Water Bottle Piggy Bank

Total Page:16

File Type:pdf, Size:1020Kb

Water Bottle Piggy Bank Water Bottle Piggy Bank What You Need: • Empty plastic beverage bottle (the wider the better) • Craft knife • Scissors • Colored paper (1 sheet orange, 1 sheet blue) • Pencil • Craft glue • Transparent tape • Hole punch • Paintbrush • Ear templates (download at allyou.com/piggybank) • 4 wood beads (3/4" diameter) from factorydirectcrafts.com Photo: allyou.com • Orange acrylic paint from Staples What You Do: 1. Peel label off clean, empty bottle. Use craft knife to cut a 1 1/2" x 1/8" wide slot (for inserting coins) in bottle, about midway between top and bottom. 2. Use scissors to cut a strip of orange paper long enough to wrap around bottle and same width as bottle label. Wrap paper around bottle and use a pencil to trace over slot in bottle. Unwrap paper and cut slot with craft knife. 3. Use scissors to cut out ear and inner-ear templates. Place ear template on orange paper and trace around. Repeat for other ear. Cut out. Place inner-ear template on blue paper and trace around. Repeat. Cut out. Fold ears at tab. Position ears along edge of paper band, about 1" to each side of slot. Tape tabs to back of paper band. Wrap band with ears around bottle, aligning slots on bottle and paper. Overlap ends of band and tape seam. 4. Trace around bottle cap on orange paper. Cut out and glue to cap. Use hole punch to make 2 blue circles. Glue to bottle cap. 5. For eyes, use hole punch to make 2 circles of either color. Glue them to bottle. Or, cut 2 dime-size circles out of contrasting paper and glue hole-punch circles to them; glue larger circles to bottle. 6. For legs, paint beads and let dry. Glue to "belly" side of bottle. .
Recommended publications
  • Cardboard and Brown Paper Bags Office Paper, Newspaper, Junk Mail, Magazines, and Catalogs
    Recycling Center 801 Diamond Valley Drive Open: Daily to the public during daylight hours This guide will help you properly prepare your recyclable materials for drop-off at the Town of Windsor Recycle Center. This is a drop-off facility. It does not have a buy-back option and is for use by residents and small businesses. Following this information will help maintain the facility and the recycling program for the benefit of the community. IMPORTANT… • Do not leave your recyclables in plastic bags. Plastic bags are NOT recyclable! • The plastic item must be a BOTTLE or JAR. with a #1 or #2 on the bottom. • 99 percent of these will have a screw-on plastic lid (which isn’t recyclable). • Plastic containers with a #3 - #7 on the bottom are NOT acceptable. • Tubs, buckets, deli plates, microwave/fast food trays, wrappers, Styrofoam, toys, patio furniture, etc. are NOT acceptable. • Plastic bottles larger than 2.5 gallons are NOT acceptable. • Syringes and other medical supplies are NOT acceptable. Cardboard and Brown Paper Bags Corrugated cardboard is easy to recognize. It is made of paper and has an arched layer called “fluting” between smooth sheets called “liners”. The drop-off site has two 40-yard hydraulic compactor units for collecting corrugated cardboard and brown paper bags. The compaction system is self-activated by depositing the prepared materials into a six-inch tall slot. Flatten boxes. Cut or tear large boxes into sections no larger than 4 feet by 4 feet to prevent jamming the machine. No wet, waxed-coated or food-contaminated boxes.
    [Show full text]
  • Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions
    AN ABSTRACT OF THE THESIS OF Paul John Dornath for the degree of Honors Baccalaureate of Science in Chemical Engineering presented on May 29, 2010. Title: Analysis of Chemical Leaching from Common Consumer Plastic Bottles Under High Stress Conditions Abstract approved: ______________________________________________ Skip Rochefort There has been much controversy in recent years over the leaching of chemicals from plastic water bottles. In this study, two of the most common plastics used in water bottles, polyethylene terphthalate (PETE) and polycarbonate (PC) were studied. The leaching of the chemical bisphenol-A (BPA) from polycarbonate (Nalgene ™, Camelback ™) water bottles was studied to examine the validity of these claims by exposing polycarbonate bottles to various conditions and analyzing how much BPA leaches into water contained in the bottles. New polycarbonate bottles were filled with water and exposed to treatment conditions ranging from 65 to 120 ⁰C. A reverse-phase solid phase extraction process was developed to extract BPA from the water and concentrate it into an organic phase. GC/MS was used to analyze the organic extract. BPA was only found to leach in detectable amounts (< 10ppb) when the bottles were exposed to 120 ⁰C water for 2 hours. Polyethylene terephthalate bottles were also tested and were exposed to sunlight for three months during the summer. Small amounts of the plasticizer DEHP were found to leach after several months. A method for determining what chemicals would leach from BPA-Free Tritan™ copolyester was also developed but not tested due to time constraints. An analysis of internal stress due to high humidity and temperature was performed on these BPA-Free bottles.
