Dark Energy Theory Overview

Total Page:16

File Type:pdf, Size:1020Kb

Dark Energy Theory Overview Dark Energy Theory Overview Ed Copeland -- Nottingham University 1. Issues with pure Lambda 2. Models of Dark Energy 3. Modified Gravity approaches 4. Testing for and parameterising Dark Energy Dark Side of the Universe - Bergen - July 26th 2016 1 M. Betoule et al.: Joint cosmological analysis of the SNLS and SDSS SNe Ia. 46 The Universe is sample σcoh low-z 0.12 HST accelerating and C 44 SDSS-II 0.11 β yet we still really SNLS 0.08 − have little idea 1 42 HST 0.11 X what is causing ↵ SNLS σ Table 9. Values of coh used in the cosmological fits. Those val- + 40 this acceleration. ues correspond to the weighted mean per survey of the values ) G ( SDSS shown in Figure 7, except for HST sample for which we use the 38 Is it a average value of all samples. They do not depend on a specific M − cosmological B choice of cosmological model (see the discussion in §5.5). ? 36 m constant, an Low-z = 34 evolving scalar µ 0.2 field, evidence of modifications of 0.4 . General CDM 0 2 ⇤ 0.0 0.15 µ Relativity on . − 0 2 − large scales or µ 0.4 − 2 1 0 something yet to 10− 10− 10 coh 0.1 z be dreamt up ? σ Betoule et al 2014 2 Fig. 8. Top: Hubble diagram of the combined sample. The dis- tance modulus redshift relation of the best-fit ⇤CDM cosmol- 0.05 1 1 ogy for a fixed H0 = 70 km s− Mpc− is shown as the black line. Bottom: Residuals from the best-fit ⇤CDM cosmology as a function of redshift. The weighted average of the residuals in 0 0 0.5 1 logarithmic redshift bins of width ∆z/z 0.24 are shown as black dots. ⇠ redshift σ Fig. 7. Values of coh determined for seven subsamples of the 6.1. ⇤CDM fit of the Hubble diagram Hubble residuals: low-zz < 0.03 and z > 0.03 (blue), SDSS z < 0.2 and z > 0.2 (green), SNLS z < 0.5 and z > 0.5 (orange), Using the distance estimator given in Eq. (4), we fit a ⇤CDM and HST (red). cosmology to supernovae measurements by minimizing the fol- lowing function: 2 1 χ = (µˆ µ (z; ⌦ ))†C− (µˆ µ (z; ⌦ )) (15) may a↵ect our results including survey-dependent errors in es- − ⇤CDM m − ⇤CDM m timating the measurement uncertainty, survey dependent errors with C the covariance matrix of µˆ described in Sect. 5.5 and in calibration, and a redshift dependent tension in the SALT2 µ⇤CDM(z; ⌦m) = 5 log10(dL(z; ⌦m)/10pc) computed for a fixed model which might arise because di↵erent redshifts sample dif- 1 1 13 fiducial value of H0 = 70 km s− Mpc− , assuming an unper- ferent wavelength ranges of the model. In addition, the fit value turbed Friedmann-Lemaître-Robertson-Walker geometry, which of σcoh in the first redshift bin depends on the assumed value 1 is an acceptable approximation (Ben-Dayan et al. 2013). The of the peculiar velocity dispersion (here 150km s− ) which is · free parameters in the fit are ⌦m and the four nuisance param- somewhat uncertain. 1 eters ↵, β, MB and ∆M from Eq. (4). The Hubble diagram for We follow the approach of C11 which is to use one value of the JLA sample and the ⇤CDM fit are shown in Fig. 8. We find σ coh per survey. We consider the weighted mean per survey of a best fit value for ⌦m of 0.295 0.034. The fit parameters are the values shown in Figure 7. Those values are listed in Table 9 given in the first row of Table 10.± and are consistent with previous analysis based on the SALT2 For consistency checks, we fit our full sample excluding sys- method (Conley et al. 2011; Campbell et al. 2013). tematic uncertainties and we fit subsamples labeled according to the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS. Confidence contours for ⌦m and the nuisance parameters ↵, β 6. ⇤CDM constraints from SNe Ia alone and ∆M are given in Fig. 9 for the JLA and the lowz+SNLS sample fits. The correlation between ⌦m and any of the nuisance The SN Ia sample presented in this paper covers the redshift parameters is less than 10% for the JLA sample. range 0.01 < z < 1.2. This lever-arm is sufficient to provide The ⇤CDM model is already well constrained by the SNLS a stringent constraint on a single parameter driving the evolu- and low-z data thanks to their large redshift lever-arm. However, tion