School of Physics Annual Report 2007 Contents

Total Page:16

File Type:pdf, Size:1020Kb

School of Physics Annual Report 2007 Contents The University of Sydney School of Physics Annual Report 2007 Contents 1 HEAD OF SCHOOL REPORT 2 STAFF LIST 4 TEACHING REPORT 5 AWARDS & SCHOLARSHIPS 2007 6 OUTREACH REPORT 7 SCIENCE FOUNDATION FOR PHYSICS 8 RESEARCH REPORT 9 ASTRONOMY & ASTROPHYSICS (INSTITUTE OF ASTRONOMY) 11 COMPLEX SYSTEMS (BIOPHYSICS, BRAIN DYNAMICS, SPACE PHYSICS) 13 CONDENSED MATTER THEORY As part of the School of Physics plasma research, the Inertial Electrostatic Confinement (IEC) group uses a small, spherically symmetric plasma generated by 14 CUDOS electrostatic fields to obtain conditions which will lead to neutron production from nuclear fusion when the gas is deuterium (see p22). 15 HIGH ENERGY PHYSICS 16 INSTITUTE OF NUCLEAR SCIENCE 17 INSTITUTE OF MEDICAL PHYSICS 17 ISA – INTEGRATED SUSTAINABILITY ANALYSIS 18 PLASMA THEORY 20 QUANTUM INFORMATION THEORY 20 SYDNEY UNIVERSITY PHYSICS EDUCATION RESEARCH (SUPER) 20 THEORETICAL PHYSICS 21 RESEARCH GRANTS AWARDED FOR 2008 21 RESEARCH FUNDING 22 PUBLICATIONS 22 BOOKS 22 BOOK CHAPTERS 23 JOURNAL ARTICLES © The School of Physics, The University of Sydney 2007. All rights reserved. 38 CONFERENCE PROCEEDINGS Head of School's Report ANNE GREEN PROFESSOR, PHYSICS HEAD OF SCHOOL I FEEL PRIVILEGED TO WRITE THIS REPORT as the first female Head Kickstart to the bush to enable easier access for students from regional of the School of Physics. This is an exciting opportunity for me to led NSW. This year the program was extended to include Dubbo, as well as one of the top physics departments in Australia. My vision is to Wagga Wagga and Armidale, which were already participants. Activities encourage and support our staff and students, who are by far our are also produced for primary school students, for the Talented Student greatest assets. Perhaps the most exciting development in the School Program at the University, and for the general community. of Physics in 2007 was the award of two new ARC Federation ‘Music and the Cosmos’ was a collaborative event between the Fellowships. Professor Joss Bland-Hawthorn joined us from the Anglo- School of Physics and the Sydney Conservatorium of Music held in Australian Observatory to work in astrophotonics, a new field October 2007. Maestro Imré Pallo conducted the Sydney pioneered by him that aims to apply techniques developed in Conservatorium Symphony Orchestra playing Mozart’s Symphony No photonics to astronomical instruments. Professor Ben Eggleton was 41 – Jupiter. Three of our astronomers, Professor Tim Bedding, Dr awarded a second Federation Fellowship to undertake innovative Peter Tuthill and Professor Geraint Lewis – who between them have research in photonics. Speaking of photonics, CUDOS, the Centre of discovered a square star, worked out how to maximise your time in a Ultrahigh bandwidth Devices for Optical Systems, an ARC-funded black hole and how to tell the age of stars by their vibrations – Centre of Excellence, of which Ben is the Director, was renewed for delighted the audience with their presentations. For many onlookers it another three years with funding ($7.5M) until 2010. The Centre for was the first time they had attended an astronomy lecture and so it Quantum Computer Technology, in which Professor David McKenzie is was pleasing to hear their enthusiastic comments post-concert. My a Program Manager, was also renewed with a grant of more than thanks also to Physics and Music student Cliff Kerr who brilliantly $10M. In addition, David was awarded an ARC Professorial Fellowship. played his original work, Quasars, Pulsars and Black Holes and to Other Fellowship winners include Dr Bruce Yabsley (ARC Australian ABC’s Robyn Williams who graciously