. Consequently, such use is at the recipient’s own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The information contained in this publication does not purport to constitute professional advice. 2 Table of Contents 1 Introduction to RUS ........................................................................................................................ -
Final Report for the Redus Project
FINAL REPORT FOR THE REDUS PROJECT Reduced Uncertainty in Stock Assessment Erik Olsen (HI), Sondre Aanes Norwegian Computing Center, Magne Aldrin Norwegian Computing Center, Olav Nikolai Breivik Norwegian Computing Center, Edvin Fuglebakk, Daisuke Goto, Nils Olav Handegard, Cecilie Hansen, Arne Johannes Holmin, Daniel Howell, Espen Johnsen, Natoya Jourdain, Knut Korsbrekke, Ono Kotaro, Håkon Otterå, Holly Ann Perryman, Samuel Subbey, Guldborg Søvik, Ibrahim Umar, Sindre Vatnehol og Jon Helge Vølstad (HI) RAPPORT FRA HAVFORSKNINGEN NR. 2021-16 Tittel (norsk og engelsk): Final report for the REDUS project Sluttrapport for REDUS-prosjektet Undertittel (norsk og engelsk): Reduced Uncertainty in Stock Assessment Rapportserie: År - Nr.: Dato: Distribusjon: Rapport fra havforskningen 2021-16 17.03.2021 Åpen ISSN:1893-4536 Prosjektnr: Forfatter(e): 14809 Erik Olsen (HI), Sondre Aanes Norwegian Computing Center, Magne Aldrin Norwegian Computing Center, Olav Nikolai Breivik Norwegian Program: Computing Center, Edvin Fuglebakk, Daisuke Goto, Nils Olav Handegard, Cecilie Hansen, Arne Johannes Holmin, Daniel Howell, Marine prosesser og menneskelig Espen Johnsen, Natoya Jourdain, Knut Korsbrekke, Ono Kotaro, påvirkning Håkon Otterå, Holly Ann Perryman, Samuel Subbey, Guldborg Søvik, Ibrahim Umar, Sindre Vatnehol og Jon Helge Vølstad (HI) Forskningsgruppe(r): Godkjent av: Forskningsdirektør(er): Geir Huse Programleder(e): Bentiske ressurser og prosesser Frode Vikebø Bunnfisk Fiskeridynamikk Pelagisk fisk Sjøpattedyr Økosystemakustikk Økosystemprosesser -
Management and Analysis of Wildlife Biology Data Bret A
2 Management and Analysis of Wildlife Biology Data bret a. collier and thomas w. schwertner INTRODUCTION HE GENERAL FOCUS in this chapter is on outlining the range of op- tions available for the management and analysis of data collected during wildlife biology studies. Topics presented are inherently tied to data analy- Tsis, including study design, data collection, storage, and management, as well as graphical and tabular displays best suited for data summary, interpretation, and analysis. The target audience is upper-level undergraduate or masters-level gradu- ate students studying wildlife ecology and management. Statistical theory will only be presented in situations where it would be beneficial for the reader to understand the motivation behind a particular technique (e.g., maximum likelihood estima- tion) versus attempting to provide in-depth detail regarding all potential assump- tions, methods of interpretation, or ways of violating assumptions. In addition, po- tential approaches that are currently available and are rapidly advancing (e.g., applications of mixed models or Bayesian modeling using Markov Chain Monte Carlo methods) are presented. Also provided are appropriate references and pro- grams for the interested reader to explore further these ideas. The previous authors (Bart and Notz 2005) of this chapter suggested that before collecting data, visit with a professional statistician. Use the consultation with a professional to serve as a time to discuss the objectives of the research study, out- line a general study design, discuss the proposed methods to be implemented, and identify potential problems with initial thoughts on sampling design, as well as to determine what statistical applications to use and how any issues related to sam- pling will translate to issues with statistical analysis. -
Exploratory Data Science Using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E
The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E. John3 Brad A. Myers1 1Human-Computer Interaction Institute 2Amherst College 3Bloomberg L. P. Carnegie Mellon University Amherst, MA New York City, NY Pittsburgh, PA [email protected] [email protected] mkery, mahimaa, bam @cs.cmu.edu ABSTRACT engineers, many of whom never receive formal training in Literate programming tools are used by millions of software engineering [30]. programmers today, and are intended to facilitate presenting data analyses in the form of a narrative. We interviewed 21 As even more technical novices engage with code and data data scientists to study coding behaviors in a literate manipulations, it is key to have end-user programming programming environment and how data scientists kept track tools that address barriers to doing effective data science. For of variants they explored. For participants who tried to keep instance, programming with data often requires heavy a detailed history of their experimentation, both informal and exploration with different ways to manipulate the data formal versioning attempts led to problems, such as reduced [14,23]. Currently even experts struggle to keep track of the notebook readability. During iteration, participants actively experimentation they do, leading to lost work, confusion curated their notebooks into narratives, although primarily over how a result was achieved, and difficulties effectively through cell structure rather than markdown explanations. ideating [11]. Literate programming has recently arisen as a Next, we surveyed 45 data scientists and asked them to promising direction to address some of these problems [17]. -
