A (Very) Brief Primer on Topics in Linear Algebra 1 Basic Math For

Total Page:16

File Type:pdf, Size:1020Kb

A (Very) Brief Primer on Topics in Linear Algebra 1 Basic Math For A (Very) Brief Primer on Topics in Linear Algebra For statistics, the main topics from Math 313 that you need to remember are (i) matrix opera- tions such as matrix multiplication, addition, subtraction, etc., (ii) matrix-specific operations such as inverse, transpose and determinant and (iii) matrix properties such as symmetric and positive definite. This worksheet is designed to refresh these concepts in your mind and teach you how to do matrix operations in R. Complete each of the following first by hand, and then using R (for numeric calculations). 1 Basic Math for Matrices A matrix is a rectangular or square array of numbers or variables. A vector is a matrix with one column and more than one row. A scalar is a 1 ˆ 1 matrix. Traditional notation for matrices and vectors are bold face. For example, A represents a matrix or a vector while a would represent a scalar. Because this notation can be ambiguous in distinguishing between a matrix and a vector we will usually give the dimension of the matrix in words. For example, we could say, “Let Y denote a length N vector” which would mean that Y is N ˆ 1. Depending on the style of the author, vectors and matrices can be either lower- or upper-case but will almost always be bolded (so a or A are matrices (or vectors) and you know because they are bolded). Because matrices are 2-dimensional arrays (they have a row and a column), we use two subscripts to denote the individual elements of a matrix. For example, if A is a 3 ˆ 3 matrix, a13 would typically denote the number in the 1st row and 3rd column of A. Because vectors only have 1 column we typically only use a single subscript. For example, y5 would be the 5th element of Y (the element on the 5th row but 1st column of the vector Y ). Matrix addition and subtraction is simply adding or subtracting matching elements. For exam- th ple, the ij element of pA ` Bq is aij ` bij. However, matrix multiplication is NOT multiplying each individual element. To multiply two matrices A and B, you would (i) multiply the elements in each row of A by the elements in each column of B then (ii) add the results. Notationally, if C “ AB (i.e. C is the matrix that results from the matrix multiplication of A and B), then cij “ aikbki k ¸ for i “ 1;:::; nrowpAq and j “ 1;:::; ncolpBq so C would have dimension nrowpAqˆncolpBq. Because of the way that matrix operations are defined, the dimensions of matrices have to match in a way that allows the operation to take place. For example, to add A and B, the dimensions of A have to be the same as the dimensions of B. Likewise, A and B can only be multiplied if the number of columns in A is equal to the number of rows in B. If an operation can be performed on two matrices then we call the matrices A and B conformable otherwise they are non-conformable. The syntax to work with matrices in R is a little weird (until you get used to it). To define the matrix A which has K rows and J columns you would do something like: A.elements <- c(a11,a21,a31,...,aKJ) A <- matrix(A.elements,nrow=K,ncol=J) A 1 Notice that R puts elements of A down the rows first then moves across the columns. To change this you can use the byrow=TRUE option. For example, try: A.elements <- 1:6 K <- 2 J <- 3 A1 <- matrix(A.elements,nrow=K,ncol=J) A2 <- matrix(A.elements,nrow=K,ncol=J,byrow=TRUE) A1 A2 Notice in A1 the elements 1:6 are populated down the rows first where as A2 has the elements populated across column first. Because matrix multiplication is different than traditional multiplication, R uses the com- mand “%*%” to perform matrix multiplication. For example A%*%B would matrix multiply the matrices A and B. If these matrices are not conformable, R will return an error. Try the following practice problems both by hand and with R. 1. Consider the following matrices: 1 3 4 9 A “ ; B “ 5 2 2 6 ˆ ˙ ˆ ˙ Compute the following: (a) A ` B (b) A ´ B (c) AB (d) BA 2. Now, let 9 1 2 6 5 A “ ; B “ 1 4 3 1 8 ˆ ˙ ˆ ˙ Compute each of the following, if possible. If non-conformable, write “non-conformable”. (a) A ` B (b) A ´ B (c) AB (d) BA 2 Matrix Specific Operations Because matrices are