Lower Ichetucknee Baseline Assessment

September 2016

Prepared by The Howard T. Odum Springs

Institute

Lower Ichetucknee Baseline Assessment

September 2016

Prepared by The Howard T. Odum Florida Springs Institute

Lower Ichetucknee Baseline Assessment Table of Contents Figures ...... iii Tables ...... iv Acknowledgements ...... 1 Section 1.0 Introduction ...... 2 1.1 Background ...... 2 Section 2.0 Methods ...... 4 2.1 Introduction ...... 4 2.2 Physical Environment ...... 6 2.2.1 Underwater Light Transmission ...... 6 2.2.2 Stream Discharge and Current Velocity ...... 7 2.2.3 Stream Segment Morphometry ...... 7 2.2.4 Secchi Disk Visibility ...... 8 2.2.5 Weather Station ...... 8 2.2.6 Water Quality ...... 8 2.3 Biology ...... 9 2.3.1 Plant Community Characterization ...... 9 2.3.2 Adult Aquatic ...... 10 2.3.3 Snails ...... 11 2.3.4 Fish ...... 11 2.3.5 Turtles ...... 13 2.3.6 Human Use ...... 13 2.4 Ecosystem Level Monitoring ...... 14 2.4.1 Ecosystem Metabolism ...... 14 2.4.2 Nutrient Assimilation ...... 16 2.4.3 Community Export ...... 16 Section 3.0 Results ...... 18 3.1 Physical Environment ...... 18 3.1.1 Underwater Light Transmission ...... 18 3.1.2 Stream Discharge and Current Velocity ...... 18 3.1.3 Stream Segment Morphometry ...... 22 3.1.4 Secchi Disk Visibility ...... 23 3.1.5 Weather Station ...... 23 3.1.6 Water Quality ...... 24 3.2 Biology ...... 30 3.2.1 Plant Community Characterization ...... 30 3.2.2 General Faunal Observations ...... 34 3.2.3 Adult Aquatic Insects ...... 35 3.2.4 Snails ...... 37 3.2.5 Fish ...... 38 3.2.6 Turtles ...... 42 3.2.7 Human Use ...... 43 3.3 Ecosystem Level Monitoring ...... 44 3.3.1 Ecosystem Metabolism ...... 44 3.3.2 Nutrient Assimilation ...... 48

i

Lower Ichetucknee Baseline Assessment

3.3.3 Community Export ...... 51 Section 4.0 Discussion ...... 53 4.1 Overview ...... 53 4.2 Ichetucknee Springs Updated Report Card ...... 53 Section 5.0 References ...... 55