of the expansion rate. In particular, in a flat universe with the addition of the numerous and well-calibrated SDSS-II data a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro- to the C11 sample is interesting in several respects. Most impor- vide an accurate measurement of the reduced matter density tantly, cross-calibrated accurately with the SNLS, the SDSS-II ⌦m. However, SNe alone can only measure ratios of distances, data provide an alternative low-z anchor to the Hubble diagram, which are independent of the value of the Hubble constant today 1 1 with better understood systematic uncertainties. This redundant (H0 = 100h km s− Mpc− ). In this section we discuss ⇤CDM parameter constraints from SNe Ia alone. We also detail the rel- 13 This value is assumed purely for convenience and using another ative influence of each incremental change relative to the C11 value would not a↵ect the cosmological fit (beyond changing accord- 1 analysis. ingly the recovered value of MB). 15 Brief reminder why the cosmological constant is regarded as a problem? R = p g ⇢ The CC gravitates in General L − 16⇡G − vac Relativity: ✓ ◆ G = 8⇡G⇢ g µ⌫ − vac µ⌫ Now: ⇢obs ⇢theory vac ⌧ vac Just as well because anything much bigger than we have and the universe would have looked a lot different to what it does look like. In fact structures would not have formed in it. 3 Estimate what the vacuum energy should be : ⇢theory ⇢bare vac ⇠ vac + zero point energies of each particle + contributions from phase transitions in the early universe 4 zero point energies of each particle For many fields (i.e. leptons, quarks, gauge fields etc...): Λi 3 4 1 2 2 d k giΛi < ⇥> = gi k + m 3 2 2 0 (2π) 16π fields ⇥ ⇤ fields where gi are the dof of the field (+ for bosons, - for fermions). 5 contributions from phase transitions in the early universe ∆V (200 GeV)4 ewk ⇠ ∆V (0.3GeV)4 QCD ⇠ 6 Quantum Gravity cut-off (1018 GeV)4 fine tuning to 120 decimal places − SUSY cut-off (TeV)4 fine tuning to 60 decimal places − EWK phase transition (200GeV)4 fine tuning to 56 decimal places − QCD phase transition (0.3GeV)4 − fine tuning to 44 decimal places Muon (100MeV)4 − electron (1 MeV)4 fine tuning to 36 decimal places − (meV)4 Observed value of the effective cosmological − constant today ! 7 a˙ 2 8π k Λ Friedmann with Λ: H 2 ≡ = Gρ − + a2 3 a2 3 a(t) depends on matter. € w=1/3 – Rad dom: w=0 – Mat dom: w=-1– Vac dom P w(a) = w +(1 a)w Typical parameterisation ⌘ ⇢ 0 − a Friedmann with evolving dark energy: z 2 2 4 3 2 1 + w(z) H (z)=H Ω (1 + z) + Ω (1 + z) + Ω (1 + z) + Ω exp 3 dz 0 r m k de 1 + z ⇤0 ⇥⇥ 8 Planck Collaboration: Planck Cosmological Parameters Planck Collaboration: Planck Cosmological Parameters Fig. 32. The 2D joint posterior distribution betweenNe↵ and Yp with both parameters varying freely, determined from the Planck+WP+highL likelihood. The colour of each sample in Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s Markov chain indicates the associated value of ✓d/✓s. The Ne↵- from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models, + + Fig.Yp relation 32. The from 2D the joint BBN posterior theory is distribution shown by the between dashedNe curve.↵ and using Planck WL HighL data. YThep with vertical both line parameters shows the varying standard freely, value determinedNe↵ = 3.046. from The the Planckregion+ withWPY+phighL> 0.294 likelihood. is highlighted The colour in gray of delineating each sample the re- in Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s Markovgion of the chain plot indicates exceeding the the associated 2σ upper value limit of of✓ thed/✓ recents. The mea-Ne↵- 6.5.from Dark the LCDM Energy+N Constraintse↵+Yp (red) and LCDM+Ne↵ (blue) models, Ysurementp relation of from initial the Solar BBN helium theory is abundance shown by (Serenelli the dashed & curve. Basu, using Planck+WL+HighL data. The2010 vertical). line shows the standard value N = 3.046. The A major challenge for cosmology is to elucidate the nature of the e↵ dark energy driving the accelerated expansion of the Universe. region with Yp > 0.294 is highlighted in gray delineating the re- gion of the plot exceeding the 2σ upper limit of the recent mea- 6.5.The Darkmost Energy prosaic Constraintsexplanation is that dark energy is a cosmo- logical constant. An alternative is dynamicalPlanck dark Collaboration: energy mod- Planck Cosmological Parameters surementis thus an of approximate initial Solar degeneracy helium abundance between these(Serenelli two &parame- Basu, 2010). elsA major (Wetterich challenge, 1988 for; Ratra cosmology & Peebles is to, elucidate1988), usually the nature based of the on ters. It can be partially broken by the phase shift of the acoustic adark scalar energy field.