defined as 2-dimensional objects (they have rows and columns), there are a few math operations specific to matrices that we commonly use in statistics. The transpose 2 of a matrix is when we switch the rows and columns. Notationally, we typically use the prime notation ( “ 1 ”) to specify a matrix transpose. For example, A1 (read “A-prime”) would be the transpose of A. The ijth element of A1 would simply be the jith element of A. A matrix where A “ A1 is called symmetric. The trace of a matrix is just the sum of the diagonal elements. So trpAq “ i aii. I’ll explain its use more when I introduce covariance matrices. The inverse operation of a matrix, intuitively, is division for matrices.ř Before we get to defining the inverse of a matrix, however, we have to define the identity matrix which is typically denoted by I. The identity matrix is a special square matrix with 1’s along the diagonal and 0’s everywhere else and is the equivalent of the number 1 in matrix algebra. Just like any number multiplied by 1 is just the number, any matrix multiplied by the identity matrix is just the original matrix. Mathematically, AI “ IA “ A for any matrix A where I is the conforming identity matrix (i.e. I is the matrix of appropriate size to do the multiplication). We say that a square matrix A has an inverse A´1 if AA´1 “ A´1A “ I where I is the called the identity matrix (note that non-square matrices do not have inverses). You can see that this is the equivalent of division for matrices by noticing that for any number x, xx´1 “ x´1x “ x{x “ 1. It is important to keep in mind that not all matrices are invertible. If a matrix has an inverse we say it is invertible or non-singular. If a matrix inverse does not exist we call it singular. Most of the matrices that are interesting in statistics are non-singular (they have an inverse). Calculating A´1 is a long and arduous process (which you may remember from Math 313) so I won’t go over how to calculate an inverse by hand (we’ll let the computer do that). However, it is important to keep in mind that calculating matrix inverses can be very time consuming even for computers when the dimensions of A are large (i.e. A has lots of rows and columns). The last matrix operation that you need to know is the determinant of a matrix. The determi- nant of a square matrix A (non-square matrices don’t have determinants) is a single numerical summary that quantifies the “volume” of a matrix (i.e. how much space is taken up by the matrix in matrix-space). I know this definition isn’t that intuitive but it’ll make more sense when we talk about covariances matrices so I’ll let that definition do for now. Notationally, the determinant is given by |A| or detpAq. To calculate the determinant you have to sum all possible products of the elements in the matrix in a certain fashion. Obviously, we aren’t going to be doing that by hand and we’ll let the computer do it for us. But, know that calculating |A| can be very slow (even for computers) when A is big. A few interesting properties about these matrix operations that are used repeatedly throughout statistical concepts are the following, • pA´1q´1 “ A • pA1q´1 “ pA´1q1 • pABq´1 “ B´1A´1 • pABq1 “ B1A1 • |cA| “ cn|A| where A is n ˆ n and c is a scalar. 3 N • |A| “ i“1 aii when A is diagonal (zeros everywhere except the diagonal elements) or lower- or upper-triangular (meaning that everything below or above the diagonal is 0). ± • |A´1| “ 1{|A| if A is non-singular • |A1| “ |A| • |AB| “ |A||B| While I won’t ask you to prove any of these concepts (that is what Math 313 does), you will need to remember them because we’ll use them frequently. In R, t(A) is the transpose of the matrix A, solve(A) is the inverse of A, sum(diag(A)) is the trace of A (there isn’t a function set aside to do this but diag() just extracts the diagonal elements of A), and det(A) is the determinant of A. In R, do the following problems (#3 you’ll prove by hand - not in R). 1. For each of the following, find the transpose and specify whether or not the matrix is symmetric: 4 3 (a) A “ 11 2 ˆ ˙ 2 8 (b) B “ 8 12 ˆ ˙ 1 1 2 (c) C “ 1 3 5 ¨ 2 5 8 ˛ ˝ 4 4 ‚ (d) D “ 2 4 ˆ ˙ 2. Using matrices A and B from question 1, calculate the following inverses: (a) A´1 (b) B´1 (c) pABq´1 (d) B´1A´1 and verify that pABq´1 “ B´1A´1 3.
