A Complete Bibliography of Publications in Linear Algebra and Its Applications: 1980–1989
Total Page:16
File Type:pdf, Size:1020Kb
A Complete Bibliography of Publications in Linear Algebra and its Applications: 1980{1989 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 24 March 2018 Version 2.10 Title word cross-reference #3162 [Sta81]. (0; 1) [BFP88, BH85, CS89b, LN80, MSS89, Min85, Min87b, PS88, SS86]. m m (2 ; 2 4) [KL88a]. (A1)[Ber87].(F; G)[Emr83].(H; F)[Ozg86].¨ (p; q) [LTT83,− LTT88]. (S)[Wan86].(s; t) [JP82]. (T ) [Wan86]. (trAp)1=p [Mag87]. (x α)(x α2)(x α3) [KL88a]. (YA DZ; Y C BZ)=(E;F) [wEC87b]. + [Sil87b].− − 2 [KRS82,− Tor86a]. 0 [Fri85a].− 0; 1− [Fuj84]. 1 [BP84a, CR86,− Fri85a, RB89]. 2 [BN89, ELS82a,f ± RW89,g Ver84, HLG85]. 2 + 5 [BN89]. 27 [RS86a]. 2n [Giv84, YH82]. 2 2 [Tho82b, Uhl81a, Uhl83]. 3 ∗ × 2 f [AL80, Bix82]. 3 3 [Piz83, AO82]. [dOdS83]. A2d−1(p )[IS89].A × t t−1 [BG82, Web86]. A(λ)=A0λ + A1λ + + At−1λ + At [BZ89]. A>0 [Sha86a]. Akb [CLS87]. Am = dl + λJ [Ma84].··· Am = λJ [MW87a]. AB [Sha86a]. A A−1 I [BK87]. AX + YB= C [Zie85]. AX XB = C [LLT84, dSB81b].◦ AX≥ = B [Uhl87, JUW82, dSB81a]. AX =−C [Mit84]. Ax = λBx [BG82, LS87, LM80]. AXB + CY D = E [BK80b]. 1 2 AXB CXD = E [wEC87b, HG89]. B [BG82]. B>0 [Sha86a]. c [Beb86,− LT83b, LT88b, BP85, GS82, GS83a, Tsi84]. C∗ [Gro82, LP81]. c2 [vB85]. Cn [Hol85]. [Yan84]. d [DG87, BH84, Cai84, Har80, Tog80]. H D1AD2 [Bap82]. ∆H [Gab87]. d 3[IS89].dn [KP80]. e [Fri88, Sta87]. E(t) ≥ [Eva87]. `1 [dC87]. `1 [Flo82]. `p [Gol86a, GS83b, Gol84]. F (x)+M(x)G(1=x) = 0 [Ng87]. F (X)+M(X)G(X−1) = 0 [Eba89]. G [NT80, MW87a, Che83d, GW85, Mar81a]. Γ [OH85]. GF(2m) [KL88a]. H [ABO88, FH88a, HS85, LP82a, NV84, Neu86, Pol87, Tad81]. H1 [LA88, LST88]. HR [BG82, BG81b]. H1 [JJS89]. K n p [Yua86, Bea83, Bea88, BL89a, Pif87]. K [Eba89]. K1 [VM87, Bro89b]. l k n [Dru87]. l1(Γ) [Pol86]. L2 [Tad81]. Λ R [Mor85]. n [HHM89]. LP [Naz84]. LU [ABO88, Meh84c, Mur83, OS89, FP81, GMSW87].≤ M [Joh82a, Lew89a, Ste81b, Zha87b, Wol89a, AS82, BS87a, EP88, FMN83, FJMN85, FJM87, FM88b, FM88a, FHV85, FP81, HRS88, HS88a, Ima83, Ima84, JORvdD87, KR83, KB85, LN80, Li89, LP80, Meh84b, MNR84, Neu86, Neu81b, NP87, Sch84a, Smi87, ST87a, Szu89a, dG82]. Mn(Z=h) [Har81b]. M B∗MB [BKK83]. MMA [Fie88b]. m n (mn q)[Bin86].n ≥ × × − [AN83, Bou88, KP80, KS84, Tak85, TST86, Wer85a, Joh82b]. N0 [Joh85, Smi86]. N N [GT89a]. O(m2)[Kle87].O(N 2) [GT89a]. O+(V ) [KN87b]. ! [HB84,× HM86]. P [BG84a, Fan89, HJ86d, Tho85, VNC84, WN87, HB83, HJ86c]. P (t) [Eva87]. 