2019 Annual Report
ANNUAL REPORT 2019 TABLE OF CONTENTS LETTER FROM THE BOARD CO-CHAIRPERSON ..............................................03 PROJECTS ....................................................................................................................... 04 New Sponsored Projects Project Highlights from 2019 Project Events Case Studies Affiliated Projects NumFOCUS Services to Projects PROGRAMS ..................................................................................................................... 16 PyData PyData Meetups PyData Conferences PyData Videos Small Development Grants to NumFOCUS Projects Inaugural Visiting Fellow Diversity and Inclusion in Scientific Computing (DISC) Google Season of Docs Google Summer of Code Sustainability Program GRANTS ........................................................................................................................... 25 Major Grants to Sponsored Projects through NumFOCUS SUPPORT ........................................................................................................................ 28 2019 NumFOCUS Corporate Sponsors Donor List FINANCIALS ................................................................................................................... 34 Revenue & Expenses Project Income Detail Project EOY Balance Detail PEOPLE ............................................................................................................................ 38 Staff Board of Directors Advisory Council LETTER FROM THE BOARD CO-CHAIRPERSON NumFOCUS was founded in -
On Desktop Application for Some Selected Methods in Ordinary Differential Equations and Optimization Techniques
International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321- 4767 P-ISSN: 2321-4759 www.ijmsi.org Volume 8 Issue 9 || September, 2020 || PP 20-34 On Desktop Application for Some Selected Methods in Ordinary Differential Equations and Optimization Techniques 1Buah, A. M.,2Alhassan, S. B. and3Boahene,B. M. 1 Department of Mathematical Sciences, University of Mines and Technology, Tarkwa, Ghana 2 Department of Mathematical Sciences, University of Mines and Technology, Ghana 3 Department of Mathematical Sciences, University of Mines and Technology, Ghana ABSTRACT-Numerical methods are algorithms used to give approximate solutions to mathematical problems. For many years, problems solved numerically were done manually, until the software was developed to solve such problems. The problem with some of this softwareis that, though some are free, the environment they offer is not user friendly. With others, it would cost you a fortune to get access to them and some suffer execution time and overall speed. In this research, a desktop application with a friendly user interface, for solving some selected methods in numerical methods for Ordinary Differential Equations (ODEs) and sequential search methods in optimization techniques has been developed using Visual C++. The application can determine the error associated with some of the methods in ODEs if the user supplies the software with the exact solution. The application can also solve optimization problems (minimization problems) and return the minimum function value and the point at which it occurs. KEYWORDS:ODEs, optimization, desktop application ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 11-11-2020 Date of Acceptance: 27-11-2020 ------------------------------------------------------------------------------------------------------------------------ --------------- I. INTRODUCTION A Differential Equation (DE) is an equation involving a function and its derivatives [1]. -
Teaching an ODE Course with Cocalc, Sage, Jupyter Notebooks, and LATEX
An ODE Course with Jupyter Notebooks Teaching an ODE Course with CoCalc, Sage, Jupyter Notebooks, and LATEX Thomas W. Judson Stephen F. Austin State University [email protected] MAA Contributed Paper Session on The Teaching and Learning of Undergraduate Ordinary Differential Equations 2019 Joint Mathematics Meetings January 18, 2019 An ODE Course with Jupyter Notebooks UTMOST 1.0 The first UTMOST (Undergraduate Teaching in Mathematics with Open Software and Textbooks) project was a National Science Foundation CCLI Type 2 grant (2010{2014) that promoted open-source software and open-source curriculum in the undergraduate mathematics classroom. I American Institute of Mathematics (DUE{1022574) I Drake University (DUE{1022036) I Stephen F. Austin State University (DUE{1020957) I University of Colorado Boulder (DUE{1020687) I University of Washington (DUE{1020378) I University of California, San Diego An ODE Course with Jupyter Notebooks Highlights of UTMOST 1.0 The products of the first UTMOST grant included: I CoCalc (formerly SageMathCloud)|A comprehensive cloud computing environment for education and scientific computing. I Sage Cell Server|A mechanism to embed live computations into any webpage. I PreTeXt (formerly MathBook XML)|A framework for writing mathematics that can be published in a variety of formats. I Sage Education Workshops|Workshops for learning how to use Sage for the teaching and learning of mathematics. I AIM Open Textbook Initiative|An editorial board to identify and support quality open-source textbooks. An ODE Course with Jupyter Notebooks UTMOST 2.0 The second phase of UTMOST was launched in Fall 2016 and supported by the National Science Foundation as a two-year IUSE grant.