Recommended publications
  • Newton's Method for the Matrix Square Root*
    MATHEMATICS OF COMPUTATION VOLUME 46, NUMBER 174 APRIL 1986, PAGES 537-549 Newton's Method for the Matrix Square Root* By Nicholas J. Higham Abstract. One approach to computing a square root of a matrix A is to apply Newton's method to the quadratic matrix equation F( X) = X2 - A =0. Two widely-quoted matrix square root iterations obtained by rewriting this Newton iteration are shown to have excellent mathematical convergence properties. However, by means of a perturbation analysis and supportive numerical examples, it is shown that these simplified iterations are numerically unstable. A further variant of Newton's method for the matrix square root, recently proposed in the literature, is shown to be, for practical purposes, numerically stable. 1. Introduction. A square root of an n X n matrix A with complex elements, A e C"x", is a solution X e C"*" of the quadratic matrix equation (1.1) F(X) = X2-A=0. A natural approach to computing a square root of A is to apply Newton's method to (1.1). For a general function G: CXn -* Cx", Newton's method for the solution of G(X) = 0 is specified by an initial approximation X0 and the recurrence (see [14, p. 140], for example) (1.2) Xk+l = Xk-G'{XkylG{Xk), fc = 0,1,2,..., where G' denotes the Fréchet derivative of G. Identifying F(X+ H) = X2 - A +(XH + HX) + H2 with the Taylor series for F we see that F'(X) is a linear operator, F'(X): Cx" ^ C"x", defined by F'(X)H= XH+ HX.
    [Show full text]
  • Sensitivity and Stability Analysis of Nonlinear Kalman Filters with Application to Aircraft Attitude Estimation
    Graduate Theses, Dissertations, and Problem Reports 2013 Sensitivity and stability analysis of nonlinear Kalman filters with application to aircraft attitude estimation Matthew Brandon Rhudy West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Rhudy, Matthew Brandon, "Sensitivity and stability analysis of nonlinear Kalman filters with application ot aircraft attitude estimation" (2013). Graduate Theses, Dissertations, and Problem Reports. 3659. https://researchrepository.wvu.edu/etd/3659 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. SENSITIVITY AND STABILITY ANALYSIS OF NONLINEAR KALMAN FILTERS WITH APPLICATION TO AIRCRAFT ATTITUDE ESTIMATION by Matthew Brandon Rhudy Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aerospace Engineering Approved by Dr. Yu Gu, Committee Chairperson Dr. John Christian Dr. Gary Morris Dr. Marcello Napolitano Dr. Powsiri Klinkhachorn Department of Mechanical and Aerospace Engineering Morgantown, West Virginia 2013 Keywords: Attitude Estimation, Extended Kalman Filter, GPS/INS Sensor Fusion, Stochastic Stability Copyright 2013, Matthew B.