agreed to be MC for the night. I Research Fellow) and Dr Michael Ireland (ARC Postdoctoral Research am delighted to report that ‘Music and the Cosmos’ will have a repeat Fellow). The total value for new ARC Grants in 2007 was $4.95M. performance in 2009 as part of The International Year of Astronomy. Recognition for other members of staff continued with the I am very pleased that in an environment of declining science promotion of Dr Carl Cui to Level B, Dr Stephen Bartlett to Level C, enrolments, the School’s student numbers are nonetheless holding Dr Peter Tuthill and Dr Serdar Kuyucak to Level D, while I was up. The Honours cohort for 2007 was a healthy 25, which is very promoted to Level E. It was a particularly good year for Ben Eggleton, important because many of these students continue on to who was awarded the Pawsey Medal for outstanding research in postgraduate research in the School. To improve the learning physics from the Australian Academy of Sciences, and named a “Bright experience of our Junior Physics classes, we introduced an interactive Spark” by Cosmos magazine. Professor Martijn de Sterke was computer-based system for their weekly assignments. The students appointed as the Editor in Chief of Optics Express, one of the leading are pleased with the hints and feedback provided and the teaching optics journals. Professor Elaine Sadler was appointed to the Board of staff welcome the reduced work load; altogether a win-win situation. Astronomy Australia Ltd. As well as accolades for the staff, our One of the main challenges for a fast-growing and successful students are recognized as amongst the best in the country. Dr Alex School like Physics is to maintain high quality facilities. Some of the Argyros received the University Alumni prize for the best PhD thesis, projects completed during 2007 include the refurbishment of the third to follow his award of the Bragg Medal in 2006 for the best Physics floor of the Annexe, previously the Physics Library, into offices for the PhD thesis in the country. Complex Systems research group and the conversion of part of the Outreach to the general community remains a key priority of our basement into a new laboratory for CUDOS. The School also activities. One of the highlights of the year was hosting the 34th reorganized and refurbished the Lecture Demonstration area. Lastly, Professor Harry Messel International Science School (ISS2007) entitled but surely not least, the School has finally succeeded in constructing “ecoscience”, which was an outstanding success. The school, its own bike shed. This means that we have, in addition to the Main organized by the Science Foundation for Physics, selected 140 top Building (A28) and the Annexe (A29), new building number A30. scholars from Australia and around the world. Lecturers included Though these improvements are important, the critical infrastructure Professor Lord Robert Winston, and Dr Fred Watson from the Anglo- issue for the School is that we are desperately short of space. This is Australian Observatory, who serenaded the scholars with the “Redshift partly because our Main Building is a lovely example of heritage Blues” on his guitar during the last lecture. Her Excellency Professor architecture by Leslie Wilkinson, but it is not well-suited to the needs Marie Bashir has been the Patron and strong supporter of the ISS for of a modern world-class research and teaching Physics Department. many years, and we are delighted that she will continue in this role The Annexe is a poor quality building, well past its “use-by date”. The despite her many commitments as Governor of NSW and now Senior Management of the University have recognized our needs and Chancellor of the University of Sydney. During 2007, the Science have included a new and substantially