Underwater Sound and the Marine Mammal Acoustic Environment

Total Page:16

File Type:pdf, Size:1020Kb

Underwater Sound and the Marine Mammal Acoustic Environment Side Lobe (a) A A Main Lobe Lininne Transducer Array (b) y A Acoustic Axis eCirrculculccuuullalarar PlaPlPlaannee ArrA ayy ource SoS EqEquuaa nne LoLoudd UnderwaterA AND x Sound THE MARINE MAMMAL ACOUSTIC ENVIRONMENT A Guide to Fundamental Principles Prepared for the U. S. Marine Mammal Commission by David L. Bradley, Ph.D. T Richard Stern, Ph.D. July 2008 w (t) UNDERWATER SOUND AND THE MARINE MAMMAL ACOUSTIC ENVIRONMENT A Guide to Fundamental Principles by David L. Bradley, Ph.D. Richard Stern, Ph.D. Prepared for the U. S. Marine Mammal Commission July 2008 Cover and text design by Raj Patel, North Potomac, Maryland. Printing by Spectrum Printing & Graphics, Rockville, Maryland. Contents A NOTE FROM THE COMMISSIONERS .............................................................................. iii PREFACE ....................................................................................................................................v Chapter 1 FUNDAMENTAL PRINCIPLES AND DEFINITIONS .........................................1 What is sound? .........................................................................................................1 Acoustical parameters ..............................................................................................2 Pressure ............................................................................................................3 Particle velocity ...............................................................................................3 Density .............................................................................................................3 Intensity ............................................................................................................3 Ambient (background) conditions ...........................................................................4 How does sound travel? ...........................................................................................4 Time, space, and information ...................................................................................4 The sine wave ..................................................................................................5 Period and frequency .......................................................................................7 Wavelength.......................................................................................................7 Speed of sound .................................................................................................7 Phase ................................................................................................................8 Dimensional units and the decibel ...........................................................................8 Sound pressure and intensity levels .......................................................................10 Sound levels in air versus water .............................................................................11 Points to remember ................................................................................................13 Chapter 2 THE OCEAN ENVIRONMENT ...........................................................................15 Geographical and physical properties ....................................................................15 The ocean’s boundaries ..........................................................................................16 Expected values and variation—a caveat ..............................................................16 Variation of the speed of sound in the ocean .........................................................17 Sound velocity profi le ....................................................................................17 Frequency spectrum ...............................................................................................19 Noise spectrum in the ocean environment .............................................................19 Points to remember ................................................................................................21 Chapter 3 SOURCES OF SOUND .........................................................................................23 Generating sound ...................................................................................................23 Scale .......................................................................................................................23 Long and short times ......................................................................................24 Large and small sizes .....................................................................................25 Near and far fi elds ..........................................................................................25 Sources of sound found in the sea ..........................................................................25 Natural, biotic sources ...................................................................................25 Marine mammals ...............................................................................26 Fish .....................................................................................................26 Invertebrates .......................................................................................27 ~~ i ~~ Natural, abiotic sources ..................................................................................27 Seismic disturbances ..........................................................................27 Anthropogenic sources ...................................................................................27 Large vessels and ports ......................................................................28 Air traffi c ............................................................................................30 Fishing industry .................................................................................30 Petroleum exploration ........................................................................31 Military equipment and operations ....................................................32 Other signifi cant sources ....................................................................32 Points to remember ................................................................................................32 Chapter 4 SOUND GENERATION, PROPAGATION, AND RECEPTION .........................35 The spatial characteristics of sound sources ..........................................................36 Simple sources ...............................................................................................36 Complex sources (arrays) ..............................................................................36 The unbounded and ideal ocean .............................................................................38 Geometric spreading ......................................................................................38 The bounded and real ocean ..................................................................................38 Absorption......................................................................................................40 Viscosity .............................................................................................40 Relaxation processes ..........................................................................40 Refl ection .......................................................................................................41 Refraction .......................................................................................................42 Scattering .......................................................................................................43 Reverberation .................................................................................................43 Deep water (blue water) and shallow water ...........................................................43 Spatial characteristics of sound receivers ..............................................................44 Points to remember ................................................................................................45 Chapter 5 HEARING SOUND: HUMANS AND MARINE MAMMALS ...........................47 Transduction ...........................................................................................................47 Humans ..................................................................................................................49 Marine mammals ...................................................................................................50 Sound levels ...................................................................................................50 Points to remember ................................................................................................50 Chapter 6 SOUND AND MARINE MAMMALS—FINAL THOUGHTS ...........................53 Hearing-centric sensing .........................................................................................53 Potential threats to marine mammal survival .........................................................54 Measurements and observations ............................................................................55 Points to remember ................................................................................................56 ACKNOWLEDGEMENTS ...................................................................................57 FURTHER READING ...........................................................................................59
Recommended publications
  • Underwater Acoustics: Webinar Series for the International Regulatory Community
    Underwater Acoustics: Webinar Series for the International Regulatory Community Webinar Outline: Marine Animal Sound Production and Reception Thursday, December 3, 2015 at 12:00pm (US East Coast Time) Sound production and reception in teleost fish (M. Clara P. Amorim, Ispa – Instituto Universitário) • Teleost fish are likely the largest vocal vertebrate group. Sounds made by fish can be an important part of marine soundscapes. • Fish possess the most diversified sonic mechanisms among vertebrates, which include the vibration of the swim bladder through intrinsic or extrinsic sonic muscles, as well as the rubbing of bony elements. • Fish sounds are usually pulsed (each sonic muscle contraction corresponds to a sound pulse), short (typically shorter than 1 s) and broadband (with most energy below 1 kHz), although some fish produce tonal sounds. Sounds generated by bony elements are often higher frequency (up to a few kHz). • In contrast with terrestrial vertebrates, fish have no external or middle ear. Fish detect sounds with the inner ear, which comprises three semicircular canals and three otolithic end organs, the utricle, the saccule and the lagena. Fish mostly detect particle motion and hear up to 1 kHz. Some species have evolved accessory auditory structures that serve as pressures transducers and present enhanced hearing sensitivity and increased frequency detection up to several kHz. Fish hearing seems to have evolved independently of sound production and is important to detect the ‘auditory scene’. • Acoustic signals are produced during social interactions or during distress situations as in insects or other vertebrates. Sounds are important in mate attraction, courtship and spawning or to defend a territory and gain access to food.
    [Show full text]
  • 6. Units and Levels
    NOISE CONTROL Units and Levels 6.1 6. UNITS AND LEVELS 6.1 LEVELS AND DECIBELS Human response to sound is roughly proportional to the logarithm of sound intensity. A logarithmic level (measured in decibels or dB), in Acoustics, Electrical Engineering, wherever, is always: Figure 6.1 Bell’s 1876 é power ù patent drawing of the 10log ê ú telephone 10 ëreference power û (dB) An increase in 1 dB is the minimum increment necessary for a noticeably louder sound. The decibel is 1/10 of a Bel, and was named by Bell Labs engineers in honor of Alexander Graham Bell, who in addition to inventing the telephone in 1876, was a speech therapist and elocution teacher. = W = −12 Sound power level: LW 101og10 Wref 10 watts Wref Sound intensity level: = I = −12 2 LI 10log10 I ref 10 watts / m I ref Sound pressure level (SPL): P 2 P = rms = rms = µ = 2 L p 10log10 2 20log10 Pref 20 Pa .00002 N / m Pref Pref Some important numbers and unit conversions: 1 Pa = SI unit for pressure = 1 N/m2 = 10µBar 1 psi = antiquated unit for the metricly challenged = 6894Pa kg ρc = characteristic impedance of air = 415 = 415 mks rayls (@20°C) s ⋅ m2 c= speed of sound in air = 343 m/sec (@20°C, 1 atm) J. S. Lamancusa Penn State 12/4/2000 NOISE CONTROL Units and Levels 6.2 How do dB’s relate to reality? Table 6.1 Sound pressure levels of various sources Sound Pressure Description of sound source Subjective Level (dB re 20 µPa) description 140 moon launch at 100m, artillery fire at gunner’s intolerable, position hazardous 120 ship’s engine room, rock concert in front and close to speakers 100 textile mill, press room with presses running, very noise punch press and wood planers at operator’s position 80 next to busy highway, shouting noisy 60 department store, restaurant, speech levels 40 quiet residential neighborhood, ambient level quiet 20 recording studio, ambient level very quiet 0 threshold of hearing for normal young people 6.2 COMBINING DECIBEL LEVELS Incoherent Sources Sound at a receiver is often the combination from two or more discrete sources.
