Hybrid Electrochemical-Metal Hydride Compression

Total Page:16

File Type:pdf, Size:1020Kb

Hybrid Electrochemical-Metal Hydride Compression Hybrid Electrochemical Hydrogen/Metal Hydride Compression Scott Greenway (PI), Martin Sulic, Aaron Wilber, Ted Motyka (GWE) Bruce Hardy, Anna d’Entremont (SRNL) George Roberts, Phillip Baker, Daryl Ludlow, Trent Molter (SI) Claudio Corgnale (GWE) - Presenter June 14, 2018 Project ID: PD137 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline and Budget Barriers • Project Start Date: 10/01/16 • Hydrogen Delivery barriers • Project End Date: 09/30/19 • Cost of high pressure large scale • Total Project Budget: $3750K hydrogen compression systems • Total Recipient Share: $752K • Efficiency of large scale compression • Total Federal Share: $2998K systems • Total DOE Funds Phase 1*: $1415K • Reliability of high pressure large * Phase 1 (18 months): end date 3/31/18 scale compression systems Partners (funded) • Savannah River National Laboratory (SRNL) • Sustainable Innovations (SI) • Greenway Energy (GWE) - lead 2 Relevance Project objective (Phase 1 & 2): Project achievements (Phase 1): Identify and build a two-stage hybrid thermo- • EHC configuration with Nafion® electrochemical compressor to achieve the membrane identified with stability DOE targets: demonstrated for 100 hours • Large scale hydrogen compression • Baseline MH materials • High operating pressures characterized at industrial level • Efficiencies equal to the DOE targets without performance degradation • Overall costs equal to the DOE targets demonstrated (so far) for 20 cycles • High reliability • Novel and effective configuration designs achieved for prototype and large scale compressor • EHC-MHC matching condition identified, achieving a thermally self MHC sustaining configuration with High pressure complete EHC heat recovery in the EHC MHC Low pressure • Viable path toward the DOE techno-economic targets identified DOE = US Department Of Energy MH = Metal hydride EHC = Electrochemical Hydrogen Compressor 3 MHC = Metal hydride Hydrogen Compressor Approach Project Phase 1 Integrated approach • Experimental tests • Hierarchical modeling • System models • Detailed models Identification of baseline effective and low cost configuration Phase 2 building and demonstration of the prototype db = Database MH = Metal hydride VI = Voltage-Current density EHC = Electroch. H2 Compr. BOP = balance of plant PCT = Pressure-Concentration-Temperature MHC = MH H2 Compr. DSC = Differential Scanning Calorimetry 4 ρ, Cp, k, ∆H, wt% = Density, specific heat, thermal conductivity, reaction enthalpy, weight capacity Approach-milestones Task 1.1: Screening analysis of candidate, hybrid compressor systems As of April Milestone 1.1.1: Development of a techno-economic modeling framework for evaluating MH and EC 2017 compression stages 12/31/16 - Complete Milestone 1.1.2: Successful identification of at least one system, operating at large scale, based on MH and EC technologies, demonstrating a viable path to reach the techno-economic targets reported in the DOE FOA 3/31/17 – Complete April 2018 Task 1.2: EHC bench scale experimental tests Experimental Milestone 1.2.1: Successful demonstration of the EHC bench scale system, being able to reach the characterization required operating conditions 9/30/17 - Complete Task 1.3: MH bench scale experimental tests Task 1.4: Hybrid compressor system model development and application Milestone 1.4.1: Successful demonstration of the technical feasibility of the selected hybrid compressor system under partial load and transient conditions 6/30/17 - Complete Hierarchical Task 1.5: MH tank detailed model development modeling Milestone 1.5.1: Detailed transport model results need to demonstrate that the proposed prototype system for partial load and transient conditions to be compared with experimental data during Phase 2. 12/31/17 - Complete Task 1.6: Hybrid Compressor prototype design Milestone 1.6.1 (Go/No-Go): Identification of at least one large-scale hybrid compressor system that Prototype meets the FOA techno-economic targets under steady state and nominal conditions and design of a design prototype. 