larger building to replace the Foundation’s Executive Officer Dr Chris Stewart left the position to Annexe in the ambitious Campus 2020 Plan. Details are not yet clear, pursue other opportunities; I am very pleased to report that Adam but the preparation of a business case and the initiation of the New Selinger has been appointed to the role. Building project are among my highest priorities for 2008. We continued to run major outreach projects specifically aimed at Finally, I would like to thank the previous Head A/Prof. Brian James for NSW high school students. They include Kickstart, which invites his wise leadership and management of the School for the period 2003– students to the School where they engage in interesting experiments 2006. During this period many initiatives came to fruition, so the School from the high school syllabus. Some years ago it was decided to take is now in a very strong position to look to the future with confidence. SCHOOL OF PHYSICS ANNUAL REPORT 2007 1 Staff ARC Federation Fellows Robert Wilkins, BE MEngSc PhD Shamibrata Chatterjee, BTech IIT Madras Marcela M Bilek, BSc PhD Camb MBA MSc PhD Cornell Roch Senior Lecturers Christopher Dey, PhD Joss Bland-Hawthorn, BSc AU Birm PhD Peter Barnes BSc PhD Libin Fu, BS Wuhan MS PhD Peking Sus & RGO Seyed Reza Hashemi-Nezhad, MSc PhD until August Benjamin J Eggleton, BSc PhD Birm Rodrigo Gil-Merino, BSc Laguna PhD Bryan Gaensler, BSc PhD Joseph Khachan, BSc PhD NSW Potsdam until March Peter A Robinson, BSc PhD Serdar Kuyucak, BSc METU PhD Yale Christian E Grillet, ARC PD Fellow Catherine Stampfl, BSc PhD LaTrobe David J Moss, BSc Waterloo MSc PhD Lisa Harvey-Smith from October Toronto Helen M Johnston, PhD CalifIT BSc Australian Professorial Fellows Nigel Marks, BSc PhD Jong Won Kim, BS MS Soel PhD Iver H Cairns, BSc PhD John W O'Byrne, BSc PhD Maryland Ross C McPhedran, BSc PhD Tas J Gordon Robertson, BSc Adel PhD Laszlo Kiss, DPhys PhD Attila Elaine M Sadler, BSc Qld PhD ANU Manjula D Sharma, MSc DAPh SPac Christian Karnutsch from October Sergei Vladimirov, MSc PhD Mosc Kevin E Varvell,
Recommended publications
  • Curriculum Vitae Brian P
    Curriculum Vitae Brian P. Schmidt AC FAA FRS Address: Office of the Vice Chancellor The Australian National University Canberra, ACT 2600, Australia Birthdate: 24 February 1967, Missoula Montana USA Citizenship: United States of America and Australia Telephone: +61 2 6125 2510 email: [email protected] Academic Qualifications: 1993: Ph.D. in Astronomy, Harvard University 1992: A.M. in Astronomy, Harvard University 1989: B.S. in Physics, University of Arizona 1989: B.S. in Astronomy, University of Arizona PhD thesis: Type II Supernovae, Expanding Photospheres, and the Extragalactic Distance Scale – Supervisor: Robert P. Kirshner Research and other Interests: Observational Cosmology, Studies of Supernovae, Gamma Ray Bursts, Large Surveys, Photometry and Calibration, Extremely Metal Poor Stars, Exoplanet Discovery Public Policy in the Areas of Education, Science, and Innovation Vigneron and Grape Grower: Maipenrai Vineyard and Winery Academic Positions Held: 2016- Vice Chancellor and President, The Australian National University 2013-2015 Public Policy Fellow, Crawford School, The Australian National University 2010- Distinguished Professor, The Australian National University 2010-2015 Australian Research Council Laureate Fellow (ANU) 2005-2009 Australian Research Council Federation Fellow (ANU) 2003-2005 Australian Research Council Professorial Fellow, (ANU) 1999-2002 Fellow, The Australian National University (RSAA) 1997-1999 Research Fellow, The Australian National University (MSSSO) 1995-1996 Postdoctoral Fellow, The Australian National University
    [Show full text]
  • Daniel Huber