    [Show full text]
  • Shrink Sleeve Labels on PET Containers APR Resource Document
    Document Number RES-LBL-2 Publication or Revision Date: 1/4/2021 Shrink Sleeve Labels on PET Containers APR Resource Document Introduction This Resource Document presents APR Guidance for characteristics of shrink sleeve labels for PET packaging that will have the most benefit for today’s PET container recycling processes, and that will have the most positive environmental impact in support of the plastics circular economy. Shrink sleeve labels have been developed that allow the label film and inks to have negligible impact on the quality or productivity of PET recycling. Such shrink sleeve labels are in commercial use today, but not yet used widely or routinely. The quality of recycled PET can be improved—to the benefit of all recycling and sustainability stakeholders—when recycling compatible labels become the standard for the PET packaging industry. The resources described herein can be helpful to each segment of the package supply chain: • Consumer brands can learn what comprises a recycling compatible shrink sleeve label and inform their label suppliers that they expect such technologies be offered to them; • Label suppliers can assure brands that PET packages using their products meet recyclability guidance by performing APR Test Methods to demonstrate this; • Converters and manufacturers who want to lead the industry in sustainability can use APR shrink sleeve label design guidance to develop and commercialize innovations that will benefit the entire packaging industry. This document is written to complement the APR Design® Guide for Plastics Recyclability by consolidating key shrink label guidance: https://plasticsrecycling.org/apr-design-guide/apr-design-guide-home The APR offers programs, such as Critical Guidance Recognition, that distinguish innovations that are demonstrated to be compatible with recycling: https://plasticsrecycling.org/recognition/programs This document contains four sections: 1.
    [Show full text]
  • WHEATON® Glass Bottles
    WHEATON® Glass Bottles WHEATON® Glass Bottles WHEATON offers a comprehensive line of glass laboratory bottles and jars. Glass bottles offer sample reliability and integrity, and is a mainstay of labs worldwide. WHEATON bottles are manufactured from USP Type III soda-lime glass with moderate chemical resistance. Popular bottle styles available include Media Bottles, Boston Rounds, Wide Mouth Packers, Straight Sided Jars and Safety Coated Bottles for enhanced laboratory protection. WHEATON completes the package with the right closure. We provide a variety of caps and seals to ensure a perfect fit for each container. WHEATON offers convenience bulk packs of containers with or without caps attached for high use items or facilities with centralized stockrooms. With safety in mind, Tamper Evident Seal / HAZCOM Labels are provided in each case of bottles with the exception of bulk packs. Product Highlights • Bottles manufactured from clear and amber USP Type III soda-lime glass • Wide mouth bottles are ideal for dry and viscous samples • White polypropylene or black phenolic screw closures can be • Amber colored glass is ideal for light sensitive products purchased separately • Narrow mouth bottles are ideal for liquids • Methods of sterilization: dry heat or EtO (not suitable for autoclave) • Safety coated glass prevents dangerous spills and control sharp fragments WHEATON® Glass Bottles French Square Valumetric™ Graduated Bottle Media Bottle, Lab 45 ■ Clear or Amber, USP Type III soda-lime glass ■ Clear, USP Type III soda-lime glass ■ Manufactured
    [Show full text]
  • Changes in Packaging Impact Recycling Right in Santa Cruz
    Page 4 Spring 2016 Changes in Packaging … packaging material is clamshell and (Continued from Page 1) blister packaging—those plastic shells ❝❞ that cover new toys and other products What’s New? in a kid-friendly, squeezable plastic pouch. and the clear, hinged boxes that hold deli Check out the new Plastic pouches may also hold yogurt, rice, foods and produce. Clamshell packaging, Recycle Right! videos soup, coffee beans, cat food and snack which is designed for single-use and has on the City website. foods. Pouches are made up of polyester, practically no value in the recycling market, You can find out exactly aluminum foil, polyethylene, Mylar and is therefore destined for the landfill. Most what’s recyclable in your more, plus added spouts, caps, straws “clamshells” are made out of PET (plastic curbside recycle cart and or zipping mechanisms of various other resin code #1)—a highly recyclable plastic. what’s not. The short types of plastic. This packaging is almost However, clamshells are produced from (831) 420-5160 videos are divided into impossible to clean and difficult to recycle. a process known as “thermoforming,” www.cityofsantacruz.com different materials, so if If you and your kids love squeezable snack which changes the composition of the PET, you have questions about pouches, there is a reusable “kindness making them different from PET plastic Spring 2016 metal recycling, glass pouch” available from Squooshi™. bottles, which are blow molded. This slight or plastic bags, you can Have you ever noticed a number on the difference makes clamshells undesirable watch that segment.
