Lecture 4: Quantum Typicality and Quantum Data Compression

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 4: Quantum Typicality and Quantum Data Compression Lecture 4: Quantum typicality and quantum data compression Mark M. Wilde∗ One of the fundamental tasks in classical information theory is the compression of information. Given access to many uses of a noiseless classical channel, what is the best that a sender and receiver can make of this resource for compressed data transmission? Shannon's compression theorem states that the Shannon entropy is the fundamental limit for the compression rate in the IID setting. That is, if one compresses at a rate above the Shannon entropy, then it is possible to recover the compressed data perfectly in the asymptotic limit, and otherwise, it is not possible to do so. This theorem establishes the prominent role of the entropy in Shannon's theory of information. In the quantum world, it very well could be that one day a sender and a receiver would have many uses of a noiseless quantum channel available,1 and the sender could use this resource to transmit compressed quantum information. But what exactly does this mean in the quantum setting? A simple model of a quantum information source is an ensemble of quantum states fpX (x); j xig, i.e., the source outputs the state j xi with probability pX (x), and the states fj xig do not necessarily have to form an orthonormal basis. Let us suppose for the moment that the classical data x is available as well, even though this might not necessarily be the case in practice. A naive strategy for compressing this quantum information source would be to ignore the quantum states coming out, handle the classical data instead, and exploit Shannon's compression protocol. That is, the sender compresses the sequence xn emitted from the quantum information source at a rate equal to the Shannon entropy H(X), sends the compressed classical bits over the noiseless quantum channels, the receiver reproduces the classical sequence xn at his end, and finally reconstructs the sequence n j xn i of quantum states corresponding to the classical sequence x . The above strategy will certainly work, but it makes no use of the fact that the noiseless quantum channels are quantum! It is clear that noiseless quantum channels will be expensive in practice, and the above strategy is wasteful in this sense because it could have merely exploited classical channels (channels that cannot preserve superpositions) to achieve the same goals. Schumacher compression is a strategy that makes effective use of noiseless quantum channels to compress a quantum information source down to a rate equal to the von Neumann entropy. This has a great benefit from a practical standpoint|the von Neumann entropy of a quantum information source is strictly lower than the source's Shannon entropy if the states in the ensemble are non-orthogonal. In order to execute the protocol, the sender and receiver simply need to know the density operator P ρ ≡ x pX (x)j xih xj of the source. Furthermore, Schumacher compression is provably optimal in ∗Mark M. Wilde is with the Department of Physics and Astronomy and the Center for Computation and Technol- ogy, Louisiana State University, Baton Rouge, Louisiana 70803. These lecture notes are available under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Much of the material is from the book preprint \From Classical to Quantum Shannon Theory" available as arXiv:1106.1445. 1How we hope so! If working, coherent fault-tolerant quantum computers come along one day, they stand to benefit from quantum compression protocols. 1 Figure 1: The most general protocol for quantum compression. Alice begins with the output of some quantum information source whose density operator is ρ⊗n on some system An. The inaccessible reference system holds the purification of this density operator. She performs some CPTP encoding map E, sends the compressed qubits through 2nR uses of a noiseless quantum channel, and Bob performs some CPTP decoding map D to decompress the qubits. The scheme is successful if the difference between the initial state and the final state is negligible in the asymptotic limit n ! 1. the sense that any protocol that compresses a quantum information source of the above form at a rate below the von Neumann entropy cannot have a vanishing error in the asymptotic limit. Schumacher compression thus gives an operational interpretation of the von Neumann entropy as the fundamental limit on the rate of quantum data compression. Also, it sets the term \qubit" on a firm foundation in an information-theoretic sense as a measure of the amount of quantum information \contained" in a quantum information source. We begin this lecture by giving the details of the general information processing task corre- sponding to quantum data compression. We then prove that the von Neumann entropy is an achievable rate of compression. 