    Asteroseismology & Exoplanets: A Kepler Success Story Daniel Huber SETI Institute / NASA Ames Research Center U Chicago Astronomy Colloquium April 2014 Collaborators Bill Chaplin, Andrea Miglio, Yvonne Elsworth, Tiago Campante & Rasmus Handberg (Birmingham) Jørgen Christensen-Dalsgaard, Hans Kjeldsen, Victor Silva Aguirre (Aarhus) Tim Bedding & Dennis Stello (Sydney) Ron Gilliland (PSU), Sarbani Basu (Yale), Steve Kawaler (Iowa State), Travis Metcalfe (SSI), Jaymie Matthews (UBC), Saskia Hekker (Amsterdam), Marc Pinsonneault & Jennifer Johnson (OSU), Eric Gaidos (Hawaii) Tom Barclay, Jason Rowe, Elisa Quintana & Jack Lissauer (NASA Ames / SETI) Josh Carter, Lars Buchhave, Dave Latham, Ben Montet & John Johnson (Harvard) Dan Fabrycky (Chicago) Josh Winn, Kat Deck & Roberto Sanchis-Ojeda (MIT) Andrew Howard, Howard Isaacson & Geoff Marcy (Hawaii, Berkeley) The Kepler Space Telescope • launched in March 2009 • 0.95 m aperture • 42 CCD’s , 105 sq deg FOV Borucki et al. (2008), Koch et al. (2010) Kepler Field of View Kepler Orbit Kepler obtained uninterrupted high-precision photometry of ~> 150,000 stars for 4 years to search for transiting exoplanets Asteroseismology in a Nutshell AstEroseismology? AstEroseismology? unnamed author, sometime in 1995 What causes stellar oscillations? Oscillations in cool stars are driven by turbulent surface convection (opacity in hot stars) Radial Order n displacement center surface number of nodes from the surface to the center of the star Spherical Degree l l = 0 Spherical Degree l l = 2 l = 0 Δν ~ 135 µHz for the Sun sound speed cs -1 3 1/2 Δν = (2 ∫dr/cs) ∝ (M/R ) (ω = n π c / L!) Ulrich (1986) δν ∝ ∫dcs/dr (Age) δν (individual frequencies) sound speed cs -1 3 1/2 Δν = (2 ∫dr/cs) ∝ (M/R ) (ω = n π c / L!) Ulrich (1986) νmax νmax ~ 3000 µHz for the Sun 0.5 -2 0.5 νmax ∝ νac ∝ g Teff ∝ M R Teff Brown et al.
    [Show full text]
  • Monash Physics and Astronomy
    MONASH PHYSICS AND ASTRONOMY study.monash PHYSICS AND ASTRONOMY Have you ever wondered if absolute zero temperature can be reached, how a black hole forms, or what the Universe is made of? Have you ever had a CT, an ultrasound or an MRI scan? Do you use a smart phone, the internet or a computer? Almost everything that makes your life more comfortable, The skills you gain through studying physics and astrophysics or allows you to work efficiently in the 21st century, is due to at Monash can be used in many areas, such as: developing engineered solutions based on physical principles. For example, medical instrumentation, radiotherapy treatment of cancer, the discovery of electricity, magnetism, relativity and quantum modelling climate and weather, analysing big data and financial mechanics came about through human curiosity; however, systems, developing innovative ways to address sustainability, technologies based on these discoveries did not eventuate until exploring emergent behaviour in complex biological systems, much later. and understanding the function of the brain. Physicists and Astrophysicists explore the Universe at all scales of Physics and astronomy at Monash is going through an exciting length, time and energy – from sub-atomic particles (such as the period of growth – investing significantly in people and facilities. Higgs boson) to the large scale structure of the Universe; from We are working across a broad range of creative, curiosity-driven ultra cold gases (close to absolute zero temperature), to what research areas that will impact on future generations – including happened at the Big Bang. Physics seeks to understand the biomedical imaging, quantum computing, atomtronics, and nature of space, time and matter, and in doing so it addresses novel materials for next generation photonics, optoelectronics profound philosophical questions about the nature of reality and and spintronics.