3 n 2 Pk [Bre84]. P0 [Fan89, RM85, HB83]. Per(J2 M) 2 [Per(M)] [Pat88a]. Ψ [OH85]. p p [Tau85]. Q [JP84, RCS89, CvRS81,⊗ ≥ Mor88]. QD [Ker83]. QL [Zha89, JZ85].× QR [Cha87a, HS86b, BG86, Dem89, Fa˘ı89]. r [GB87, Gov89b, Wer87]. R3 [PL88]. Rn [MLS83, KL87, MLS87, MLS88]. S [Kle87, DSD88, Wat87a, Fie84c]. Σ [GVK+83]. Sx+ Tx− = y [KL87]. t [BF82, DS89a, Eva87, RCS89, Wil82b, Hal86b]. T (H−1=nT )n = K [Fur88]. ∗ tieλkt [Har82]. τ [HB84, HM86]. V [Meh84c]. W [JP88a, TW80]. W f[Had86,g Br¨u84d]. x [GR89a]. X AXB = C [Wim88, LLT84]. XA+ BX + C = 0 [Mil88]. XA− BX = R [Dat88]. XA = AT X [DD87b]. XAX−1 + B [Sil86]. XB = D [Mit84].− y [GR89a]. Z [HS88b, Smi88, HS88a, Ram86]. Z=pZ [Wat88b]. Zp [Str87]. Zq [Jun89]. ZME [Stu88a]. D(Xk) = kXk−1 [Sun82b]. j j j j -adic [Tho85]. -algebra [Had86]. -algebras [Br¨u84d, Gro82]. -analogues [RCS89]. -circulant [MW87a]. -circulants [Min85, Min87b]. -classes [Yan84]. -connectivity [Bix82]. -convexity [LP81]. -cyclic [ELS82a, VNC84]. -D [RW89]. -decomposition [Mur83]. -designs [DS89a, RCS89, Wil82b]. -dimensional [DG87]. -frames [KS84]. -functions [Che83d, NT80]. -Hessenberg [Pif87]. -ideals [Hal86b]. -invariant [Ozg86,¨ Emr83]. -inverse [HLG85]. -irreducible [TW80]. -like [BG86]. -linear [Bou88]. -lossless [GVK+83]. -majorization [GW85]. -matrices [AS82, BP85, BS87a, BH85, CvRS81, EP88, FMN83, Fie84c, FJMN85, FJM87, FM88b, FHV85, FP81, Gab87, HB83, HB84, HS85, HJ86c, HM86, 3 HRS88, HS88a, Ima83, Joh82b, KR83, KB85, LN80, LP80, Meh84b, MNR84, NV84, Neu86, Neu81b, NP87, Pol87, RM85, Ram86, SS86, Smi86, ST87a, Stu88a, Szu89a, ABO88, BG84a, Fan89, Fie88b, JP84, Joh82a, Joh85, Kle87, Lew89a, Meh84c, Smi88, Ste81b, Zha87b]. -matrix [FM88a, Ima84, JORvdD87, LN80, Li89, Mor88, Sch84a, Smi87, dG82, dOdS83, HJ86d, HS88b]. -monotonicity [Wer87]. -networks [vB85]. -norm [dC87]. -numerical [Beb86, GS82, GS83a, LTT83, LTT88, Tsi84]. -potent [JP82]. -preservers [Bea83]. -proper [Web86]. -reguli [BF82]. -selfadjoint [LP82a]. -special [LT83b]. -spectral [LT88b]. -splittings [Sch84a]. -stability [Tad81, Tog80]. -stable [BH84, Cai84, Har80]. -structure [RB89]. -symmetric [Wat87a]. -tensors [AL80]. -Toeplitz [GB87, Gov89b]. -type [Fa˘ı89]. -unitary [FH88a]. -way [Tak85]. 100 [Ano88a, BS89]. 