1 The Information Processing Task We first overview the general task that any quantum compression protocol attempts to accomplish. Three parameters n, R, and corresponding to the length of the original quantum data sequence, the rate, and the error, respectively, characterize any such protocol. An (n; R + δ; ) quantum compression code consists of four steps: state preparation, encoding, transmission, and decoding. Figure 1 depicts a general protocol for quantum compression. An State Preparation. The quantum information source outputs a sequence j xn i of quantum states according to the ensemble fpX (x); j xig where n A A1 An n j x i ≡ j x1 i ⊗ · · · ⊗ j xn i : (1) The density operator, from the perspective of someone ignorant of the classical sequence xn, is 2 equal to the tensor power state ρ⊗n where X ρ ≡ pX (x)j xih xj: (2) x Also, we can think about the purification of the above density operator. That is, an equivalent mathematical picture is to imagine that the quantum information source produces states of the form RA X p R A j'ρi ≡ pX (x)jxi j xi ; (3) x where R is the label for an inaccessible reference system (not to be confused with the rate R!). The RA ⊗n resulting IID state produced is (j'ρi ) . Encoding. Alice encodes the systems An according to some CPTP compression map EAn!W where W is a quantum system of size 2nR. Recall that R is the rate of compression: 1 R = log d − δ; (4) n W where dW is the dimension of system W and δ is an arbitrarily small positive number. Transmission. Alice transmits the system W to Bob using n(R + δ) noiseless qubit channels. Decoding. Bob sends the system W through a decompression map DW !A^n . The protocol has error if the compressed and decompressed state is -close in trace distance RA ⊗n to the original state (j'ρi ) : RA⊗n W !A^n An!W RA⊗n 'ρ − (D ◦ E )( 'ρ ) ≤ . (5) 1 2 The Quantum Data Compression Theorem We say that a quantum compression rate R is achievable if there exists an (n; R + δ; ) quantum compression code for all δ; > 0 and all sufficiently large n. Schumacher's compression theorem establishes the von Neumann entropy as the fundamental limit on quantum data compression. Theorem 1 (Quantum Data Compression) Suppose that ρA is the density operator of the quantum information source. Then the von Neumann entropy H(A)ρ is the smallest achievable rate R for quantum data compression: inffR : R is achievableg = H(A)ρ: (6) In this lecture, we will only prove the direct part of this theorem (that is, we will exhibit a coding scheme that achieves the von Neumann entropy rate of compression). The main technical tool required in proving the direct part is the notion of quantum typicality, which we describe in the next section. 2.1 Quantum Typicality 2.1.1 The Typical Subspace Our first task is to establish the notion of a quantum information source. It is analogous to the notion of a classical information source, in the sense that the source randomly outputs a quantum state according to some probability distribution, but the states that it outputs do not necessarily have to be distinguishable as in the classical case. 3 Definition 2 (Quantum Information Source) A quantum information source is some device that randomly emits pure qudit states in a Hilbert space HX of size jX j. We use the symbol X to denote the quantum system for the quantum information source in addition to denoting the Hilbert space in which the state lives. Suppose that the source outputs states j yi randomly according to some probability distribution pY (y). Note that the states j yi do not necessarily have to form an orthonormal set. Then the density operator ρX of the source is the expected state emitted: X X ρ ≡ EY fj Y ih Y jg = pY (y)j yih yj: (7) y There are many decompositions of a density operator as a convex sum of rank-one projectors (and the above decomposition is one such example), but perhaps the most important decomposition is a spectral decomposition of the density operator ρ: X X X ρ = pX (x)jxihxj : (8) x2X The above states jxiX are eigenvectors of ρX and form a complete orthonormal basis for Hilbert X space HX , and the non-negative, convex real numbers pX (x) are the eigenvalues of ρ . X We have written the states jxi and the eigenvalues pX (x) in a suggestive notation because it is actually possible to think of our quantum source as a classical information source|the emitted X states fjxi gx2X are orthonormal and each corresponding eigenvalue pX (x) acts as a probability for choosing jxiX . We can say that our source is classical because it is emitting the orthogonal, X and thus distinguishable, states jxi with probability pX (x).