Recommended publications
  • Planck Mass Rotons As Cold Dark Matter and Quintessence* F
    Planck Mass Rotons as Cold Dark Matter and Quintessence* F. Winterberg Department of Physics, University of Nevada, Reno, USA Reprint requests to Prof. F. W.; Fax: (775) 784-1398 Z. Naturforsch. 57a, 202–204 (2002); received January 3, 2002 According to the Planck aether hypothesis, the vacuum of space is a superfluid made up of Planck mass particles, with the particles of the standard model explained as quasiparticle – excitations of this superfluid. Astrophysical data suggests that ≈70% of the vacuum energy, called quintessence, is a neg- ative pressure medium, with ≈26% cold dark matter and the remaining ≈4% baryonic matter and radi- ation. This division in parts is about the same as for rotons in superfluid helium, in terms of the Debye energy with a ≈70% energy gap and ≈25% kinetic energy. Having the structure of small vortices, the rotons act like a caviton fluid with a negative pressure. Replacing the Debye energy with the Planck en- ergy, it is conjectured that cold dark matter and quintessence are Planck mass rotons with an energy be- low the Planck energy. Key words: Analog Models of General Relativity. 1. Introduction The analogies between Yang Mills theories and vor- tex dynamics [3], and the analogies between general With greatly improved observational techniques a relativity and condensed matter physics [4 –10] sug- number of important facts about the physical content gest that string theory should perhaps be replaced by and large scale structure of our universe have emerged. some kind of vortex dynamics at the Planck scale. The They are: successful replacement of the bosonic string theory in 1.
    [Show full text]
  • Study of Anisotropic Compact Stars with Quintessence Field And
    Eur. Phys. J. C (2019) 79:919 https://doi.org/10.1140/epjc/s10052-019-7427-7 Regular Article - Theoretical Physics Study of anisotropic compact stars with quintessence field and modified chaplygin gas in f (T) gravity Pameli Sahaa, Ujjal Debnathb Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India Received: 18 May 2019 / Accepted: 25 October 2019 / Published online: 12 November 2019 © The Author(s) 2019 Abstract In this work, we get an idea of the existence of 1 Introduction compact stars in the background of f (T ) modified grav- ity where T is a scalar torsion. We acquire the equations Recently, compact stars, the most elemental objects of the of motion using anisotropic property within the spherically galaxies, acquire much attention to the researchers to study compact star with electromagnetic field, quintessence field their ages, structures and evolutions in cosmology as well as and modified Chaplygin gas in the framework of modi- astrophysics. After the stellar death, the residue portion is fied f (T ) gravity. Then by matching condition, we derive formed as compact stars which can be classified into white the unknown constants of our model to obtain many phys- dwarfs, neutron stars, strange stars and black holes. Com- ical quantities to give a sketch of its nature and also study pact star is very densed object i.e., posses massive mass and anisotropic behavior, energy conditions and stability. Finally, smaller radius as compared to the ordinary star. In astro- we estimate the numerical values of mass, surface redshift physics, the study of neutron star and the strange star moti- etc from our model to compare with the observational data vates the researchers to explore their features and structures for different types of compact stars.