    [Show full text]
  • Professor Robert Mccredie May
    Professor Robert McCredie May The degree of Doctor of Science (honoris causa) was conferred upon Professor Robert McCredie May at the Science ceremony held in the Great Hall at 9.30am on 19 May 1995. Professor Robert May, photo, Tracey Schramm, 'The University of Sydney News', 12 July 1995. Citation Presented by the Vice-Chancellor and Principal Professor D McNicol Chancellor I have the honour to present Professor Robert McCredie May for admission to the degree of Doctor of Science (honoris causa). Professor May has a record of outstanding achievement in two very different fields of science - theoretical physics and population biology. Born and educated in Sydney, Professor May graduated BSc at this University with the University Medal in Physics in 1956, and PhD in Theoretical Physics in 1959, supervised by Dr M.R. Schafroth. After a brief interlude at Harvard University, he returned to join the academic staff of the School of Physics in 1962. For his distinguished theoretical contributions to the physics of ionized gases, he was awarded the Pawsey Medal by the Australian Academy of Science in 1967. In 1969 he was the first to be appointed to a Personal Chair in this University. The metamorphosis from physics to biology began with Professor May's investigation of the problem of the relation between stability and complexity in natural communities. His elegant mathematical solution to the predator-prey problem later led to him being regarded as one of the fathers of the modem theory of chaos. The transition to biology was completed in 1973 with his appointment to Princeton University to take up the Class of 1877 Professorship of Zoology.
    [Show full text]
  • Quantum Measurement and Control Howard M
    Cambridge University Press 978-0-521-80442-4 - Quantum Measurement and Control Howard M. Wiseman and Gerard J. Milburn Frontmatter More information QUANTUM MEASUREMENT AND CONTROL The control of individual quantum systems promises a new technology for the twenty-first century – quantum technology. This book is the first comprehensive treatment of modern quantum measurement and measurement-based quantum control, which are vital elements for realizing quantum technology. Readers are introduced to key experiments and technologies through dozens of recent experiments in cavity QED, quantum optics, mesoscopic electronics and trapped particles, several of which are analysed in detail. Nearly 300 exercises help build understanding, and prepare readers for research in these exciting areas. This important book will interest graduate students and researchers in quantum informa- tion, quantum metrology, quantum control and related fields. Novel topics covered include adaptive measurement; realistic detector models; mesoscopic current detection; Markovian, state-based and optimal feedback; and applications to quantum information processing. howard m. wiseman is Director of the Centre for Quantum Dynamics at Griffith University, Australia. He has worked in quantum measurement and control theory since 1992, and is a Fellow of the Australian Academy of Science (AAS). He has received the Bragg Medal of the Australian Institute of Physics, the Pawsey Medal of the AAS and the Malcolm Macintosh Medal of the Federal Science Ministry. gerard j. milburn is an Australian Research Council Federation Fellow at the Uni- versity of Queensland, Australia. He has written three previous books, on quantum optics, quantum technology and quantum computing. He has been awarded the Boas Medal of the Australian Institute of Physics and is a Fellow of the Australian Academy of Science and the American Physical Society.
    [Show full text]
  • Issue 9 Jul09
    Issue 9, July 2009 SCHOOL OF PHYSICS ALUMNI & FRIENDS NEWSLETTER MESSAGE FROM THE HEAD Also in 2009 we have seen Dean’s awards This year and hopefully reveal the Higgs boson. to our staff for research and outreach. is a year of With regard to the second, the Square These went to Andrew Melatos for his work remarkable physics Kilometre Array will look back in time to on sources of gravitational waves and to anniversaries! the early universe and reveal the first stars Roger Rassool for his science shows for Here in the School and answer some of the most profound primary and secondary students. A further of Physics we are questions about the origin and evolution raft of Dean’s awards went to our research celebrating the of the universe. We have high hopes that students Dougal Maclaurin, Paul Fraser, 400th anniversary Australia will be chosen for the site for the Michelle Strack, Andrew McCulloch and of Galileo’s first SKA. Rebecca Ryan. We are very grateful to astronomical People in Physics here in Melbourne are the sponsors of these awards that make it discoveries. We deeply involved in these two big projects. possible to recognise the accomplishments are also celebrating We have been very pleased to see of our students. the 100th our people working on these and other anniversary of the year Ernest Rutherford projects recognised for their excellence by It is also worth noting that the new and his students “reverse engineered” the a flood of medals and awards. Melbourne Model curriculum has atom and discovered the nucleus.