Recommended publications
  • Introduction to Quantum Information Theory
    Introduction to Quantum Information Theory Carlos Palazuelos Instituto de Ciencias Matemáticas (ICMAT) [email protected] Madrid, Spain March 2013 Contents Chapter 1. A comment on these notes 3 Chapter 2. Postulates of quantum mechanics 5 1. Postulate I and Postulate II 5 2. Postulate III 7 3. Postulate IV 9 Chapter 3. Some basic results 13 1. No-cloning theorem 13 2. Quantum teleportation 14 3. Superdense coding 15 Chapter 4. The density operators formalism 17 1. Postulates of quantum mechanics: The density operators formalism 17 2. Partial trace 19 3. The Schmidt decomposition and purifications 20 4. Definition of quantum channel and its classical capacity 21 Chapter 5. Quantum nonlocality 25 1. Bell’s result: Correlations in EPR 25 2. Tsirelson’s theorem and Grothendieck’s theorem 27 Chapter 6. Some notions about classical information theory 33 1. Shannon’s noiseless channel coding theorem 33 2. Conditional entropy and Fano’s inequality 35 3. Shannon’s noisy channel coding theorem: Random coding 38 Chapter 7. Quantum Shannon Theory 45 1. Von Neumann entropy 45 2. Schumacher’s compression theorem 48 3. Accessible Information and Holevo bound 55 4. Classical capacity of a quantum channel 58 5. A final comment about the regularization 61 Bibliography 63 1 CHAPTER 1 A comment on these notes These notes were elaborated during the first semester of 2013, while I was preparing a course on quantum information theory as a subject for the PhD programme: Investigación Matemática at Universidad Complutense de Madrid. The aim of this work is to present an accessible introduction to some topics in the field of quantum information theory for those people who do not have any background on the field.
    [Show full text]
  • Efficient and Exact Quantum Compression
    Efficient and Exact Quantum Compression a; ;1 b;2 John H. Reif ∗ , Sukhendu Chakraborty aDepartment of Computer Science, Duke University, Durham, NC 27708-0129 bDepartment of Computer Science, Duke University, Durham, NC 27708-0129 Abstract We present a divide and conquer based algorithm for optimal quantum compression / de- compression, using O(n(log4 n) log log n) elementary quantum operations . Our result pro- vides the first quasi-linear time algorithm for asymptotically optimal (in size and fidelity) quantum compression and decompression. We also outline the quantum gate array model to bring about this compression in a quantum computer. Our method uses various classical algorithmic tools to significantly improve the bound from the previous best known bound of O(n3)(R. Cleve, D. P. DiVincenzo, Schumacher's quantum data compression as a quantum computation, Phys. Rev. A, 54, 1996, 2636-2650) for this operation. Key words: Quantum computing, quantum compression, algorithm 1 Introduction 1.1 Quantum Computation Quantum Computation (QC) is a computing model that applies quantum me- chanics to do computation. (Computations and methods not making use of quantum mechanics will be termed classical). A single molecule (or collection of .particles and/or atoms) may have n degrees of freedom known as qubits. Associated with each fixed setting X of the n qubits to boolean values is a basis state denoted a . Quantum mechanics allows for a linear superposition of these basis states to j i ∗ Corresponding author. Email addresses: [email protected] ( John H. Reif), [email protected] (Sukhendu Chakraborty). 1 The work is supported by NSF EMT Grants CCF-0523555 and CCF-0432038.
    [Show full text]
  • Unitary Decomposition Implemented in the Openql Programming Language for Quantum Computation A.M
    Unitary Decomposition Implemented in the OpenQL programming language for quantum computation A.M. Krol September 13th 36 Electrical Engineering, Mathematics and Computer Sciences LB 01.010 Snijderszaal Unitary Decomposition Implemented in the OpenQL programming language for quantum computation by A.M. Krol to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday September 13, 2019 at 15:00. Student number: 4292391 Project duration: November 20, 2018 – September 13, 2019 Thesis committee: Prof. dr. ir. K. Bertels, TU Delft, supervisor Dr. I. Ashraf, TU Delft Dr. M. Möller, TU Delft Dr. Z. Al-Ars TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface In this thesis, I explain my implementation of Unitary Decomposition in OpenQL. Unitary Decomposition is an algorithm for translating a unitary matrix into many small unitary matrices, which correspond to a circuit that can be executed on a quantum computer. It is implemented in the quantum programming framework of the QCA-group at TU Delft: OpenQL, a library for Python and C++. Unitary Decomposition is a necessary part in Quantum Associative Memory, an algorithm used in Quantum Genome Sequenc- ing. The implementation is faster than other known implementations, and generates 3 ∗ 2 ∗ (2 − 1) rotation gates for an n-qubit input gate. This is not the least-known nor the theoretical minimum amount, and there are some optimizations that can still be done to make it closer to these numbers. I would like to thank my supervisor, Prof. Koen Bertels, for the great supervision and insightful feedback.