    [Show full text]
  • New Physics, Dark Matter and Cosmology in the Light of Large Hadron Collider Ahmad Tarhini
    New physics, Dark matter and cosmology in the light of Large Hadron Collider Ahmad Tarhini To cite this version: Ahmad Tarhini. New physics, Dark matter and cosmology in the light of Large Hadron Collider. High Energy Physics - Theory [hep-th]. Université Claude Bernard - Lyon I, 2013. English. tel-00847781 HAL Id: tel-00847781 https://tel.archives-ouvertes.fr/tel-00847781 Submitted on 24 Jul 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre 108-2013 LYCEN – T 2013-08 Thèse présentée devant l’Université Claude Bernard Lyon 1 École Doctorale de Physique et d’Astrophysique pour l’obtention du DIPLÔME de DOCTORAT Spécialité : Physique Théorique / Physique des Particules (arrêté du 7 août 2006) par Ahmad TARHINI Nouvelle physique, Matière noire et cosmologie à l’aurore du Large Hadron Collider Soutenue le 5 Juillet 2013 devant la Commission d’Examen Jury : M. D. Tsimpis Président du jury M. U. Ellwanger Rapporteur M. G. Moreau Rapporteur Mme F. Mahmoudi Examinatrice M. G. Moultaka Examinateur M. A.S. Cornell Examinateur M. A. Deandrea Directeur de thèse M. A. Arbey Co-Directeur de thèse ii Order N ◦: 108-2013 Year 2013 PHD THESIS of the UNIVERSITY of LYON Delivered by the UNIVERSITY CLAUDE BERNARD LYON 1 Subject: Theoretical Physics / Particles Physics submitted by Mr.
    [Show full text]
  • Lab Tests of Dark Energy Robert Caldwell Dartmouth College Dark Energy Accelerates the Universe
    Lab Tests of Dark Energy Robert Caldwell Dartmouth College Dark Energy Accelerates the Universe Collaboration with Mike Romalis (Princeton), Deanne Dorak & Leo Motta (Dartmouth) “Possible laboratory search for a quintessence field,” MR+RC, arxiv:1302.1579 Dark Energy vs. The Higgs Higgs: Let there be mass m(φ)=gφ a/a¨ > 0 Quintessence: Accelerate It! Dynamical Field Clustering of Galaxies in SDSS-III / BOSS: Cosmological Implications, Sanchez et al 2012 Dynamical Field Planck 2013 Cosmological Parameters XVI Dark Energy Cosmic Scalar Field 1 = (∂φ)2 V (φ)+ + L −2 − Lsm Lint V (φ)=µ4(1 + cos(φ/f)) Cosmic PNGBs, Frieman, Hill and Watkins, PRD 46, 1226 (1992) “Quintessence and the rest of the world,” Carroll, PRL 81, 3067 (1998) Dark Energy Couplings to the Standard Model 1 = (∂φ)2 V (φ)+ + L −2 − Lsm Lint φ µν Photon-Quintessence = F F Lint −4M µν φ = E" B" ! M · “dark” interaction: quintessence does not see EM radiation Dark Energy Coupling to Electromagnetism Varying φ creates an anomalous charge density or current 1 ! E! ρ/# = ! φ B! ∇ · − 0 −Mc∇ · ∂E! 1 ! B! µ " µ J! = (φ˙B! + ! φ E! ) ∇× − 0 0 ∂t − 0 Mc3 ∇ × Magnetized bodies create an anomalous electric field Charged bodies create an anomalous magnetic field EM waves see novel permittivity / permeability Dark Energy Coupling to Electromagnetism Cosmic Solution: φ˙/Mc2 H ∼ φ/Mc2 Hv/c2 ∇ ∼ 42 !H 10− GeV ∼ • source terms are very weak • must be clever to see effect Dark Energy Coupling to Electromagnetism Cosmic Birefringence: 2 ˙ ∂ 2 φ wave equation µ ! B# B# = # B# 0 0 ∂t2 −∇ Mc∇× ˙
    [Show full text]
  • Can a Chameleon Field Be Identified with Quintessence?