03/31/18 - Complete MH = Metal hydride EC = Electrochemical 5 EHC = Electrochemical H2 Compressor Accomplishments and Progress EHC Pros Cons Previous status as of June 2017 membranes • Screening and database Nafion® • Commercially • Water handling available • Max T physical limit = population of EHC • Reliable and 190 °C (melting) consolidated membranes • Both Nafion and PBI PBI® • Higher T • Compatibility with PA • No water • Unknown long time membranes selected as handling reliability and stability possible candidates MHC Pros Cons • Screening and database materials population of MHC HP1 • Commercially • High hysteresis materials (Ti-Cr) available • High slope in the • Three Ti-based candidates 2phase region • High cost selected • ‘Low’ cost • Actual performance of • Additional Ti MHs HP2 downselected in conjunction (TiZr-Cr-Mn) • Low ∆H the industrial material • Available to be verified with SNL project HP3 • ‘Low’ cost • Operating conditions • Initial matching point (Ti-Cr-Mn) • Low ∆H of the industrial • Available material to be verified identified PBI = HP3 = Ti1.1CrMn SNL = Sandia National Lab MHC = Metal hydride compressor HP1 = TiCr1.9 6 EHC = Electrochemical H2 Compressor HP2 = (Ti0.97Zr0.03)1.1Cr1.6Mn0.4 High temperature PBI® vs Nafion® Advent PBI® membrane Nafion 117® membrane • Cost of chemical compatibility • Known systems suited for • SI projected a 4x cost of the pressurized water applications current Nafion® hardware • Membrane tests demonstrated • Material processing high hydration • Pressures suppress steam • Swelling of membrane during formation doping cased membrane to tear • Material stability and advantages • Demonstrated 100 hours operation at 130 °C < T < 190 °C • Potential for thickness reduction (so far Nafion 117 adopted) Advent TPS® membrane permeation • PA likely causes degradation Advent TPS® • Permeability variation doped Advent TPS® • Irrecoverable permeation Doped increase at higher differential pressures SI = Sustainable Innovations PBI = Polybenzimidazole 7 PA = Phosphoric acid Nafion EHC characteristic Nafion 117® membrane V-I characteristic 7 bar • Tests carried out so far at high temperatures (130-150 °C) and high pressures (up to 100 bar). • Operating current densities of 400 – 900 mA/cm2 gives possible matching points with the MHC • Future actions for performance improvement • Thinner membranes The EHC system based on • Membrane pretreatment at Nafion is technically feasible high T for higher water uptake • Redesign of the flow field for at 100 bar and 150 °C better gas distribution MHC = Metal hydride H2 Compressor EHC = Electrochemical H Compressor 8 2 Nafion EHC stability tests • Single cell tests for 95 hours at 500 mA/cm2 • Temperatures 130-150 °C • Pressures 15-101 bar Test Temperature Anode Cathode Point Pressure Pressure (°C) (bar) (bar) A 130 6.2 14.8 B 135 6.2 14.8 No performance C 140 6.2 14.8 degradation observed D 145 6.2 14.8 • Constant voltage at low E 150 6.2 14.8 pressure for > 40 hours F 150 6.2 121.7 • Constant voltage at high G 150 7.9 101.0 pressure for > 25 hours H 150 7.9 101.0 EHC = Electrochemical H Compressor 9 2 Nafion EHC model high T predictions Current Nafion 117® membrane V-I model characteristic • Model from Springer et al.* fitting T=150 °C the 10-100 bar data • Tests in progress for 170 °C (may be required by the MHC) and lower thickness membranes • Model predictions for 170 °C show feasibility and not appreciable efficiency variation P = 10-100 bar T = 170 °C MHC = Metal hydride H2 Compressor * Springer et al. JES, Vol. 138, No. 8, August 1991 EHC = Electrochemical H Compressor 10 2 MHC experimental apparatus • Small scale high pressure Sieverts’ for material PCT • Operating conditions • grams of MH • T up to ≈ 170 °C • P > 875 bar • Leak proofed • 2 channels in parallel • Results validated against LaNi5 experimental low P data (provided by ORNL) • Automated operation • Programmable regulator (1020 bar/15,000 psi max rating) • High-precision pressure transducers (0.01% FS; ±0.01 bar) • Pneumatic valves with negligible internal volume (40,000 psi rating) MHC = Metal hydride H2 