    [Show full text]
  • Sony F3 Operating Manual
    4-276-626-11(1) Solid-State Memory Camcorder PMW-F3K PMW-F3L Operating Instructions Before operating the unit, please read this manual thoroughly and retain it for future reference. © 2011 Sony Corporation WARNING apparatus has been exposed to rain or moisture, does not operate normally, or has To reduce the risk of fire or electric shock, been dropped. do not expose this apparatus to rain or moisture. IMPORTANT To avoid electrical shock, do not open the The nameplate is located on the bottom. cabinet. Refer servicing to qualified personnel only. WARNING Excessive sound pressure from earphones Important Safety Instructions and headphones can cause hearing loss. In order to use this product safely, avoid • Read these instructions. prolonged listening at excessive sound • Keep these instructions. pressure levels. • Heed all warnings. • Follow all instructions. For the customers in the U.S.A. • Do not use this apparatus near water. This equipment has been tested and found to • Clean only with dry cloth. comply with the limits for a Class A digital • Do not block any ventilation openings. device, pursuant to Part 15 of the FCC Rules. Install in accordance with the These limits are designed to provide manufacturer's instructions. reasonable protection against harmful • Do not install near any heat sources such interference when the equipment is operated as radiators, heat registers, stoves, or other in a commercial environment. This apparatus (including amplifiers) that equipment generates, uses, and can radiate produce heat. radio frequency energy and, if not installed • Do not defeat the safety purpose of the and used in accordance with the instruction polarized or grounding-type plug.
    [Show full text]
  • OCEANS ´09 IEEE Bremen
    11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education.
    [Show full text]
  • On Ocean Waveguide Acoustics
    BOOKREVIEW ___________________________________________________ GEORGE V. FRISK ON OCEAN WAVEGUIDE ACOUSTICS acoustic waves with multilayered media is also an ac­ ACOUSTIC WAVEGUIDES: APPLICATIONS TO OCEANIC SCIENCE tive area of research in underwater acoustics. By C. Allen Boyles, Principal Professional Staff, In recent years, the inverse problem of determining The Johns Hopkins University Applied Physics Laboratory oceanographic properties from acoustic measurements Published by John Wiley & Son, New York, 1984. 321 pp. $46.95 has become increasingly important and has given rise to the term "acoustical oceanography," a variant of "ocean acoustics" that emphasizes the oceanograph­ ic implications of acoustic experiments. A major de­ The field of ocean acoustics is an active area of the­ velopment in this area is time-of-flight acoustic oretical and experimental research, with a continual­ tomography in which front and eddy intensity and ly expanding body of literature in research journals variability over hundreds of kilometers are measured and textbooks. Boyles' book is a welcome addition to acoustically. In ocean-bottom acoustics, direct inverse the literature and provides a useful text for both stu­ methods are being developed that utilize some mea­ dents and practitioners in the field. surement of the acoustic field, such as the plane wave Although electromagnetic waves are strongly ab­ reflection coefficient of the bottom, as direct input to sorbed by water, acoustic waves can, under the prop­ algorithms for determining the acoustic properties of er conditions, propagate over hundreds, even thou­ the bottom. This approach is to be contrasted with sands, of miles through the ocean. As a result, sound conventional techniques in which forward models for waves and sonar assume the major role in the ocean computing the acoustic field are run for different bot­ that electromagnetic waves and radar play in the at­ tom properties until best fits to the data are obtained.