    universe Article Can a Chameleon Field Be Identified with Quintessence? A. N. Ivanov 1,* and M. Wellenzohn 1,2 1 Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien, Austria; [email protected] 2 FH Campus Wien, University of Applied Sciences, Favoritenstraße 226, 1100 Wien, Austria * Correspondence: [email protected] Received: 18 October 2020; Accepted: 22 November 2020; Published: 26 November 2020 Abstract: In the Einstein–Cartan gravitational theory with the chameleon field, while changing its mass independently of the density of its environment, we analyze the Friedmann–Einstein equations for the Universe’s evolution with the expansion parameter a being dependent on time only. We analyze the problem of an identification of the chameleon field with quintessence, i.e., a canonical scalar field responsible for dark energy dynamics, and for the acceleration of the Universe’s expansion. We show that since the cosmological constant related to the relic dark energy density is induced by torsion (Astrophys. J. 2016, 829, 47), the chameleon field may, in principle, possess some properties of quintessence, such as an influence on the dark energy dynamics and the acceleration of the Universe’s expansion, even in the late-time acceleration, but it cannot be identified with quintessence to the full extent in the classical Einstein–Cartan gravitational theory. Keywords: torsion/Einstein-Cartan; gravity/chameleon PACS: 03.50.-z; 04.25.-g; 04.25.Nx; 14.80.Va 1. Introduction The chameleon field, changing its mass independently of a density of its environment [1,2], has been invented to avoid the problem of the equivalence principle violation [3].
    [Show full text]
  • Relativity Calculator Glossary
    Relativity Calculator Glossary . Relativity Calculator Web Relativity Calculator site Relativity Calculator Glossary Aberration [ aberration of (star)light, astronomical aberration, stellar aberration ]: An astronomical phenomenon different from the phenomenon of parallax whereby small apparent motion displacements of all fixed stars on the celestial sphere due to earth's orbital velocity mandates that terrestrial telescopes must also be adjusted to slightly different directions as the earth yearly transits the sun. Stellar aberration is totally independent of a star's distance from earth but rather depends upon the transverse velocity of an observer on earth, all of which is unlike the phenomenon of parallax. For example, vertically falling rain upon your umbrella will appear to come from in front of you the faster you walk and hence the more you will adjust the position of the umbrella to deflect the rain. Finally, the fact that earth does not drag with itself in its immediate vicinity any amount of aether helps dissuade the concept that indeed the aether exists. see celestial sphere; also see parallax which is a totally different phenomenon. Absolute motion, time and space by Isaac Newton: Philosophiae Naturalis Principia Mathematica, by Isaac Newton, published July 5, 1687, translated from the original Latin by Andrew Motte ( 1729 ), as revised by Florian Cajori ( Berkeley, University of California Press, 1934): Beginning quote: § Absolute, true, and mathematical time, of itself and from its own nature, flows equably without relation to anything external, and by another name is called "duration"; relative, apparent, and common time is some sensible and external (whether accurate or unequable) measure of duration by the means of motion, which is commonly used instead of true time, such as an hour, a day, a month, a year.