ii

Lower Ichetucknee Baseline Assessment Table of Exhibits Figures Figure 1. Lower Ichetucknee River Ecological Baseline Project Location ...... 3 Figure 2. Lower Ichetucknee River Ecosystem Baseline Assessment Segment Station Locations ...... 5 Figure 3. Underwater LI COR sensor used to measure PAR ...... 6 Figure 4. Stream depth and velocity measurement along a cross-section of the Ichetucknee River...... 7 Figure 5. Image of data sonde housing with holes that allow free movement of water, while the locking cap and cable provide security...... 9 Figure 6. Trap used to collect adult aquatic insects as they emerge from the water ...... 11 Figure 7. Snail count example (0.32 m2 frame) ...... 12 Figure 8. Example determination of ecosystem metabolism based on upstream- downstream dissolved oxygen data (from WSI 2007)...... 16 Figure 9. Image of plankton net capturing suspended material with flow meter upstream ...... 17 Figure 10. PAR percent transmittance (@ 1m) and diffuse attenuation coefficient estimates by station (July 2015, January 2016)...... 19 Figure 11. PAR percent transmittance (@ 1m) and diffuse attenuation coefficient estimates by monitoring date ...... 20 Figure 12. Average PAR percent transmittance (@ 1m) for Florida spring runs ...... 21 Figure 13. USGS 02322700 Ichetucknee River @ Highway 27 near Hildreth, FL – Monthly average discharge ...... 21 Figure 14. Annual rainfall record and discharge from USGS 02322700 at US 27 (1900 – 2014) ...... 24 Figure 15. Average dissolved oxygen concentrations in Florida springs near the spring vents ...... 26 Figure 16. Ichetucknee Spring and Spring Run - Daily average NOx-N concentrations...... 27 Figure 17. Average nitrate nitrogen concentration in Florida springs ...... 28 Figure 18. Typical diurnal pattern for dissolved oxygen and pH in the Lower Ichetucknee River ...... 30 Figure 19. Upper Ichetucknee River aquatic vegetation transect summary (source FDEP) ...... 33 Figure 20. Estimated canopy cover on the Lower Ichetucknee River transects (July 2015) ...... 34 Figure 21. Lower Ichetucknee River bird survey ...... 35 Figure 22. Lower Ichetucknee River adult aquatic emergence rates compared to other Florida spring runs ...... 36 Figure 23. Lower Ichetucknee River fish density and biomass compared to other Florida springs ...... 42 Figure 24. Lower Ichetucknee River Human Use Summary – July 2015 ...... 44 Figure 25. Comparison of ecosystem productivity and photosynthetic efficiency in Florida springs (based on historic and recent data from a total of 22 springs) ...... 46 Figure 26. Gross primary productivity efficiency versus discharge in Florida springs (based on historic and recent data from a total of 22 springs) ...... 47 Figure 27. Gross primary productivity efficiency versus NOx-N concentration in Florida springs (based on historic and recent data from a total of 22 springs)...... 48 Figure 28. Lower Ichetucknee River estimated nutrient mass removals ...... 49

iii

Lower Ichetucknee Baseline Assessment

Figure 29. Lower Ichetucknee River estimated nutrient mass removals by monitoring period ...... 49 Figure 30. Nutrient mass removals for Florida spring runs ...... 50 Figure 31. Particulate organic material export in Florida spring runs ...... 52 Figure 32. Ichetucknee Springs 2016 report card ...... 54 Tables Table 1. Lower Ichetucknee River flow measurements ...... 22 Table 2. Lower Ichetucknee River Physical Description (July 20 & 27, 2015) ...... 22 Table 3. Horizontal Secchi disk (ft) measurements in the Lower Ichetucknee River ...... 23 Table 4. Weather Summary - University of Florida FAWN Alachua Station...... 23 Table 5. Lower Ichetucknee River average water quality grab sample results ...... 25 Table 6. Lower Ichetucknee River average water quality data sonde measurements ...... 29 Table 7. Lower Ichetucknee River aquatic vegetation summary overall average for the study segment (July 2015) ...... 31 Table 8. Lower Ichetucknee River aquatic vegetation transect importance value summary by station (July 2015) ...... 32 Table 9. Lower Ichetucknee River aquatic vegetation transect percent cover summary by station (July 2015) ...... 32 Table 10. Lower Ichetucknee River adult aquatic insect emergence rates ...... 36 Table 11. Lower Ichetucknee River viable apple snail egg count - July 12, 2015 ...... 37 Table 12. Lower Ichetucknee River snail (Elimia sp.) densities ...... 38 Table 13. Lower Ichetucknee River Snail (Elimia sp.) biomass estimates ...... 38 Table 14. Lower Ichetucknee River Fish Summary – July 2015 ...... 40 Table 15. Lower Ichetucknee River Fish Summary – January 2016 ...... 41 Table 16. Lower Ichetucknee River Fish Summary ...... 41 Table 17. Lower Ichetucknee River Turtle Summary – July 19, 2015 ...... 43 Table 18. Lower Ichetucknee River ecosystem metabolism estimates ...... 45 Table 19. Lower Ichetucknee River particulate export ...... 51