    [Show full text]
  • Quantum Computing
    John H. Reif, Quantum Computing. Published in book “Bio-inspired and Nanoscale Integrated Computing”, Chapter 3, pp. 67-110 (edited by Mary Mehrnoosh Eshaghian-Wilner), Publisher: Wiley, Hoboken, NJ, USA, (February 2009). Chapter 3: Quantum Computing John H. Reif Department of Computer Science Duke University ‡ 3.0 Summary Quantum Computation (QC) is a type of computation where unitary and measurement operations are executed on linear superpositions of basis states. This paper provides a brief introduction to QC. We begin with a discussion of basic models for QC such as quantum TMs, quantum gates and circuits and related complexity results. We then discuss a number of topics in quan- tum information theory, including bounds for quantum communication and I/O complexity, methods for quantum data compression. and quantum er- ‡Surface address: Department of Computer Science, Duke University, Durham, NC 27708-0129. E-mail: [email protected]. This work has been supported by grants from NSF CCF-0432038 and CCF-0523555. A postscript preprint of this Chapter is available online at URL: http://www.cs.duke.edu/∼reif/paper/qsurvey/qsurvey.chapter.pdf. ror correction (that is, techniques for decreasing decoherence errors in QC), Furthermore, we enumerate a number of methodologies and technologies for doing QC. Finally, we discuss resource bounds for QC including bonds for processing time, energy and volume, particularly emphasizing challenges in determining volume bounds for observation apperatus. 3.1 Introduction 3.1.1 Reversible Computations Reversible Computations are computations where each state transformation is a reversible function, so that any computation can be reversed without loss of information.
    [Show full text]
  • Supercomputer Simulations of Transmon Quantum Computers Quantum Simulations of Transmon Supercomputer
    IAS Series IAS Supercomputer simulations of transmon quantum computers quantum simulations of transmon Supercomputer 45 Supercomputer simulations of transmon quantum computers Dennis Willsch IAS Series IAS Series Band / Volume 45 Band / Volume 45 ISBN 978-3-95806-505-5 ISBN 978-3-95806-505-5 Dennis Willsch Schriften des Forschungszentrums Jülich IAS Series Band / Volume 45 Forschungszentrum Jülich GmbH Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC) Supercomputer simulations of transmon quantum computers Dennis Willsch Schriften des Forschungszentrums Jülich IAS Series Band / Volume 45 ISSN 1868-8489 ISBN 978-3-95806-505-5 Bibliografsche Information der Deutschen Nationalbibliothek. Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografe; detaillierte Bibliografsche Daten sind im Internet über http://dnb.d-nb.de abrufbar. Herausgeber Forschungszentrum Jülich GmbH und Vertrieb: Zentralbibliothek, Verlag 52425 Jülich Tel.: +49 2461 61-5368 Fax: +49 2461 61-6103 [email protected] www.fz-juelich.de/zb Umschlaggestaltung: Grafsche Medien, Forschungszentrum Jülich GmbH Titelbild: Quantum Flagship/H.Ritsch Druck: Grafsche Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2020 Schriften des Forschungszentrums Jülich IAS Series, Band / Volume 45 D 82 (Diss. RWTH Aachen University, 2020) ISSN 1868-8489 ISBN 978-3-95806-505-5 Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER) unter www.fz-juelich.de/zb/openaccess. This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We develop a simulator for quantum computers composed of superconducting transmon qubits.
    [Show full text]
  • Quantum Information Processing with Superconducting Circuits: a Review
    Quantum Information Processing with Superconducting Circuits: a Review G. Wendin Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden Abstract. During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of Quantum Supremacy with fifty qubits is anticipated in just a few years. Quantum Supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of super- conducting devices, systems and applications. As such, the discussion of superconduct- ing qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry. Keywords: superconducting circuits, microwave resonators, Josephson junctions, qubits, quantum computing, simulation, quantum control, quantum error correction, superposition, entanglement arXiv:1610.02208v2 [quant-ph] 8 Oct 2017 Contents 1 Introduction 6 2 Easy and hard problems 8 2.1 Computational complexity . .9 2.2 Hard problems . .9 2.3 Quantum speedup . 10 2.4 Quantum Supremacy . 11 3 Superconducting circuits and systems 12 3.1 The DiVincenzo criteria (DV1-DV7) . 12 3.2 Josephson quantum circuits . 12 3.3 Qubits (DV1) .