1968/1988 [Ano88a, BS89]. 1978 [Ple81]. 1980 [BP81]. 1981-1984 [Ano84i]. 1983 [BU84]. 1984 [GL85a, Hol85, Lew85b]. 1984-1986 [Ano86n]. 1987 [BU88]. 20 [Ano88a, Sta81]. 23 [BKR80]. 2D [BFM89b, BFM89a]. 30 [Cai82]. 30-41 [Ano88-28]. 3rd [Gov89a]. 41-56 [AB85]. 41-60 [Ano84i]. 42-54 [Ano88-28]. 57 [Sta81]. 61-80 [Ano86n]. 70 [Sha89]. 70th [FL89b]. 75th [Ano85s, EH85]. 80b [BKR80]. 82c [Cai82]. 86m [Sha89]. 89h [BS89]. Abelian [Bai85, BM82, EKC85, Kob85, Wim87]. ab´eliens [EKC85]. Abraham [Bar81a]. absolute [Kit89]. accelerate [Hug85]. accelerated [HY80]. Accelerating [EN89]. Acceleration [CM82, YJ80]. acceptance [Bon85]. accounting [Zen89]. Accuracy [Pai80, Sco85]. accurate [dG82]. acyclic [BH84, Dua89, Her86]. Adaptive [Pol89]. Addendum [Ano86a]. addition [Ma85a, Ma85b]. additional [ST88b]. additive [Rom86, SK84]. adic [Tho85]. adjacency [Bak87]. adjoint [Cro81, Hoc87, Mar84a]. adjoints [YB81]. Adjustment [GP80]. admissibility [BM89a]. Admissible [BM85]. Advanced [Cam84b]. affine [FH80, KL87, LP82b, Tch89]. Aggregation [CM82, MP80, MS83, Man84]. agree [Haa84]. Albert [Tho83a]. Alefeld [Ral86]. Alexander [Bru84c, Car85, Gau83b, SDGT81]. Alfred [HM84b]. Algebra [AB85, Ano81u, Ano81v, Ano83l, Ano84q, BV89, BS89, BKR80, Bun87, Cai82, Car85, For86, Gov89a, NdOH89, Pul87, Sha89, Sta81, dO83, 4 LAA68, Ano80n, Ano80o, Ano80p, Ano81p, Ano81q, Ano81r, Ano81s, Ano81t, Ano82n, Ano88-28, BBV88b, BF83, Bur86, BCS87, CW85, CMR81, CZ84, Dad87, DALSP89, Had86, MR84, Mor85, Neu82b, OR88, RWZ88, Tre85a, Zas83, Gov88a, Gov89a]. Algebraic [DM82, J´od88a, Kra81, VV87b, Adk89, Ano80q, Ant83, AZ83, Bye87a, Chu88, Chu89, Cop81, Joh87, Ker83, KO85b,¨ Lin87b, LPC89, RR84b, RV88, Sch83b, Sha86b, Tau80a, Tau80b, Uch86, VB88, Vas85, Wim84, Wim85a, Zim80]. Algebras [Laf81a, AL89, Bar89b, Br¨u84d, BC85, Cos89, Far84, Fei84, Gam88b, Gro82, Gur85a, HG88, Hel87, Hig87b, Hol87, Isa80, Laf81b, Laf83b, Laf85a, Lei89b, Lew82, Mac89, MM89, MCCF85, MCCF89, Per86, Per88b, Per88a, Que87a, Ros84b, Sha87, SM88, Tan86, Tom85, Tow80, VM87, WB81, dGH83, Wat80]. alg`ebre [Tre85a]. alg`ebres [Hel87, MM89, MCCF85, MCCF89]. Algorithm [APP88, Bai88, BV88, BG84b, CV87, O'L80a, Pai80, PV86, Sim84, dH87, ACHS89, Ant88, AS80, BN83, Boj86, BG81b, Dan89, DD87b, Giv82, Gow80, HM89b, Hu87, JZ85, JM89b, Kle87, Lin87a, O'L80b, Par80, Ram86, Saa86, She87b, Zha89]. Algorithms [Bun87, CS86b, Gam88b, JY86, SHW86, Wo´z80, AL86b, AFW81, BLAK89, DL89, EHL81, ER87, GKKL87, GM88b, Hen83, JY87, Ker83, Naz84, NM85, OS89, Pow87, Mon84]. Allen [Mon84]. Allowable [SS88]. Almost [TvdW88, V¨al89a, Adi82, CH83a, Rho89, RS86b, Sha83]. Alston [Ano80a]. alternate [CL82b]. alternating [GL84]. alternative [FH80, Man81]. always [Ogr88]. among [Vei86]. analogies [Beb86]. analogue [GH87, Sun82b, Wim88]. analogues [AP83, AP88, RCS89]. Analyses [GLN86b]. Analysis [APP88, Ano88-32, EL88, Kie87, OvdD88, Sim84, Wo´z80, AL86b, ACC88, Bj¨o87, Bro85b, BG81b, CD85, CLP82, Dry85, FHV85, Joh88, Ker87, Man84, May88, May85, Neu81a, Neu84, Ric83, SS85, Sha85f, Sha89, ST88b, TvdW88, And87a]. analytic [Gor89]. angles [Cve88]. angularity [RC81]. anisotropic [Jam88, Jam83]. annihilated [How80]. Announcement [Ano81a, Ano82a]. ANOVA [Tak85]. Anti [GS84, Sou86a, Wie85a]. Anti-Hadamard [GS84]. Anti-invariant [Sou86a]. anti-Morishima [Wie85a]. Antieigenvalues [Mir83]. Antiinvariant [Sou86b]. Antipodal [Gar82a]. antiprisms [Bro85a]. Any [Nak84]. anyway [Car86]. Apollonian [Wil82a]. appear [Wie85c]. Appl [AB85, BS89, BKR80, Cai82, Sha89, Sta81]. Application [MS80a, Mon84, BR89a, Chu84, Dio89, FT89b, FHV85, GR87, HF85, Hun82, SS86, Spi82, Ste85, TG87, Usm87]. Applications [Bap86a, BV89, Har82, Jin88, Mar84b, NdOH89, Oko86a, Oko86b, RR84b, Rot81, AT80, LAA68, Ano82n, Ber86c, BF83, Bru88b, Cla88, Dah83, Dat84, Dat88, EHL81, Far87, FH88a, Gad88, GW85, GT82, HHM89, HLG85, K¨on86, Lin89, MP82, Mne89, MG85, MM88, Ozg86,¨ Ran89, RY85b, Rei86, SH88, TC86, Uhl87, Vei82, VV86, Wer83, Wol81, Ano81u, Ano81v, Ano83l, Ano84q, Gai89, dO83, Bru84c, Gov89a, Ple83, Pul87, Tho83a, Bar87]. Applied [NdPV84, Sch84c, Hun82, Neu81a, NV84, Cam84c, Car85, Gov88a, Gov89a]. 5 Approach [Chu86b, VV87c, BFM89b, BFM89a, Dio89, GT89a, KGO83,¨ LA88, Man82, MW84, Neu80, OM89, RY85a, Sha86b, Shr86, Wim89c]. approaches [Mal89, Mur89]. Approximate [Lip86, AP86, BS83, HW89, Zie87]. Approximating [Van84, HRR87]. Approximation [And85b, CM82, GHS87, Gro80b, HW88, Chu86a, Que83, Wei83, dBP82, dB84]. Approximations [Flo82, LR81, LM87, NS89]. approximators [Far85a]. arbitrary [BS82a, DGK83, Fia83, Har84b, Lei89a, Lin88, VD83, Won82b]. architecture [HTRG88]. area [Mor85]. arising [Acz85, GM89, MS86]. arithmetic [And83, HTRG88, Vas85]. arithmetic-geometric-harmonic-mean [And83]. arithmetical [Hel87]. arithm´etiques [Hel87].