iv

Lower Ichetucknee Baseline Assessment Acknowledgements The Howard T. Odum Florida Springs Institute gratefully acknowledges the financial support of the Fish and Wildlife Foundation of Florida, Inc. “Ichetucknee Springs Baseline Assessment – A Citizen-Science Project” Tag Grant PFS 1516-04 for preparation of this report. Data collection in the Lower Ichetucknee River was accomplished with the help of the following project volunteers: Robert Brinkman, Jennifer Donsky, Paul Donsky, Jasmine Hagan, Janna Herndon, Scott Knight, Terri Lee, Jill Lingard, Charles Maxwell, Jeremy Merritt, David Moritz, Emily Ott, Debbie Segal, Brenda Wells, Lyrae Williams, Beth Zavoyski, and Eric Munscher’s North American Freshwater Turtle Research Group. As with collection and analysis of all environmental data, techniques and interpretations may change over time. The raw data collected for this study are available from the Florida Springs Institute upon written request. The Director and staff of the Florida Springs Institute take full responsibility for any errors or omissions in this report.

1

Lower Ichetucknee Baseline Assessment Section 1.0 Introduction 1.1 Background Florida’s 1,000+ artesian springs are undergoing rapid environmental changes due to a variety of stressors, including reduced discharge, increased nitrate-nitrogen levels, excessive recreation, side effects of aquatic plant management, and structural alterations. These changes result in a shifting ecological baseline for each spring. As the state embarks on comprehensive restoration activities at these springs, there is often little historic data available to assess recovery or continuing decline. The Howard T. Odum Florida Springs Institute (FSI) is embarking on a number of projects to document existing baseline ecological conditions in the springs of Florida. Data collected for these baseline assessments, in combination with ecological data from previous studies will be used to provide a continuing record of changes, both positive and negative, in Florida’s endangered springs and spring runs. The Ichetucknee Spring run ecosystem from the US 27 bridge to its confluence with the (Lower Ichetucknee River) is the focus of this baseline report (Figure 1). Ichetucknee Springs is located about 16 km (10 mi) northeast of Branford in Columbia and Suwannee counties. A total of nine named and several smaller unnamed springs form the Ichetucknee River, which together with surrounding lands are managed by the Florida State Park System as the Ichetucknee Springs State Park.

2

Lower Ichetucknee Baseline Assessment

Figure 1. Lower Ichetucknee River Ecological Baseline Project Location

3

Lower Ichetucknee Baseline Assessment Section 2.0 Methods 2.1 Introduction Florida’s springs and spring runs are composed of a diverse and interconnected ecosystem of physical, chemical, and biological components. While most biological systems vary considerably due to seasonal changes in sunlight, temperature, and precipitation, this variation is greatly reduced in spring-fed aquatic ecosystems due to their groundwater supply. These natural groundwater discharges demonstrate relatively consistent water temperature, inflow volume, and water chemistry (Odum 1957; Knight 2015). The one major environmental factor that is seasonally variable in springs is the input of solar energy. This seasonal variability must be considered in springs data collection and analysis. Spring ecosystem data collection occurred over two 2-week periods (July 22-29, 2015 and January 13-21, 2016) and included as many environmental variables as practical. The following ecological metrics were measured in the Lower Ichetucknee River Segment that was the location of this ecosystem baseline assessment (Figure 2): Physical Environment • Insolation and photosynthetically active radiation (PAR) and underwater light transmission of PAR • Stream discharge (water level and flow) and stream velocity • Secchi disk visibility • Segment morphometry (area and volume) • Water quality field parameters (temperature, pH, dissolved oxygen, specific conductance) Water Chemistry • Total Kjeldahl nitrogen [TKN], nitrate+nitrite nitrogen [NOx-N], and ammonia nitrogen [NH4-N]. Total nitrogen [TN] and organic nitrogen [ON] were calculated.) Biology • Plant community characterization (species, coverage) • Macrofauna observations (species and counts) • Adult aquatic insects (species and emergence rates) • Human uses Ecosystem Level • Ecosystem metabolism metrics (gross primary productivity [GPP], net primary productivity [NPP], community respiration [CR], P/R ratio, ecological efficiency) • Nutrient assimilation • Community export (fine particulate export)

4

Lower Ichetucknee Baseline Assessment

Figure 2. Lower Ichetucknee River Ecosystem Baseline Assessment Segment Station Locations