Compressor FS = Full scale PCT = Pressure-Composition-Temperature ORNL = Oak Ridge National Lab 11 MH = Metal hydride MH experimental PCT data HP3 Material 170 °C 130 °C 110 °C Material Pros Cons Comment 80 °C (from JMC) 50 °C 22 °C HP3 Hysteresis; Low P Similar behavior (‘TiCrMn’) Plateau for HP2; New HP4 Hysteresis; Plateau; Alternative MH to (‘TiCrMnFe’) High P Low wt% HP2 and HP3 MHs characterization (XRD, SEM, etc) and treatment in progress HP4 Material ∆ 1000 Habs (kJ/mol) = 18.78 ± 0.13 120 °C ∆Sabs (J/molK) = 96.16 ± 3.05 ∆Hdes (kJ/mol) = 21.08 ± 0.69 ∆Sdes (J/molK) = 101.74 ± 15.97 80 °C 100 HP3 Material (bar) Pressure Abs_120C Des_120C Abs_80C Des_80C 10 0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% Weight Fraction (%) PCT = Pressure-Composition-Temperature XRD = X-Ray Diffraction MH = Metal hydride SEM = Scanning Electron Microscope HP3 = High Pressure MH 3 (Ti1.1CrMn) HP2 = (Ti0.97Zr0.03)1.1Cr1.6Mn0.4 12 JMC = Japan Metal Co. HP4 = TiCr1.55Mn0.2Fe0.2 MH experimental properties and cycling • Complete cycling of commercial HP3 MH • Room temperature and pressures between vacuum and 150 bar • No observable performance degradation confirming literature data for AB2 MHs • Material physical and chemical properties measured experimentally HP3 Comment ρBulk 3300 Measured value, void (kg/m3) fraction about 50% k 0.75 – Powder MH value (W/mK)
Recommended publications
  • Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs
    Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL is a national laboratory of the U.S. Department of Energy, Office of Energy NREL is a national laboratory of the U.S. Department of Energy,Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/BK-6A10-58564 May 2014 Contract No. DE -AC36-08GO28308 Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs G. Parks, R. Boyd, J. Cornish, and R. Remick Independent Peer Review Team NREL Technical Monitor: Neil Popovich NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/BK-6A10-58564 Golden, CO 80401 May 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade- mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Options of Natural Gas Pipeline Reassignment for Hydrogen: Cost Assessment for a Germany Case Study
    Options of Natural Gas Pipeline Reassignment for Hydrogen: Cost Assessment for a Germany Case Study Simonas CERNIAUSKAS,1(1) Antonio Jose CHAVEZ JUNCO,(1) Thomas GRUBE,(1) Martin ROBINIUS(1) and Detlef STOLTEN(1,2) (1) Institute of Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D-52428, Germany (2) Chair for Fuel Cells, RWTH Aachen University, c/o Institute of Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D- 52428, Germany Abstract The uncertain role of the natural gas infrastructure in the decarbonized energy system and the limitations of hydrogen blending raise the question of whether natural gas pipelines can be economically utilized for the transport of hydrogen. To investigate this question, this study derives cost functions for the selected pipeline reassignment methods. By applying geospatial hydrogen supply chain modeling, the technical and economic potential of natural gas pipeline reassignment during a hydrogen market introduction is assessed. The results of this study show a technically viable potential of more than 80% of the analyzed representative German pipeline network. By comparing the derived pipeline cost functions it could be derived that pipeline reassignment can reduce the hydrogen transmission costs by more than 60%. Finally, a countrywide analysis of pipeline availability constraints for the year 2030 shows a cost reduction of the transmission system by 30% in comparison to a newly built hydrogen pipeline system. Keywords: Hydrogen infrastructure, fuel cell vehicles, hydrogen embrittlement, geospatial analysis 1 D-52425 Jülich, +49 2461 61-9154, [email protected], http://www.fz- juelich.de/iek/iek-3 © 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Introduction The ongoing transition of the energy system to accommodate greenhouse gas emission reduction necessitates the reduction of fossil fuel consumption, including the use of natural gas (NG) [1].