    [Show full text]
  • Matlib: Matrix Functions for Teaching and Learning Linear Algebra and Multivariate Statistics
    Package ‘matlib’ August 21, 2021 Type Package Title Matrix Functions for Teaching and Learning Linear Algebra and Multivariate Statistics Version 0.9.5 Date 2021-08-10 Maintainer Michael Friendly <[email protected]> Description A collection of matrix functions for teaching and learning matrix linear algebra as used in multivariate statistical methods. These functions are mainly for tutorial purposes in learning matrix algebra ideas using R. In some cases, functions are provided for concepts available elsewhere in R, but where the function call or name is not obvious. In other cases, functions are provided to show or demonstrate an algorithm. In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D. License GPL (>= 2) Language en-US URL https://github.com/friendly/matlib BugReports https://github.com/friendly/matlib/issues LazyData TRUE Suggests knitr, rglwidget, rmarkdown, carData, webshot2, markdown Additional_repositories https://dmurdoch.github.io/drat Imports xtable, MASS, rgl, car, methods VignetteBuilder knitr RoxygenNote 7.1.1 Encoding UTF-8 NeedsCompilation no Author Michael Friendly [aut, cre] (<https://orcid.org/0000-0002-3237-0941>), John Fox [aut], Phil Chalmers [aut], Georges Monette [ctb], Gaston Sanchez [ctb] 1 2 R topics documented: Repository CRAN Date/Publication 2021-08-21 15:40:02 UTC R topics documented: adjoint . .3 angle . .4 arc..............................................5 arrows3d . .6 buildTmat . .8 cholesky . .9 circle3d . 10 class . 11 cofactor . 11 cone3d . 12 corner . 13 Det.............................................. 14 echelon . 15 Eigen . 16 gaussianElimination . 17 Ginv............................................. 18 GramSchmidt . 20 gsorth . 21 Inverse............................................ 22 J............................................... 23 len.............................................. 23 LU.............................................. 24 matlib . 25 matrix2latex . 27 minor . 27 MoorePenrose .
    [Show full text]
  • Notes on Linear Algebra and Matrix Analysis
    Notes on Linear Algebra and Matrix Analysis Maxim Neumann May 2006, Version 0.1.1 1 Matrix Basics Literature to this topic: [1–4]. x†y ⇐⇒ < y,x >: standard inner product. x†x = 1 : x is normalized x†y = 0 : x,y are orthogonal x†y = 0, x†x = 1, y†y = 1 : x,y are orthonormal Ax = y is uniquely solvable if A is linear independent (nonsingular). Majorization: Arrange b and a in increasing order (bm,am) then: k k b majorizes a ⇐⇒ ∑ bmi ≥ ∑ ami ∀ k ∈ [1,...,n] (1) i=1 i=1 n n The collection of all vectors b ∈ R that majorize a given vector a ∈ R may be obtained by forming the convex hull of n! vectors, which are computed by permuting the n components of a. Direct sum of matrices A ∈ Mn1,B ∈ Mn2: A 0 A ⊕ B = ∈ M (2) 0 B n1+n2 [A,B] = traceAB†: matrix inner product. 1.1 Trace n traceA = ∑λi (3) i trace(A + B) = traceA + traceB (4) traceAB = traceBA (5) 1.2 Determinants The determinant det(A) expresses the volume of a matrix A. A is singular. Linear equation is not solvable. det(A) = 0 ⇐⇒ −1 (6) A does not exists vectors in A are linear dependent det(A) 6= 0 ⇐⇒ A is regular/nonsingular. Ai j ∈ R → det(A) ∈ R Ai j ∈ C → det(A) ∈ C If A is a square matrix(An×n) and has the eigenvalues λi, then det(A) = ∏λi detAT = detA (7) detA† = detA (8) detAB = detA detB (9) Elementary operations on matrix and determinant: Interchange of two rows : detA ∗ = −1 Multiplication of a row by a nonzero scalar c : detA ∗ = c Addition of a scalar multiple of one row to another row : detA = detA 1 2 EIGENVALUES, EIGENVECTORS, AND SIMILARITY 2 a b = ad − bc (10) c d 2 Eigenvalues, Eigenvectors, and Similarity σ(An×n) = {λ1,...,λn} is the set of eigenvalues of A, also called the spectrum of A.