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagely To appear in Studies in History and Philosophy of Modern Physics Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. 1. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]
  • Dark Energy Vs. Modified Gravity Arxiv:1601.06133V4 [Astro-Ph.CO]
    Dark Energy vs. Modified Gravity Austin Joyce,1 Lucas Lombriser,2 and Fabian Schmidt3 1Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637; email: [email protected] 2Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, U.K.; email: [email protected] 3Max-Planck-Institute for Astrophysics, D-85748 Garching, Germany; email: [email protected] Ann. Rev. Nuc. Part. Sc. 2016. AA:1{29 Keywords Copyright c 2016 by Annual Reviews. All rights reserved cosmology, dark energy, modified gravity, structure formation, large-scale structure Abstract Understanding the reason for the observed accelerated expansion of the Universe represents one of the fundamental open questions in physics. In cosmology, a classification has emerged among physical models for the acceleration, distinguishing between Dark Energy and Modified Gravity. In this review, we give a brief overview of models in both categories as well as their phenomenology and characteristic observable signatures in cosmology. We also introduce a rigorous distinction be- tween Dark Energy and Modified Gravity based on the strong and weak arXiv:1601.06133v4 [astro-ph.CO] 14 Jun 2016 equivalence principles. 1 Contents 1. INTRODUCTION ............................................................................................2 2. OVERVIEW: DARK ENERGY AND MODIFIED GRAVITY ................................................3 2.1. Dark Energy (DE).......................................................................................3
    [Show full text]
  • Quintessence and Gravitational Wavesmetadata, Citation and Similar Papers at Core.Ac.Uk
    CORE Quintessence and Gravitational WavesMetadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Alain Riazuelo1 and Jean-Philippe Uzan2,3 (1) D´epartement d'Astrophysique Relativiste et de Cosmologie, CNRS-UMR 8629, Observatoire de Paris, F-92195 Meudon (France) (2) Laboratoire de Physique Th´eorique, CNRS-UMR 8627, Universit´e Paris XI, B^at. 210, F-91405 Orsay Cedex (France) (3) D´epartement de Physique Th´eorique, Universit´edeGen`eve, 24 quai E. Ansermet, CH-1211 Gen`eve 4 (Switzerland) (12 april 2000) We investigate some aspects of quintessence models with a non-minimally coupled scalar field < < and in particular we show that it can behave as a component of matter with −3 ∼ P=ρ ∼ 0. We study the properties of gravitational waves in this class of models and discuss their energy spectrum and the cosmic microwave background anisotropies they induce. We also show that gravitational waves are damped by the anisotropic stress of the radiation and that their energy spectrum may help to distinguish between inverse power law potential and supergravity motivated potential. We finish by a discussion on the constraints arising from their density parameter ΩGW. PACS numbers: 98.80.Cq Preprint : DARC 00-01, LPT-ORSAY 00/41, UGVA-DPT 00/04-1076 I. INTRODUCTION Recent astrophysical and cosmological observations such as the luminosity distance-redshift relation for the su- pernovae type Ia [1–3], the recent observations of the cosmic microwave background temperature anisotropies [4], gravitional lensing [5] and velocity fields [6] tend to indicate that a large fraction of the matter of the universe today is composed of matter with negative pressure (see e.g.
    [Show full text]
  • Observational Constraints on Quintessence Models of Dark Energy
    PREPARED FOR SUBMISSION TO JCAP Observational constraints on Quintessence models of dark energy Archana Sangwana Ashutosh Tripathia,b H. K. Jassala aIndian Institute of Science Education and Research Mohali, SAS Nagar, Mohali 140306, Punjab, India. bCenter for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai, China. E-mail: [email protected], ashutosh [email protected], [email protected] Abstract. Scalar fields aptly describe equation of state of dark energy. The scalar field models were initially proposed to circumvent the fine tuning problem of cosmological constant. However, the model parameters also need a fine tuning of their own and it is important to use observations to determine these parameters. In this paper, we use a combination of low redshift data to constrain the of canonical scalar field parameters. For this analysis, we use the Supernova Type Ia Observations, the Baryon Acoustic Observations and the Hubble parameter measurement data. We consider scalar field models of the thawing type of two different functional forms of potentials. The constraints on the model parameters are more stringent than those from earlier observations although these datasets do not rule out the models entirely. The parameters which let dark energy dynamics closely emulate that of a cosmological constant are preferred. The constraints on the parameters are suitable priors for further quintessence dark energy studies. arXiv:1804.09350v3 [astro-ph.CO] 18 Jun 2018 Contents 1 Introduction 1 2 Quintessence Dynamics 2 3 Solutions to cosmological equations 6 3.1 The exponential potential 6 3.2 The Polynomial (concave) potential 10 4 Observational constraints on parameters 11 5 Summary 12 6 Acknowledgments 13 1 Introduction The discovery of late time cosmic acceleration by the Supernova Type Ia observations has been one of the most important results in cosmology [1, 2].