    [Show full text]
  • Electrochemical Hydrogen Compressor
    Electrochemical Hydrogen Compressor Ludwig Lipp FuelCell Energy, Inc. June 10, 2015 Project ID #PD048 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Barriers • Project Start Date: 7/15/10 • Barriers addressed for • Project End Date: 7/14/15 gaseous hydrogen compression: – More reliable Budget – Lower-cost Total Project Value: $2,623,213 – Higher efficiency • Total Recipient Share: $629,571 Partners • Total Federal Share: • Collaborations: Sustainable $1,993,642 Innovations, LLC • Total DOE Funds Spent*: • Project lead: FuelCell Energy $1,676,849 *As of 1/31/15 2 Relevance Objective: Develop solid state hydrogen compressor technology for vehicle refueling with greater reliability, scalability and lower costs Impact of EHC: • Increased reliability/availability over current mechanical compressors • Ensures “no possibility of lubricant contamination” (No moving parts) Fuel cell quality H2 • Increases compression efficiency to 95% (DOE 2015 Target) • Potentially reduces cost of H2 delivery to <$1/gge (DOE Long Term Target) 3 Relevance EHC Advantages Over Mechanical Compressor for Refueling: • Lower maintenance cost: No moving parts, longer MTBF • No noise: Can be permitted in high visibility area • No contaminants added: No lubricants required – maintains ultra-high H2 purity required by FCV at lower cost • Versatile guard bed for impurities • Robust for fast-fill: No shock and vibration caused by rapid and frequent start-up/shut-down cycles and variable fill rates •
    [Show full text]
  • Hydrogen Delivery Technical Team Roadmap
    Hydrogen Delivery Hydrogen Storage Technologies Technical Team Roadmap RoadmapJune 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non‐binding, and nonlegal partnership among the U.S. Department of Energy; United States Council for Automotive Research (USCAR), representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies — BPAmerica, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities — Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams (“tech teams”) whose mission is to accelerate the development of pre‐competitive and innovative technologies to enable a full range of efficient and clean advanced light‐duty vehicles, as well as related energy infrastructure. For more information about U.S. DRIVE, please see the U.S. DRIVE Partnership Plan, www.vehicles.energy.gov/about/partnerships/usdrive.html or www.uscar.org. Hydrogen Delivery Technical Team Roadmap Table of Contents Acknowledgements ............................................................................................................... v Mission ................................................................................................................................. 1 Scope ...................................................................................................................................
    [Show full text]
  • Hybrid Hydrogen-Battery Systems for Renewable Off-Grid Telecom Power 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery 1 Hybrid hydrogen-battery systems for renewable off-grid telecom power 2 3 D Scamman, M Newborough*, H Bustamante 4 ITM Power 5 6 *Corresponding author: [email protected] 7 8 Abstract 9 Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen 10 stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the 11 continuous power demands of telecom remote base stations. A model was developed to investigate the 12 preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1kW 13 telecom load in three locations of distinct wind and solar resource availability. When compared with 14 otherwise equivalent off-grid renewable energy systems employing only battery energy storage, the 15 results show that the integration of a 1kW fuel cell and a 1.6kW electrolyser at each location is sufficient, 16 in combination with a hydrogen storage capacity of between 13 and 31kg, to reduce the required battery 17 capacity by 54-77%, to increase the minimum state-of-charge from 37-55% to >81.5% year-round despite 18 considerable seasonal variation in supply, and to reduce the amount of wasted renewable power by 55- 19 79%. For the growing telecom sector, the proposed hybrid system provides a ‘green’ solution, which is 20 preferable to shipping hydrogen or diesel to remote base stations. 21 22 Keywords 23 Telecom; 24 Off-grid; 25 Electrolysis; 26 Hybrid hydrogen-battery energy storage; 27 Renewable storage; 28 29 30 Highlights 31 Remote telecom base stations require continuous power from variable renewables 32 Renewable energy systems require energy storage to manage large supply fluctuations 33 Batteries exhibit short lifetimes in renewable energy systems 34 Integrating hydrogen energy facilitates close regulation of battery state-of-charge 35 Hybrid hydrogen-battery systems provide a more reliable solution for off-grid power 36 37 1.