    [Show full text]
  • Chapter 5 Quantum Information Theory
    Chapter 5 Quantum Information Theory Quantum information theory is a rich subject that could easily have occupied us all term. But because we are short of time (I’m anxious to move on to quantum computation), I won’t be able to cover this subject in as much depth as I would have liked. We will settle for a brisk introduction to some of the main ideas and results. The lectures will perhaps be sketchier than in the first term, with more hand waving and more details to be filled in through homework exercises. Perhaps this chapter should have been called “quantum information theory for the impatient.” Quantum information theory deals with four main topics: (1) Transmission of classical information over quantum channels (which we will discuss). (2) The tradeoff between acquisition of information about a quantum state and disturbance of the state (briefly discussed in Chapter 4 in connec- tion with quantum cryptography, but given short shrift here). (3) Quantifying quantum entanglement (which we will touch on briefly). (4) Transmission of quantum information over quantum channels. (We will discuss the case of a noiseless channel, but we will postpone discus- sion of the noisy channel until later, when we come to quantum error- correcting codes.) These topics are united by a common recurring theme: the interpretation and applications of the Von Neumann entropy. 1 2 CHAPTER 5. QUANTUM INFORMATION THEORY 5.1 Shannon for Dummies Before we can understand Von Neumann entropy and its relevance to quan- tum information, we must discuss Shannon entropy and its relevance to clas- sical information.
    [Show full text]
  • Quantum Information Theory
    Quantum Information Theory Jun-Ting Hsieh Bingbin Liu Stanford University Stanford University [email protected] [email protected] 1 Introduction In our current digital world, everything, from computing devices to communication channels, is represented as 0s and 1s. The “information” that these bits can present has been well studied in the field of classical information theory. For example, we know the capacity and limits of data compression and the rate of reliable communication over noisy channels. Recently, perhaps due to the excitement of quantum computation, these ideas in information theory have been extended to the quantum world, leading to the field of quantum information theory. In this paper, we would like to introduce the quantum counterparts of some of the key ideas we studied in the course, including the quantum entropy measure, quantum source encoding, and touch briefly on quantum channels. 1.1 How is quantum different than classical? Compared to the classical world, quantum mechanics has several “weird” properties that make things much more convoluted. Thus, we first introduce some major differences between quantum and classical information, which are the reasons that quantum information is so interesting yet harder to analyze. Refer to Section 2 for a more detailed introduction of quantum mechanics. Qubit. The quantum version of the classical bit is the qubit. A classical bit is either 0 or 1, while a qubit can be superposition of 0 and 1. This means that it is both 0 and 1, and if we perform a measurement we will get 0 and 1 with certain probabilities. Imagine that every bit in our computer is both 0 and 1 at the same time, and if we even try to read from it, we not only get a probabilistic answer but also collapse that qubit state! Entanglement.
    [Show full text]
  • The Transmon Qubit
    The Transmon Qubit Sam Bader December 14, 2013 Contents 1 Introduction 2 2 Qubit Architecture 4 2.1 Cooper Pair Box . .4 2.1.1 Classical Hamiltonian . .4 2.1.2 Quantized Hamiltonian . .5 2.2 Capacitively-shunted CPB . .7 2.2.1 The ratio EJ =Ec .....................................7 3 Circuit QED 9 3.1 Vocabulary of Cavity QED . .9 3.1.1 Jaynes-Cummings Hamiltonian . 10 3.1.2 Effects of the coupling: resonant and dispersive limits . 10 3.1.3 Purcell Effect . 11 3.2 Translating into Circuit QED . 12 3.2.1 Why Circuit QED is easier than Cavity QED . 12 3.2.2 Circuit QED Hamiltonian . 13 4 Control and Readout Protocol 15 4.1 Measurement . 15 4.2 Single qubit gates . 16 4.2.1 Modeling drives . 16 4.2.2 Applying gates . 16 4.3 Multi-qubit gates and entanglement . 17 5 Conclusion 19 A Derivation of Classical Hamiltonians for Qubit Systems 20 A.1 Cooper Pair Box . 20 A.2 Transmon with transmission line . 21 B Quantum Circuits 23 B.1 Charge basis . 23 B.2 Phase basis . 24 C Perturbation Theory for the Transmon 25 C.1 Periodic Potentials . 25 C.2 Transforming away the offset charge . 26 C.3 Duffing Oscillator . 26 C.3.1 Relative Anharmonicity . 26 C.3.2 Number operator matrix elements . 27 1 Chapter 1 Introduction Quantum information processing is one of the most thrilling prospects to emerge from the interaction of physics and computer science. In recent decades, scientists have transitioned from merely observing microscopic systems to actually controlling those same systems on the scale of individual quanta, and the future of information processing based on these techniques will revolutionize the computing industry.