    [Show full text]
  • Ész.AORNEY %2
    April 17, 1951 H. W. WILLIAMS 2,549,404 BOTTLE STOPPER Filed May 7, 1946 J& Z. 24 B 1. 2 2 L2 12 2YaaaZZYaz27.277 NWENOR AAPOZA M/ M/7// van/s BY 7 -ész.AORNEY %2. Patented Apr. 17, 1951 2,549,404 UNITED STATES PATENT of FICE 2,549,404 BOTTLE STOPPER Harold W. Williams, Pawling, N.Y. Application May 7, 1946, Serial No. 66,860 5 Claims. (C. 25-48) 2 The invention herein disclosed relates to a sufficient elasticity to conform to the neck of a bottle Stopper of the kind that includes a plug bottle in which it is inserted, and make a fluid portion that is adapted to be inserted in the neck tight fit therewith. Desirably, as illustrated, the of a bottle. Side wall of the plug makes a right angle with Bottle stoppers of the kind mentioned that are 5 the end wall. This provides the necessary rigid Commonly used include, in general, a cork plug. ity and prevents the plug from collapsing when and a WOOden end piece or cap glued or cemented inserted in the neck of a bottle. to the plug. Such bottle stoppers have many in There are several materials, moldable thermo herent and well known disadvantages, and var plastic materials, that are pliable at ordinary ious attempts have heretofore been made to pro O temperature and therefore suitable for the bottle duce a, bottle stopper of this kind to replace the stopger of this invention. One such material that cork Stopper. Except for the glass stopper, has been found especially suitable for the pur which has limited application because of its cost, pose is “Polythene.' This is a thermo-plastic none of these prior attempts have met with any material that is available on the open market and measure of success.
    [Show full text]
  • Packaging Influences on Olive Oil Quality: a Review of the Literature
    Report Packaging influences on olive oil quality: A review of the literature Selina Wang, PhD, Xueqi Li, Rayza Rodrigues and Dan Flynn August 2014 Copyright © 2014 UC Regents, Davis campus. All rights reserved. Photo: iStockphoto/danr13 Packaging influences on Olive Oil Quality – UC Davis Olive Center, August 2014 Packaging Influences on Olive Oil Quality: A Review of the Literature Extra virgin olive oil is a fresh juice extracted from olive fruits. As with other fruit juices, the freshness and flavor quality of olive oil diminish with time, and the rate of deterioration is influenced by packaging type. To maximize shelf stability, the ideal packaging material would prevent light and air penetration, and the oils would be stored in the dark at 16 – 18 °C (61 – 64 °F). Table 1 indicates how chemical components in olive oil influence the shelf life of the oil. Table 1. How chemical components in the oil can influence shelf life Chemical component Effect on the shelf life Fatty acid profile High level of polyunsaturated fats such as linoleic acid and linolenic acid shortens shelf life; high level of saturated fats such as stearic acid and palmitic acid helps to prolong shelf life. Free fatty acidity Free fatty acids promote oxidation and shorten shelf life. Peroxide value High level of peroxide value shortens shelf life. Trace metals Trace metals promote oxidation and shorten shelf life. Oxygen Oxygen promotes oxidation and shortens shelf life. Moisture Moisture promotes oxidation and shortens shelf life. Phenolic content Phenolics are antioxidants and help to prolong shelf life. While a high quality olive oil under ideal storage conditions can be stored for months, even years, without becoming rancid, oxidation ultimately will lead to rancid flavors and aromas.