    [Show full text]
  • Thermodynamic Insights for Electrochemical Hydrogen Compression with Proton-Conducting Membranes
    membranes Article Thermodynamic Insights for Electrochemical Hydrogen Compression with Proton-Conducting Membranes Benjamin L. Kee , David Curran, Huayang Zhu, Robert J. Braun, Steven C. DeCaluwe , Robert J. Kee and Sandrine Ricote * Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA * Correspondence: [email protected]; Tel.: +1-303-384-2091 Received: 5 June 2019; Accepted: 20 June 2019; Published: 1 July 2019 Abstract: Membrane electrode assemblies (MEA) based on proton-conducting electrolyte membranes offer opportunities for the electrochemical compression of hydrogen. Mechanical hydrogen compression, which is more-mature technology, can suffer from low reliability, noise, and maintenance costs. Proton-conducting electrolyte membranes may be polymers (e.g., Nafion) or protonic-ceramics (e.g., yttrium-doped barium zirconates). Using a thermodynamics-based analysis, the paper explores technology implications for these two membrane types. The operating temperature has a dominant influence on the technology, with polymers needing low-temperature and protonic-ceramics needing elevated temperatures. Polymer membranes usually require pure hydrogen feed streams, but can compress H2 efficiently. Reactors based on protonic-ceramics can effectively integrate steam reforming, hydrogen separation, and electrochemical compression. However, because of the high temperature (e.g., 600 ◦C) needed to enable viable proton conductivity, the efficiency of protonic-ceramic compression is significantly lower than that of polymer-membrane compression. The thermodynamics analysis suggests significant benefits associated with systems that combine protonic-ceramic reactors to reform fuels and deliver lightly compressed H2 (e.g., 5 bar) to an electrochemical compressor using a polymer electrolyte to compress to very high pressure. Keywords: electrochemical compression; proton-conducting membranes; protonic-ceramics; steam reforming 1.
    [Show full text]
  • Materials for Hydrogen-Based Energy Storage
    University of Birmingham Materials for hydrogen-based energy storage – past, recent progress and future outlook Hirscher, M.; Yartys, V.A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Chang, F.; Crivello, J.-C.; Cuevas, F.; David, W.I.F.; de Jongh, P.E.; Denys, R.V.; Dornheim, M.; Felderhoff, M.; Filinchuk, Y.; Froudakis, G.E.; Hauback, B.C.; Humphries, T.D.; Jensen, T.R. DOI: 10.1016/j.jallcom.2019.153548 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Hirscher, M, Yartys, VA, Baricco, M, Bellosta von Colbe, J, Blanchard, D, Bowman, RC, Broom, DP, Chang, F, Crivello, J-C, Cuevas, F, David, WIF, de Jongh, PE, Denys, RV, Dornheim, M, Felderhoff, M, Filinchuk, Y, Froudakis, GE, Hauback, BC, Humphries, TD, Jensen, TR, Kojima, Y, Latroche, M, Lototskyy, MV, Makepeace, JW, Møller, KT, Naheed, L, Ngene, P, Noréus, D, Nygård, MM, Orimo, S-I, Paskevicius, M, Pasquini, L, Ravnsbæk, DB, Veronica Sofianos, M, Udovic, TJ, Vegge, T, Weidenthaler, C & Zlotea, C 2020, 'Materials for hydrogen-based energy storage – past, recent progress and future outlook', Journal of Alloys and Compounds, vol. 827, 153548. https://doi.org/10.1016/j.jallcom.2019.153548 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.