    [Show full text]
  • CURRICULUM VITAE: PROF. BRYAN M. GAENSLER (He/Him)
    CURRICULUM VITAE: PROF. BRYAN M. GAENSLER (he/him) Dunlap Institute for Astronomy and Astrophysics Phone: +1 416 978 6223 The University of Toronto Email: [email protected] 50 St. George Street, Toronto, ON M5S 3H4, Canada WWW: http://dunlap.utoronto.ca/∼bgaensler/ EDUCATION 1995 – 1999 Doctor of Philosophy, School of Physics, The University of Sydney 1994 First Class Honours, School of Physics, The University of Sydney 1991 – 1993 Bachelor of Science, The University of Sydney (Majors: Physics, Applied Mathematics) EMPLOYMENT 2015 – Director, Dunlap Institute for Astronomy and Astrophysics, The University of Toronto 2015 – Professor of Astronomy, The University of Toronto 2011 – 2014 Director, ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 2006 – 2014 Professor of Physics, The University of Sydney 2006 Associate Professor of Astronomy, Harvard University 2002 – 2006 Assistant Professor of Astronomy, Harvard University 2001 – 2002 Clay Fellow, Smithsonian Astrophysical Observatory 1998 – 2001 Hubble Fellow, Center for Space Research, Massachusetts Institute of Technology SELECTED PROFESSIONAL AFFILIATIONS AND RESPONSIBILITIES 2019 – 2021 Co-Chair, Canadian Astronomy Long Range Plan 2020–2030 2015 – 2019 Canadian Science Director, Square Kilometre Array Organisation 2009 – 2014 Editor-in-Chief, Publications of the Astronomical Society of Australia 2006 – 2007 International Project Scientist, Square Kilometre Array 2005 – Fellow, Astronomical Society of Australia 2003 – Member, International Astronomical Union 1999
    [Show full text]
  • CSIRO Australia Telescope National Facility
    ASTRONOMY AND SPACE SCIENCE www.csiro.au CSIRO Australia Telescope National Facility Annual Report 2014 CSIRO Australia Telescope National Facility Annual Report 2014 ISSN 1038-9554 This is the report of the CSIRO Australia Telescope National Facility for the calendar year 2014, approved by the Australia Telescope Steering Committee. Editor: Helen Sim Designer: Angela Finney, Art when you need it Cover image: An antenna of the Australia Telescope Compact Array. Credit: Michael Gal Inner cover image: Children and a teacher from the Pia Wadjarri Remote Community School, visiting CSIRO's Murchison Radio-astronomy Observatory in 2014. Credit: CSIRO ii CSIRO Australia Telescope National Facility – Annual Report 2014 Contents Director’s Report 2 Chair’s Report 4 The ATNF in Brief 5 Performance Indicators 17 Science Highlights 23 Operations 35 Observatory and Project Reports 43 Management Team 53 Appendices 55 A: Committee membership 56 B: Financial summary 59 C: Staff list 60 D: Observing programs 65 E: PhD students 73 F: PhD theses 74 G: Publications 75 H: Abbreviations 84 1 Director’s Report Credit: Wheeler Studios Wheeler Credit: This year has seen some very positive an excellent scorecard from the Australia Dr Lewis Ball, Director, Australia results achieved by the ATNF staff, as well Telescope Users Committee. Telescope National Facility as some significant challenges. We opened We began reducing CSIRO expenditure a new office in the Australian Resources on the Mopra telescope some five years Research Centre building in Perth, installed ago. This year’s funding cut pushed us to phased-array feeds (PAFs) on antennas of take the final step along this path, and we our Australian SKA Pathfinder (ASKAP), and will no longer support Mopra operations collected data with a PAF-equipped array for using CSIRO funds after the end of the 2015 the first time ever in the world.