    [Show full text]
  • SOP 408 Biosafety Level-2 (BSL-2) Rodent Husbandry
    STANDARD OPERATING PROCEDURES DIVISION OF COMPARATIVE MEDICINE UNIVERSITY OF SOUTH FLORIDA SOP#: 408.14 Date Issued: 10/98 Date Revised: 5/19 Page 1 of 6 TITLE: Animal Biosafety Level-2 (ABSL-2) Rodent Husbandry SCOPE: All Authorized Personnel RESPONSIBILITY: Facility Manager and Technical Staff PURPOSE: To Outline the Proper Procedures for Safe Husbandry Practices for Rodents Housed at ABSL-2. I. PURPOSE 1. To outline the proper procedures for safely conducting husbandry of rodents housed under animal biosafety level 2 (ABSL-2) conditions. 2. Reduce the risk of exposure of research and animal care staff to biohazardous agents within the animal facility. II. RESPONSIBILITY 1. The Facility Manager is responsible for ensuring: a. That staff contributing to husbandry are adequately trained to perform the husbandry practices described. b. Implementation of the procedures described. c. Dedicated ABSL-2 rooms for infectious agents, and animal housing rooms for rDNA and PDX biocontainment at the cage level are clearly labeled with the biohazardous agent present and specific safety practices implemented. d. Appropriate personal protective equipment (PPE) is available. e. Biohazard Safety Data Sheets (SDSs) are accessible, when available. f. Safety practices have been communicated to the relevant personnel. 2. It is the responsibility of the animal care staff to: a. Read, understand, and follow the procedures described. b. Don appropriate PPE and review room signage and SDS prior to implementing the procedures described. III. PROCEDURES 1. Containment
    [Show full text]
  • Stars in a Sensory Bottle Activity
    UAMN Virtual Early Explorers: Solar System Stars in a Sensory Bottle Relax and imagine the solar system in a vast universe! Materials: Sturdy transparent plastic bottle or jar, glitter, sequins (star-shaped or round), heavy tape or glue. Liquid to fill bottle: • water and food coloring/ tempera paint (water- based) OR • mineral oil and candy decorating dye (oil-based) Instructions: Step 1: Clean your bottle or jar thoroughly to avoid growing mold. Step 2: Add glitter and sequins. Suggested quantity: 2-3 teaspoons for a 16-ounce bottle. Adjust to your preference. Step 3: Fill with your choice of liquid: water or mineral oil. In mineral oil (or baby oil), glitter will stay suspended longer than in water. Step 4: Dye your liquid with a blue color. If you used water, add a few drops of food coloring, liquid watercolor, or tempera paint. If you used mineral oil, use an oil-based dye, such as candy decorating colors, as water-based colors will not work in oil. Enjoy your sensory jar! Talk about our Solar System’s place in our galaxy and in the universe! UAMN Virtual Early Explorers: Solar System At Home in The Milky Way Discover the incredible vastness of our galaxy and beyond! Our Solar System has one star, the Sun. The Solar System and Sun are part of a galaxy: a huge collection of stars, gas, and dust. Our galaxy is called the Milky Way. Scientists estimate that there are between 100 and 400 billion stars just in the Milky Way! The universe contains billions of galaxies like this, each one full of stars.