    [Show full text]
  • The Cryogenic Hydrogen Compressor System a Low-Cost Way to Meet Your Production Requirements
    The Cryogenic Hydrogen Compressor system A low-cost way to meet your production requirements Industrial producers requiring high-pressure hydrogen for chemical, refinery, and bioenergy manufacturing can now reduce costs and improve onstream time by using Air Products’ Cryogenic Hydrogen Compressor (CHC) system. The proprietary technology is a liquid hydrogen supply system that provides complete operating flexibility for hydrogen flow rates up to 120,000 scfh under pressures up to 10,000 psig. Changing production needs can be matched instantly, reducing costs and minimizing downtime. Multiple ways the CHC can help reduce costs Load-Following Supply Improves Efficiency Lower capital expense Air Products’ CHC system typically costs less to install than alternative supply options, such as on-site hydrogen generation or low-pressure liquid hydrogen H2 Flow supply combined with gas compression. The efficiency of the CHC system requires less capital investment to achieve the desired flow and pressure requirements. Process Demand Reduced operating costs through minimized vent losses Time The CHC system can help minimize vent losses from the supply system. While The unique CHC system delivers flow many high-pressure hydrogen technologies use a liquid-only pump system, that matches process demand. Air Products has designed a two-phase flow process that can capture gas formed through normal heat leak vaporization and deploy that gas into the process, resulting in operating savings. under Increased efficiency through load-following H2 capacity Flow The unique CHC technology is load-following. In other words, its output can Process over fluctuate and closely match changing demand requirements. While running Demand capacity continuously, the system supplies the flow rate needed by your process at any given time.
    [Show full text]
  • Metal Hydride Hydrogen Compressors: a Review
    international journal of hydrogen energy 39 (2014) 5818e5851 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/he Review Metal hydride hydrogen compressors: A review M.V. Lototskyy a,*, V.A. Yartys b,c,**, B.G. Pollet a, R.C. Bowman Jr.d a HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa b Institute for Energy Technology, P.O. Box 40, Kjeller NO-2027, Norway c Norwegian University of Science and Technology, Trondheim NO-7491, Norway d Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA article info abstract Article history: Metal hydride (MH) thermal sorption compression is an efficient and reliable method Received 13 December 2013 allowing a conversion of energy from heat into a compressed hydrogen gas. The most Received in revised form important component of such a thermal engine e the metal hydride material itself e 23 January 2014 should possess several material features in order to achieve an efficient performance in the Accepted 24 January 2014 hydrogen compression. Apart from the hydrogen storage characteristics important for Available online 26 February 2014 every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the Keywords: metalehydrogen systems is of primary importance resulting in a temperature dependence Metal hydrides of the absorption/desorption pressures). Several specific features should be optimised to Hydrogen compression govern the performance of the MH-compressors including synchronisation of the pressure Energy efficiency plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, Heat utilisation increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.
    [Show full text]
  • Disproportionation Resistant Alloy Development of Hydride Hydrogen
    Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405 DISPROPORTIONATION RESISTANT ALLOY DEVELOPMENT FOR HYDRIDE HYDROGEN COMPRESSION Mark Golben David H. DaCosta Ergenics, Inc. 373 Margaret King Avenue Ringwood, NJ 07456 (973) 728-8815 [email protected] Abstract Ergenics, Inc. has been supplying metal hydride hydrogen compressors for twenty years. The hydride compressor is an absorption-based system that uses the properties of reversible metal hydride alloys to silently and cleanly compress hydrogen; hydrogen is absorbed into an alloy bed at ambient temperature and, subsequently, is released at elevated pressure when the bed is heated. Compression energy can be supplied by hot water or electrical resistance heat. The primary technical objective of this project is to determine whether hydride compressors can be used for non-pure hydrogen streams likely to result from advanced hydrogen production methods (i.e. from renewable resources), with the commercial objective of developing a viable hydride compressor that offers substantial benefits over mechanical compressors. Cost effective operating efficiency is a necessary element of the commercial objective . One way to increase hydride compressor efficiency is to increase the operating temperature of the heating cycle. Traditional hydride alloys tend to degrade from a phenomenon termed disproportionation when cycled at temperatures above 100°C. To assure long term reliable operation, Ergenics developed proprietary hydride alloys that resist disproportionation in the compression environment. This paper summarizes work on high temperature alloy development. Introduction Ergenics is investigating the application of its novel hydride hydrogen compression process to hydrogen produced from renewable resources (DaCosta 2000). Thermal hydrogen compressors have offered significant operational and economic advantages over traditional mechanical compressors when the hydrogen is pure and flow rates are relatively low.