    [Show full text]
  • Title: Quintessence in Advanced Gravity Wave Experiments Author
    Title: Quintessence in advanced gravity wave experiments Author: Marek Biesiada Citation style: Biesiada Marek. (2001). Quintessence in advanced gravity wave experiments. "Acta Physica Polonica. B" (2001, no. 11, s. 3655-3668). Vol. 32 (2001) ACTA PHYSICA POLONICA B No 11 QUINTESSENCE IN ADVANCED GRAVITY WAVE EXPERIMENTS* M a r e k B i e s ia d a Institute of Physics, University of Silesia Uniwersytecka 4, 40-007 Katowice, Poland e-mail: mbQimp.sosnowiec.pl (Received, October 11, 2001) Recent observations of distant type la supernovae light-curves sug­ gest that the expansion of the Universe has recently begun to acceler­ ate. A popular explanation of present accelerating expansion of the Uni­ verse is to assume that some part Qq of the matter-energy density is in the form of dark component called “the quintessence” with the equa­ tion of state pq = w()q with w > — 1. Determining the cosmic equation of state is, therefore, one of the greatest challenges of modern cosmol­ ogy. Future generation of interferometrie gravitational wave detectors is hoped to detect the final stages of binary inspirals. The sources probed by such experiments are of extragalactic origin and the observed chirp mass can be translated into the redshift of the source. Moreover, the luminos­ ity distance is a direct observable in such experiments. This creates the possibility to establish a new kind of cosmological tests, supplementary to more standard ones. In this paper we review the standard methods of prob­ ing the dark energy, introduce the basic concepts underlying the utility of advanced LIGO type interferometrie experiments in making cosmological inferences and we extend some recent results in this respect to the case of z varying equation of state.
    [Show full text]
  • The Cosmological Constant
    Particle Physics Models of Dark Energy Jérôme Martin Institut d’Astrophysique de Paris 10th RESCEU/DENET Summer School: Dark Energy in the Universe August, 29th / September, 1st 2010 1 Outline Introduction: the acceleration of the Universe: what are the possible explanations? The most obvious explanation: the Cosmological Constant. The Cosmological Constant problem. A deep and difficult problem: the gravitational properties of the zero-point fluctuations. Other candidates for the acceleration: quintessence, scalar-tensor theories and all that … Conclusions 2 Outline: Lecture 1 Lecture 1: 1- Reminder: the FLRW cosmology 2- How to explain dark energy? 3- What are the physical properties of dark energy? 4- The Cosmological Constant as dark energy 5- Computing the zero point energy density 3 Measuring the expansion The experimental fact known as the “dark energy problem” is now supported by many independent measurements … Strictly speaking, it means that the Friedmann equation sourced by cold dark matter does not properly describe the data Possible explanations: 1- There is a new fluid with negative pressure dominating the present Universe 2- Gravity cannot be described by GR on large scales 3- The Cosmological principle is wrong 4 General Framework Gravity is described by General Relativity “Geometry=matter” Geometry Matter Application to Cosmology 5 How to get an accelerating Universe More on the last calculation … We have acceleration if the pressure is negative! The knowledge of the acceleration parameter allows us to measure the
    [Show full text]