    [Show full text]
  • DID YOU KNOW? PET (Polyethylene Terephthalate) Is Actually Polyester. When PET Is Used for Bottles, Containers and Other
    355 Lexington Ave., Suite 1500 ▪ New York, NY 10017 ▪ www.PETresin.org DID YOU KNOW? Little-Known Facts about PET Plastic . PET (polyethylene terephthalate) is actually polyester. When PET is used for bottles, containers and other applications, it is called PET or PET resin. When PET is used as a fiber, it is typically called polyester. The PET bottle was invented by Nathaniel C. Wyeth, a DuPont engineer and brother of American painter Andrew Wyeth. The patent was issued to Wyeth in 1973 and assigned to DuPont. According to the EPA, recycling one pound of PET bottles (that’s about 10 two-liter soda bottles) saves approximately 26,000 BTUs of energy. PET bottles and the sun are helping millions of people in developing countries obtain potable water. Using a system called SODIS (solar water disinfection), inhabitants set water-filled PET bottles in the sun for several hours or days – depending on how much sunlight is available – as a simple but effective means of destroying disease-causing bacteria and gaining safe drinking water. More than 1.5 billion pounds of used PET bottles and containers are collected in the U.S. each year for recycling. PET is the most recycled plastic in the U.S. and the world. A single-serve PET bottle (0.5 liter) is strong enough to hold 50 times its weight in water. Chemists keep finding new ways to make PET lighter without losing any strength. A 2-liter PET bottle that weighed 68 grams in 1980 now weighs as little as 42 grams. The average weight of single-serve 0.5 liter PET water bottle is now 9.9 grams, nearly half of what it weighed in 2000.
    [Show full text]
  • Plastic Bottles Today Innovating to Reach Today’S Consumer
    PLASTICS MARKET WATCH PLASTIC BOTTLES TODAY INNOVATING TO REACH TODAY’S CONSUMER BETTER INDUSTRY. BETTER WORLD. February 2017 The Plastics Industry Association (PLASTICS) sends special thanks to the Brand Owners, Processors and Equipment Councils, and Rigid Plastics Packaging Group (RPPG) for their guidance and input on this Bottling Plastics Market Watch Report. Materials were compiled, written and edited by William (Bill) Mashek, with editorial assistance from Kim Holmes, George Southworth, Kendra Martin and Ashley Stoney at PLASTICS. Copyright Plastics Industry Association. 02 Plastics Market Watch—Watching: Bottling Plastics Market Watch Plastic Bottles Today Innovating to Reach Today’s Consumer A series examining the business of plastics, including demographics, economics, policy developments and technological trends in specific plastics end markets. Contents 05 Forward 08 Introduction: Plastic Bottles Today— Innovating to Reach Today’s Consumer 11 Role of Plastics in Bottling 16 Growth of Plastics Bottling 20 Innovation 25 Plastic Bottle Economics 29 Bottling Equipment & Machinery 31 Recycling Progress 37 Conclusion 42 Plastic Bottle Glossary 49 Sources 52 Plastics Market Watch Snapshot Plastics Market Watch—Watching: Bottling 03 04 Plastics Market Watch—Watching: Bottling Forward The Plastics Industry Association’s (PLASTICS’) Plastics Market Watch reports provide forward-looking data and insights on key plastics industry end markets. The series examines the business of plastics, including demographics, economics, policy developments and technological improvements for markets including automotive and transportation, healthcare and medical devices, packaging, building and construction, automotive recycling, bioplastics and consumer electronics. Given the role that plastics play in today’s modern society, Plastics Market Watch reports offer a holistic picture of our technology—from beginning-of-life resins and polymers to end-of-life management and recycling efforts.
    [Show full text]
  • Amphora-Aged Cos Wine: New Or Ancient
    AMPHORA-AGED COS WINE: NEW OR ANCIENT There is something simply amazing to view a winery making its top wines in a series of earthenware jars. Is there shock-horror? Yes for a technocrat trained on the finer points of grades of stainless steel. But no for someone on a path of discovery to understand just what the practitioners do when there is a choice to return to the roots of winemaking practice. And the use of clay pots has been a natural winemaking event year-on-year in Georgia for as far back as 6000 years BC. Recently a colleague advised me that a 2012 trip to this old world winemaking country included a visit to a monastery using the clay pot containers continuously for 1000 years (a lot of vintages there to build up tartrate!) So I was recently on the path of discovery in Sicily to visit two famous properties using earthenware jars for winemaking and aging (COS in Vittoria) and Cornelissen (on Etna) who ages new wine similarly. There is a space in between with the technology path-that of using oak barrels as storage vessels, and over the past decade used, large (3-5,000 litre) format casks have proved to be valuable aging means for high quality wines. Casks displaced earthenware vessels as they were more practical. However keeping large casks fresh and clean is a never-ending job, and at times capable of going wrong (cask has to be burnt). Also the cask remains practical for making larger volumes of wine, while re-introducing the clay pot makes sense for small parcel winemaking as pot management is a lot simpler than in the 15th century.
    [Show full text]