    [Show full text]
  • Hydrogen Enabling Renewables Working Group Summary Report
    Hydrogen & Fuel Cells Technical Advisory Committee Hydrogen Enabling Renewables Working Group Summary Report October 2013 1 Introduction In late 2010, the Hydrogen & Fuel Cell Technical Advisory Committee chartered a working group to examine the various ways in which hydrogen might serve as an enabler for high penetrations (greater than 50% nationally, or regionally, on an energy basis) of variable renewable energy in the United States. The Hydrogen Enabling Renewables Working Group (HERWG) began work in earnest in early 2011. Comprised of both HTAC members and other representatives with significant hydrogen and fuel cell expertise, the Working Group benefited from the extensive knowledge, experience and insights of the following members: • Frank Novachek (HTAC Member – Working Group Lead) • Peter Bond (HTAC Member) • Charles Freese (HTAC Member) • Rob Friedland (Industry) • Monterey Gardiner (DOE) • Fred Joseck (DOE) • Maurice Kaya (HTAC Member) • Harol Koyama (HTAC Member) • Jason Marcinkoski (DOE) • Todd Ramsden (NREL) • Bob Shaw (HTAC Member) • Darlene Steward (NREL) • George Sverdrup (NREL) • Sandy Thomas (Consultant) • Levi Thompson (HTAC Member) • Daryl Wilson (Industry) The first task was describing the future scenario where the US combined electric grid and transportation sector were powered with more than 50% renewables nationally or regionally on an energy basis. After significant discussion, the Working Group envisioned an environment characterized by the following attributes: • Large amounts of variable off-peak renewable
    [Show full text]
  • Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
    international journal of hydrogen energy 44 (2019) 7780e7808 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/he Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives Jose Bellosta von Colbe a, Jose-Ramon Ares b, Jussara Barale i, Marcello Baricco i, Craig Buckley f, Giovanni Capurso a, Noris Gallandat e, David M. Grant j, Matylda N. Guzik k, Isaac Jacob n, Emil H. Jensen k, Torben Jensen g, Julian Jepsen a, Thomas Klassen a, Mykhaylol V. Lototskyy p, Kandavel Manickam j, Amelia Montone h, Julian Puszkiel a,l, Sabrina Sartori k, Drew A. Sheppard f, Alastair Stuart j, Gavin Walker j, Colin J. Webb o, Heena Yang c,d, Volodymyr Yartys m, * Andreas Zu¨ttel c,d, Martin Dornheim a, a Department of Nanotechnology, Helmholtz-Zentrum Geesthacht, Max-Plank-Str. 59, 21502 Geesthacht, Germany b Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049, Madrid, Spain c Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), Ecole Polytechnique Federale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion, Switzerland d Empa Materials Science & Technology, Du¨bendorf, Switzerland e GRZ Technologies Ltd., Rue de l’Industrie 17, 1950 Sion, Switzerland f Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia g Department of Chemistry, Aarhus University, Langelandsgade 140, Building 1512, 316, 8000 Aarhus C, Denmark h ENEA, Materials Technology Division, Research Centre of Casaccia, Via Anguillarese,301, 00123 Rome, Italy i Chemistry Department and NIS, University of Turin, Via Pietro Giuria, 7, 10125, Torino, Italy j Advanced Materials Research Group, Faculty of Engineering, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK k Department of Technology Systems, University Oslo, P.O.
    [Show full text]