    [Show full text]
  • Sound Power Measurement What Is Sound, Sound Pressure and Sound Pressure Level?
    www.dewesoft.com - Copyright © 2000 - 2021 Dewesoft d.o.o., all rights reserved. Sound power measurement What is Sound, Sound Pressure and Sound Pressure Level? Sound is actually a pressure wave - a vibration that propagates as a mechanical wave of pressure and displacement. Sound propagates through compressible media such as air, water, and solids as longitudinal waves and also as transverse waves in solids. The sound waves are generated by a sound source (vibrating diaphragm or a stereo speaker). The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the speed of sound and are forming the sound wave. At a fixed distance from the sound source, the pressure, velocity, and displacement of the medium vary in time. Compression Refraction Direction of travel Wavelength, λ Movement of air molecules Sound pressure Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average, or equilibrium) atmospheric pressure, caused by a sound wave. In air the sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit for sound pressure p is the pascal (symbol: Pa). 1 Sound pressure level Sound pressure level (SPL) or sound level is a logarithmic measure of the effective sound pressure of a sound relative to a reference value. It is measured in decibels (dB) above a standard reference level. The standard reference sound pressure in the air or other gases is 20 µPa, which is usually considered the threshold of human hearing (at 1 kHz).
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Advance and Unedited Reporting Material (English Only)
    13 March 2018 (corr.) Advance and unedited reporting material (English only) Seventy-third session Oceans and the law of the sea Report of the Secretary-General Summary In paragraph 339 of its resolution 71/257, as reiterated in paragraph 354 of resolution 72/73, the General Assembly decided that the United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea would focus its discussions at its nineteenth meeting on the topic “Anthropogenic underwater noise”. The present report was prepared pursuant to paragraph 366 of General Assembly resolution 72/73 with a view to facilitating discussions on the topic of focus. It is being submitted for consideration by the General Assembly and also to the States parties to the United Nations Convention on the Law of the Sea, pursuant to article 319 of the Convention. Contents Page I. Introduction ............................................................... II. Nature and sources of anthropogenic underwater noise III. Environmental and socioeconomic aspects IV. Current activities and further needs with regard to cooperation and coordination in addressing anthropogenic underwater noise V. Conclusions ............................................................... 2 I. Introduction 1. The marine environment is subject to a wide array of human-made noise. Many human activities with socioeconomic significance introduce sound into the marine environment either intentionally for a specific purpose (e.g., seismic surveys) or unintentionally as a by-product of their activities (e.g., shipping). In addition, there is a range of natural sound sources from physical and biological origins such as wind, waves, swell patterns, currents, earthquakes, precipitation and ice, as well as the sounds produced by marine animals for communication, orientation, navigation and foraging.
    [Show full text]
  • Lumens and Loudness: Projector Noise in a Nutshell
    Lumens and loudness: Projector noise in a nutshell Jackhammers tearing up the street outside; the In this white paper, we’re going to take a closer look at projector noise: what causes neighbor’s dog barking at squirrels; the hum of it, how to measure it, and how to keep it to a minimum. the refrigerator: noise is a fixture in our daily Why do projectors make noise? lives, and projectors are no exception. Like many high-tech devices, they depend on cooling There’s more than one source of projector noise, of course, but cooling fans are by systems that remove excess heat before it can far the major offender—and there’s no way around them. Especially projector bulbs cause permanent damage, and these systems give off a lot of heat. This warmth must be continuously removed or the projector will overheat, resulting in serious damage to the system. The fans that keep air unavoidably produce noise. flowing through the projector, removing heat before it can build to dangerous levels, make noise. Fans can’t help but make noise: they are designed to move air, and the movement of air is what makes sound. How much sound they make depends on their construction: the angle of the blades, their size, number and spacing, their surface quality, and the fan’s rotational speed. Moreover, for projector manufacturers it’s also key not to place a fan too close to an air vent or any kind of mesh, or they’ll end up with the siren effect: very annoying high-frequency, pure-tone noise caused by the sudden interruption of the air flow by the vent bars or the mesh wires.