    [Show full text]
  • Functions Preserving Matrix Groups and Iterations for the Matrix Square Root∗
    FUNCTIONS PRESERVING MATRIX GROUPS AND ITERATIONS FOR THE MATRIX SQUARE ROOT∗ NICHOLAS J. HIGHAM† , D. STEVEN MACKEY‡ , NILOUFER MACKEY§ , AND FRANC¸OISE TISSEUR¶ Abstract. For which functions f does A ∈ G ⇒ f(A) ∈ G when G is the matrix automorphism group associated with a bilinear or sesquilinear form? For example, if A is symplectic when is f(A) symplectic? We show that group structure is preserved precisely when f(A−1)= f(A)−1 for bilinear forms and when f(A−∗) = f(A)−∗ for sesquilinear forms. Meromorphic functions that satisfy each of these conditions are characterized. Related to structure preservation is the condition f(A)= f(A), and analytic functions and rational functions satisfying this condition are also characterized. These results enable us to characterize all meromorphic functions that map every G into itself as the ratio of a polynomial and its “reversal”, up to a monomial factor and conjugation. The principal square root is an important example of a function that preserves every automor- phism group G. By exploiting the matrix sign function, a new family of coupled iterations for the matrix square root is derived. Some of these iterations preserve every G; all of them are shown, via a novel Fr´echet derivative-based analysis, to be numerically stable. A rewritten form of Newton’s method for the square root of A ∈ G is also derived. Unlike the original method, this new form has good numerical stability properties, and we argue that it is the iterative method of choice for computing A1/2 when A ∈ G. Our tools include a formula for the sign of a certain block 2 × 2 matrix, the generalized polar decomposition along with a wide class of iterations for computing it, and a connection between the generalized polar decomposition of I + A and the square root of A ∈ G.
    [Show full text]
  • Computing Real Square Roots of a Real Matrix* LINEAR ALGEBRA
    Computing Real Square Roots of a Real Matrix* Nicholas J. Higham Department of Mathematics University of Manchester Manchester Ml3 9PL, England In memory of James H. WiIkinson Submitted by Hans Schneider ABSTRACT Bjiirck and Hammarling [l] describe a fast, stable Schur method for computing a square root X of a matrix A (X2 = A).We present an extension of their method which enables real arithmetic to be used throughout when computing a real square root of a real matrix. For a nonsingular real matrix A conditions are given for the existence of a real square root, and for the existence of a real square root which is a polynomial in A; thenumber of square roots of the latter type is determined. The conditioning of matrix square roots is investigated, and an algorithm is given for the computation of a well-conditioned square root. 1. INTRODUCTION Given a matrix A, a matrix X for which X2 = A is called a square root of A. Several authors have considered the computation of matrix square roots [3, 4, 9, 10, 15, 161. A particularly attractive method which utilizes the Schur decomposition is described by Bjiirck and Hammarling [l]; in general it requires complex arithmetic. Our main purpose is to show how the method can be extended so as to compute a real square root of a real matrix, if one exists, in real arithmetic. The theory behind the existence of matrix square roots is nontrivial, as can be seen by noting that while the n x n identity matrix has infinitely many square roots for n > 2 (any involutary matrix such as a Householder transformation is a square root), a nonsingular Jordan block has precisely two square roots (this is proved in Corollary 1).