    [Show full text]
  • Asteroseismology
    Asteroseismology Gerald Handler Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland Email: [email protected] Abstract Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen. Introduction: variable and pulsating stars Nearly all the physical processes that determine the structure and evolution of stars occur in their (deep) interiors. The production of nuclear energy that powers stars takes place in their cores for most of their lifetime. The effects of the physical processes that modify the simplest models of stellar evolution, such as mixing and diffusion, also predominantly take place in the inside of stars. The light that we receive from the stars is the main information that astronomers can use to study the universe. However, the light of the stars is radiated away from their surfaces, carrying no memory of its origin in the deep interior. Therefore it would seem that there is no way that the analysis of starlight tells us about the physics going on in the unobservable stellar interiors. However, there are stars that reveal more about themselves than others. Variable stars are objects for which one can observe time-dependent light output, on a time scale shorter arXiv:1205.6407v1 [astro-ph.SR] 29 May 2012 than that of evolutionary changes.
    [Show full text]
  • Australian Mathematical Sciences Institute
    Forum Program Maths for the future: Keep Australia competitive 7–8 February 2012 University House, ANU, Canberra A national forum proposing strategies to secure mathematical and statistical skills for Australia. Key players will talk about policy initiatives to improve standards, reverse teacher shortages and increase mathematics enrolments. The forum will outline action and endorse a coherent plan to ensure supply meets demand. Day 1 Program Tuesday 7 February 2012 TIME SESSION 12:00 - 13:00 Celia Hoyles (former Mathematics Advisor to UK government) 13:00 - 14:00 Lunch Overview Ron Sandland (AMSI) Ian Chubb (Chief Scientist for Australia) The future of the mathematical pipeline Glenn Wightwick (IBM) 15:25 - 15:50 Afternoon tea Rob Vertessy (Bureau of Meteorolgy) Mike Manton (Academy of Technological Sciences and Engineering) Kim Beswick (AAMT) Christopher Pyne 18:30 Pre-Dinner Drinks 19:00 Conference Dinner Nobel Prize winner Professor Brian Schmidt will be guest speaker Day 2 Program Wednesday 8 February 2012 TIME SESSION 9:15 The importance of maths for the future Paul Van Bergen (KPMG) Chris Evans 10:25 - 10:50 Morning tea Doug Hilton (WEHI) Len Sciacca (DSTO) Louise Ryan (CSIRO) Sophie Mirabella 13:00 - 14:00 Lunch Future Policy Steve Davies (APRA) Attila Brungs (Deputy Vice Chancellor (Research), University of Technology Sydney) John Rice (Australian Council of Deans of Science) 15:15 - 15:40 Afternoon tea Taking Action 15:40 - 17:00 Round table Day 1 Speakers Professor Celia Hoyles Professor Celia Hoyles has been Professor of Mathematics Education at the Institute of Education, University of London since 1984, following teaching in London secondary schools.