    [Show full text]
  • Large Scale Sound Installation Design: Psychoacoustic Stimulation
    LARGE SCALE SOUND INSTALLATION DESIGN: PSYCHOACOUSTIC STIMULATION An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Taylor H. Andrews, CS 2012 Mark E. Hayden, ECE 2012 Date: 16 December 2010 Professor Frederick W. Bianchi, Advisor Abstract The brain performs a vast amount of processing to translate the raw frequency content of incoming acoustic stimuli into the perceptual equivalent. Psychoacoustic processing can result in pitches and beats being “heard” that do not physically exist in the medium. These psychoac- oustic effects were researched and then applied in a large scale sound design. The constructed installations and acoustic stimuli were designed specifically to combat sensory atrophy by exer- cising and reinforcing the listeners’ perceptual skills. i Table of Contents Abstract ............................................................................................................................................ i Table of Contents ............................................................................................................................ ii Table of Figures ............................................................................................................................. iii Table of Tables .............................................................................................................................. iv Chapter 1: Introduction .................................................................................................................
    [Show full text]
  • The Audiogram
    Recently,Recently, I’veI’ve been trying to orga- evaluations, and they are truly im- nize some of the columns and articles pressive, the information and insights RI’veI’ve written overover the past ten years.years. provided by the simple audiogram As I was looking through them, it be- can still provide the most pertinent came apparent that I’ve neglected to information to explain the behavioral discuss what is perhaps the implications of a hearing loss. most important hearing di- Perhaps the most important in- mension of all, the simple sight of all is an appreciation of how The audiogram. specifi c audiograms impact upon the In reality, however, perception of certain speech sounds. the “simple” audiogram, Without including speech in the Audiogram: and particularly its im- equation, it is simply not possible to Audiogram: plications, is not quite so intelligibly discuss the audiogram. simple. Even though just This, after all, is the signal we are about everybody who re- most interested in hearing (not to Explanation ceives a hearing aid has his minimize the specifi c needs of certain or her hearing tested with groups of people for other types of a pure-tone audiometer, sounds, such as musicians). and not everybody receives a comprehensive explanation Figure One Audiogram — of exactly what the results The “Speech Banana” Signifi cance mean and what the impli- cations are for them. The audiogram of a fairly typical And even for those who audiogram can be seen in Figure 1. do, at a time when prospec- (My thanks to Brad Ingrao for creat- By Mark Ross tive hearing aid purchasers ing these fi gures for me.) Let’s fi rst go are being inundated with through the fundamentals.
    [Show full text]
  • Appendix J Fish Hearing and Sensitivity to Acoustic
    APPENDIX J FISH HEARING AND SENSITIVITY TO ACOUSTIC IMPACTS Fish Hearing and Sensitivity to Acoustic Impacts J-iii TABLE OF CONTENTS Page 1. INTRODUCTION ............................................................................................................................ J-1 1.1. What is Injury for Fishes?........................................................................................................ J-1 1.2. Fish........................................................................................................................................... J-1 1.3. Fish Bioacoustics – Overview.................................................................................................. J-2 1.4. Metrics of Sound Exposure...................................................................................................... J-2 2. BACKGROUND ON FISH HEARING........................................................................................... J-3 2.1. Sound in Water ........................................................................................................................ J-3 2.2. Hearing Sensitivity................................................................................................................... J-3 2.3. Other Aspects of Fish Hearing................................................................................................. J-7 3. EFFECTS OF HUMAN-GENERATED SOUND ON FISHES – OVERVIEW ............................. J-8 4. EFFECTS OF ANTHROPOGENIC SOUNDS ON HEARING .....................................................
    [Show full text]