    [Show full text]
  • The Square Root Function of a Matrix
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarWorks @ Georgia State University Georgia State University ScholarWorks @ Georgia State University Mathematics Theses Department of Mathematics and Statistics 4-24-2007 The quaS re Root Function of a Matrix Crystal Monterz Gordon Follow this and additional works at: https://scholarworks.gsu.edu/math_theses Part of the Mathematics Commons Recommended Citation Gordon, Crystal Monterz, "The quaS re Root Function of a Matrix." Thesis, Georgia State University, 2007. https://scholarworks.gsu.edu/math_theses/24 This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. THE SQUARE ROOT FUNCTION OF A MATRIX by Crystal Monterz Gordon Under the Direction of Marina Arav and Frank Hall ABSTRACT Having origins in the increasingly popular Matrix Theory, the square root func- tion of a matrix has received notable attention in recent years. In this thesis, we discuss some of the more common matrix functions and their general properties, but we specifically explore the square root function of a matrix and the most effi- cient method (Schur decomposition) of computing it. Calculating the square root ofa2×2 matrix by the Cayley-Hamilton Theorem is highlighted, along with square roots of positive semidefinite matrices
    [Show full text]
  • Logarithms and Square Roots of Real Matrices Existence, Uniqueness, and Applications in Medical Imaging
    Logarithms and Square Roots of Real Matrices Existence, Uniqueness, and Applications in Medical Imaging Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA [email protected] September 2, 2019 Abstract. The need for computing logarithms or square roots of real matrices arises in a number of applied problems. A significant class of problems comes from medical imag- ing. One of these problems is to interpolate and to perform statistics on data represented by certain kinds of matrices (such as symmetric positive definite matrices in DTI). Another important and difficult problem is the registration of medical images. For both of these prob- lems, the ability to compute logarithms of real matrices turns out to be crucial. However, not all real matrices have a real logarithm and thus, it is important to have sufficient conditions for the existence (and possibly the uniqueness) of a real logarithm for a real matrix. Such conditions (involving the eigenvalues of a matrix) are known, both for the logarithm and the square root. As far as I know, with the exception of Higham's recent book [18], proofs of the results involving these conditions are scattered in the literature and it is not easy to locate them. Moreover, Higham's excellent book assumes a certain level of background in linear algebra that readers interested in applications to medical imaging may not possess so we feel that a more elementary presentation might be a valuable supplement to Higham [18]. In this paper, I present a unified exposition of these results, including a proof of the existence of the Real Jordan Form, and give more direct proofs of some of these results using the Real Jordan Form.
    [Show full text]
  • CHUNG-ANG UNIVERSITY Solutions to Problem Set #2 Answers To
    CHUNG-ANG UNIVERSITY Linear Algebra Spring 2014 Solutions to Problem Set #2 Answers to Practice Problems Problem 2.1 Let A, B, C, D and E be matrices of the following sizes; A B C D E (3 × 1) (3 × 6) (6 × 2) (2 × 6) (1 × 3) For each of the following, determine whether or not the given expression is defined. In other words, are the matrices of the correct size so that the given expression is a valid one. For those that are defined, determine the size of the resulting matrix. (a) BT (A + ET ) (b) (CT + D)BT (c) (BDT )CT Answer (a) Expression is defined, and is equal to a 6 × 1 vector. (b) Expression is defined, and is a 2 × 3 matrix. (c) Expression is defined, and the result is a 3 × 6 matrix. Problem 2.2 Consider the matrices 2 4 9 3 2 0 1 −7 2 A = ; B = ; C = −3 0 −4 6 5 3 0 4 5 2 1 2 −2 1 8 3 2 0 3 0 3 2 a b c 3 D = 4 3 0 2 5 ; E = 4 −5 1 1 5 ; F = 4 b a b 5 4 −6 3 7 6 2 c b a and evaluate each of the following expressions. (a) A(BC) (b) Tr(4ET − D) (c) Tr(FFT ) Answer 58 22 (a) A(BC) = . −50 226 (b) Tr(4ET − D) = 4(3) − 1 = 11. (c) Tr(FFT ) = 3a2 + 4b2 + 2c2 Problem 2.3 Find all values of k, if any, that satisfy the following equation 2 1 2 0 3 2 2 3 [2 2 k] 4 2 0 3 5 4 2 5 = 0 0 3 1 k Answer k = −2; −10 Problem 2.4 A matrix is said to be an orthogonal matrix if its transpose is the same as its inverse.