    [Show full text]
  • Professor Benjamin J. Eggleton Current Appointment: Director
    Professor Benjamin J. Eggleton Current appointment: Director, University of Sydney Nano Institute (Sydney Nano) (appointed in 2018); Tenured and full Professor (appointed in 2003), Co-Director, NSW Smart Sensing Network (NSSN) (2016-). Qualifications: B. Sc. (Hons 1), Physics, 1992, PhD, Physics, University of Sydney, 1996. Previous employment: Postdoctoral Member of Technical Staff, Bell Laboratories, Lucent Technologies (1996–1998); Member of Technical Staff, (1998–2000); Technical Manager – Fiber gratings and photonic devices group, (2000–2001); Research Director, Specialty Fiber Devices business with Lucent Technologies (Jan. 2001–Nov. 2001); Director of Photonic Devices Research, OFS Laboratories & OFS – Specialty Photonics Division (Nov. 2001–Dec. 2002). ARC Federation Fellow, University of Sydney (2003-2012); ARC Laureate Fellow (2003-2017); Director, Institute of Photonics and Optical Science (IPOS) (2003-1018); Director, CUDOS ARC Centre of Excellence (2003-2018); Editorial duties: Editor-in-Chief for APL Photonics (AIP Publishing), Editor-in-Chief of Optics Communications (2007–present), Associate Editor for IEEE Photonic Technology Letters (2003–2007). Membership of professional societies: • 2016 Fellow of the Australian Academy of Science • 2009 Fellow of the Australian Academy of Technological Sciences and Engineering. • 2009 Fellow of the IEEE Photonics Society; limited to 3% of membership. • 2008 Fellow of the Australian Institute of Physics. • 2003 Fellow of the Optical Society of America • 2003 Member of the Australian Optical Society (President 2008‐10) Awards: • 2017 VICE CHANCELLORS AWARD FOR OUTSTANDING RESEARCH. • 2011 WALTER BOAS MEDAL from the Australian Institute of Physics • 2011 EUREKA PRIZE FOR LEADERSHIP IN SCIENCE • 2010 SCOPUS YOUNG RESEARCHER OF THE YEAR in the physical sciences • 2008 NSW SCIENTIST OF THE YEAR Award for Physics and Astronomy • 2007 THE PAWSEY MEDAL from the Australian Academy of Science • 2007 COSMOS BRIGHT SPARK.
    [Show full text]
  • CURRICULUM VITAE of Professor Chennupati Jagadish
    CURRICULUM VITAE of Professor Chennupati Jagadish Current Position: Distinguished Professor and Head of Semiconductor Optoelectronics and Nanotechnology Group, Australian National University (ANU) Convenor, Australian Nanotechnology Network Director (ACT Node), Australian National Fabrication Facility Honorary Positions: Vice-President and Secretary Physical Sciences, Australian Academy of Science Fellow, School of Engineering, University of Tokyo, Japan Overseas Visiting Professor, Anna University, India Honorary Professor, Nanjing University, China Thousand Talents Plan (Short-Term) Professor, University of Electronic Science and Technology of China, Chengdu, China Date of Birth: 10 August 1957; Citizenship: Australian Mailing Address: Department of Electronic Materials Engineering Research School of Physical Sciences and Engineering The Australian National University Canberra, ACT 0200, Australia Tel: 61-2-6125-0363, FAX: 61-2-6125-0511, E mail: [email protected] Education: Ph.D. 1983-1986 Physics (semiconducting thin films), University of Delhi M. Phil. 1981-1982 Physics (semiconducting thin films), University of Delhi M. Sc (Tech). 1977-1980 Applied Physics (Electronics), Andhra University B. Sc. 1974-1977 Physics, Nagarjuna University Employment History: Aug. 1985-Apr. 1988, Lecturer in Electronics and Physics, S.V. College, University of Delhi, India Apr. 1988-Jun. 1990, Post-Doctoral Fellow in Physics, Queen's University, Kingston, Canada July 1990-July 1999, Research Scientist, Research Fellow, Fellow, Senior Fellow, Dept. of Electronic Materials Engineering (EME), Research School of Physical Sciences and Engineering (RSPE), ANU July 1999 – Nov. 2004, Professor (Level E1, Level E2) and Head of Semiconductor Optoelectronics and Nanotechnology Group, EME, RSPE, Australian National University Nov 2004-Nov 2009, Federation Fellow and Professor (Level E2) and Head of Semiconductor Optoelectronics and Nanotechnology Group, EME, RSPE, Australian National University.
    [Show full text]