    [Show full text]
  • Entanglement Manipulation
    Entanglement Manipulation Steven T. Flammia1 1Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the University of Maryland math department. I. INTRODUCTION Entanglement serves as a resource which we can use to perform novel information processing tasks, in particular communication tasks. For example, superdense coding and teleportation are two such tasks which are impossible classically; they make essential use of entanglement. In this lecture I’m going to cover dense coding and teleportation and then show how we can manipulate entanglement into a standard “currency” which will allow us to quantify how useful different states are for these tasks. Based on an operational definition, we will define a way to measure the amount of entanglement in a quantum state. We will consider the following scenario. We have two parties, Alice and Bob (labeled A and B), and they wish to communicate through a quantum or classical channel. In the literature, channel does have a technical meaning: it is a completely positive linear map, i.e. a linear map that takes density operators to density operators (and it is not necessarily surjective). We call these CP maps for short. We can consider that the channel is noisy, or we can consider a perfect channel (the identity map), but we have noisy quantum states. We will always assume that any classical channel is perfect. A and B would like to communicate classical and quantum information in the most efficient way possible using the classical and quantum channels (respectively) that they share.
    [Show full text]
  • Perturbative Analysis of Two-Qubit Gates on Transmon Qubits
    Perturbative analysis of two-qubit gates on transmon qubits von Susanne Richer Masterarbeit in Physik vorgelegt der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der RWTH Aachen im September 2013 angefertigt im Institut f¨urQuanteninformation bei Prof. Dr. Barbara M. Terhal, Prof. Dr. David P. DiVincenzo Abstract This thesis treats different schemes for two-qubit gates on transmon qubits and their per- turbative analysis. The transmon qubit is a superconducting qubit that stands out due to its very low sensitivity to charge noise, leading to high coherence times. However, it is also characterized by its low anharmonicity, making it impossible to neglect the higher transmon levels. Coupled systems of superconducting qubits and resonators can be treated in cavity QED. In the dispersive regime, where qubit and resonator are far detuned from each other, per- turbative methods can be used for the derivation of effective Hamiltonians. Several such methods are presented here, among which the Schrieffer-Wolff transformation results to be the most adequate. As the anharmonicity of the transmon qubit is low, higher transmon levels play a signifi- cant role in two-qubit gate schemes. These gates can be driven using microwave pulses, where certain resonance conditions between the transmon levels are used to tune up the desired two-transmon interaction effects. The Schrieffer-Wolff transformation will be used to see how these effects arise. Contents 1. Introduction 1 2. Transmon qubits in cavity QED 3 2.1. Cavity QED and Jaynes-Cummings model . .3 2.1.1. Dispersive regime . .4 2.2. Circuit QED . .5 2.2.1. The Transmon qubit .
    [Show full text]
  • Afonso Rodrigues Validation of Quantum Simulations
    Universidade do Minho Escola de Engenharia Departamento de Informática Afonso Rodrigues Validation of quantum simulations Assessing efficiency and reliability in experimental implementations November 2018 Universidade do Minho Escola de Engenharia Departamento de Informática Afonso Rodrigues Validation of quantum simulations Assessing efficiency and reliability in experimental implementations Master dissertation Master Degree in Engineering Physics Dissertation supervised by Luís Barbosa Carlos Tavares November 2018 ACKNOWLEDGEMENTS This work was only possible thanks to the contribution of several people to which I want to express my gratitude. To my supervisor prof. Luís Barbosa, for giving me the opportunity to undertake this project, and for his constant support, availability and patience; also to my co-supervisor Carlos Tavares, for his early insight. In no particular order of importance, to Miguel Nogueira, Ricardo Alves, Rui Costa, João Fonseca, Miguel Sanches, Joaquim Santos, and José Bruno, my friends and colleagues who accompanied me in this course and provided invaluable help. To my parents and sister, and Maria Coelho, André Souto and Gil Pimentel for their unconditional encouragement on the difficult days. Finally, I wish to thank University of Minho for these five years of learning, INESC TEC and specifically the HASLab team for supporting me in my first steps as a researcher. I acknowledge use of the IBM Q for this work. i ABSTRACT Quantum simulation is one of the most relevant applications of quantum computation for the near future, due to its scientific impact and also because quantum simulation algorithms are typically less demanding than generalized quantum computations. Ultimately, the success of a quantum simulation depends on the amount and reliability of information one is able to extract from the results.
    [Show full text]