    [Show full text]
  • Global Optimization: from Theory to Implementation
    Global Optimization: from Theory to Implementation Leo Liberti DEI, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy Nelson Maculan COPPE, Universidade Federal do Rio de Janeiro, P.O. Box, 68511, 21941-972 Rio de Janeiro, Brazil DRAFT To Anne-Marie DRAFT Preface The idea for this book was born on the coast of Montenegro, in October 2003, when we were invited to the Sym-Op-Is Serbian Conference on Operations Research. During those days we talked about many optimization problems, going from discussion to implementation in a matter of minutes, reaping good profits from the whole \hands-on" process, and having a lot of fun in the meanwhile. All the wrong ideas were weeded out almost immediately by failed computational experiments, so we wasted little time on those. Unfortunately, translating ideas into programs is not always fast and easy, and moreover the amount of literature about the implementation of global optimization algorithm is scarce. The scope of this book is that of moving a few steps towards the system- atization of the path that goes from the invention to the implementation and testing of a global optimization algorithm. The works contained in this book have been written by various researchers working at academic or industrial institutions; some very well known, some less famous but expert nonetheless in the discipline of actually getting global optimization to work. The papers in this book underline two main developments in the imple- mentation side of global optimization: firstly, the introduction of symbolic manipulation algorithms and automatic techniques for carrying out algebraic transformations; and secondly, the relatively wide availability of extremely ef- ficient global optimization heuristics and metaheuristics that target large-scale nonconvex constrained optimization problems directly.
    [Show full text]
  • Linear Algebra
    Math 221: LINEAR ALGEBRA Chapter 8. Orthogonality §8-3. Positive Definite Matrices Le Chen1 Emory University, 2020 Fall (last updated on 11/10/2020) Creative Commons License (CC BY-NC-SA) 1 Slides are adapted from those by Karen Seyffarth from University of Calgary. Positive Definite Matrices Cholesky factorization – Square Root of a Matrix Definition An n × n matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then λ > 0. Theorem If A is a positive definite matrix, then det(A) > 0 and A is invertible. Proof. Let λ1; λ2; : : : ; λn denote the (not necessarily distinct) eigenvalues of A. Since A is symmetric, A is orthogonally diagonalizable. In particular, A ∼ D, where D = diag(λ1; λ2; : : : ; λn). Similar matrices have the same determinant, so det(A) = det(D) = λ1λ2 ··· λn: Since A is positive definite, λi > 0 for all i, 1 ≤ i ≤ n; it follows that det(A) > 0, and therefore A is invertible. Positive Definite Matrices Theorem If A is a positive definite matrix, then det(A) > 0 and A is invertible. Proof. Let λ1; λ2; : : : ; λn denote the (not necessarily distinct) eigenvalues of A. Since A is symmetric, A is orthogonally diagonalizable. In particular, A ∼ D, where D = diag(λ1; λ2; : : : ; λn). Similar matrices have the same determinant, so det(A) = det(D) = λ1λ2 ··· λn: Since A is positive definite, λi > 0 for all i, 1 ≤ i ≤ n; it follows that det(A) > 0, and therefore A is invertible. Positive Definite Matrices Definition An n × n matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then λ > 0.
    [Show full text]
  • Cholesky Decomposition
    Cholesky decomposition In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g. Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.[1] Contents Statement LDL decomposition Example Applications Linear least squares Non-linear optimization Monte Carlo simulation Kalman filters Matrix inversion Computation The Cholesky algorithm The Cholesky–Banachiewicz and Cholesky–Crout algorithms Stability of the computation LDL decomposition Block variant Updating the decomposition Rank-one update Rank-one downdate Adding and Removing Rows and Columns Proof for positive semi-definite matrices Generalization Implementations in programming libraries See also Notes References External links History of science Information Computer code Use of the matrix in simulation Online calculators Statement The Cholesky decomposition of aHermitian positive-definite matrix A is a decomposition of the form where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition.[2] If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries of L are allowed to be zero.[3] When A has real entries, L has real entries as well, and the factorization may be writtenA = LLT.[4] The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive diagonal entries such thatA = LL*.
    [Show full text]