5

Lower Ichetucknee Baseline Assessment 2.2 Physical Environment 2.2.1 Underwater Light Transmission Photosynthetically Active Radiation (PAR) underwater light transmission and attenuation coefficients were measured within the spring segment at each of the 15 stations in the Lower Ichetucknee River (Figure 2) using LI-COR brand sensors: LI-200SA (surface quantum sensor) and LI-192 (underwater quantum sensor). Figure 3 provides a typical light senor installation. A LI-200SA sensor was used to measure PAR energy reaching the water surface, while an underwater LI-COR LI-192 sensor was used to measure PAR energy at multiple water depths. The underwater PAR sensor was attached to a weighted frame and readings were logged at 15 to 30 cm (0.5 to 1 ft) depth intervals from the surface to the bottom of the water column. Measurements at each depth were collected following at least a ten second stabilization period. Light extinction (attenuation) coefficients were calculated from these data using the Lambert- Beer equation (Wetzel 2001): Iz = Io(e-kz) Where: Iz = PAR at depth z Io = PAR at the water surface k = diffuse attenuation coefficient, m-1 z = water depth, m

Figure 3. Underwater LI COR sensor used to measure PAR

6

Lower Ichetucknee Baseline Assessment

2.2.2 Stream Discharge and Current Velocity Stream discharge and velocity were measured at the upstream and downstream ends of the spring segment using a Marsh-McBirney Flo-Mate portable flow meter. At each location, a fiberglass tape was stretched across the stream channel perpendicular to the flow direction, allowing depth and velocity to be measured in approximately 25 evenly-spaced segments (Figure 4). At water depths less than 2.5 ft, velocity was measured at 0.6 of the water column. For water depths greater than 2.5 ft, velocity was measured at 0.2, 0.6, and 0.8 fractional depths of the water column. For each of the resulting cross-section sub-segments, velocity was multiplied by width and depth to calculate sub-segment discharge. The total discharge at each measurement transect was calculated from the cumulative discharge of all cross-section sub- segments.

Figure 4. Stream depth and velocity measurement along a cross-section of the Ichetucknee River.

2.2.3 Stream Segment Morphometry Water depths and stream widths were measured along transects at each of the 15 stations in the Lower Ichetucknee River (Figure 2). At each station, a fiberglass tape was stretched across the stream channel, allowing depths to be measured every 4 feet. These data were used to estimate the wetted surface area, mean depth, and water volume of each segment. Nominal hydraulic residence times were calculated in a spreadsheet for the spring segment based on these estimated water volumes and the upstream and downstream flow estimates.

7

Lower Ichetucknee Baseline Assessment

2.2.4 Secchi Disk Visibility Water clarity was rapidly assessed using Secchi disk visibility, the distance where a white and black disk disappears from sight. In spring systems, this distance is commonly greater than the depth of the water column and Secchi disk visibility was measured horizontally. Secchi distance is measured with a 20-centimeter diameter black and white disk attached to the end of a tape measure and held below the surface of the water. A skin diver then extends the tape while moving away from the disk until it is no longer visible. 2.2.5 Weather Station Local area weather (rainfall, air temperature, solar radiation, and evapotranspiration) was estimated using the University of Florida – Florida Automated Weather Network (FAWN, http://fawn.ifas.ufl.edu/). The FAWN network includes a total of 44 weather stations throughout Florida reporting weather data at 15-minute increments. The closest FAWN station to the Ichetucknee River Study Segment was southwest of the study segment, near Alachua (21 miles) 2.2.6 Water Quality During each 2-week sampling period, field variables (water temperature, dissolved oxygen concentration, oxygen percent saturation, pH, conductivity and specific conductance) were measured and logged at 30 minute intervals using YSI 6920 recording data sondes. Oxygen data were collected using optical sensors with automated wipers, which improve calibration and reduce instrument drift during deployment. Data sondes were deployed near the middle of the water column at the upstream and downstream ends of the study segment for periods up to 2-weeks (Figure 5). Data sondes were calibrated prior to deployment and subsequent to their retrieval for each sampling period following the manufacturers protocol. Water chemistry samples were collected at the beginning and end of each study period, at the upstream, midpoint, and downstream stations. Water chemistry samples were collected as sub- surface grabs. A rinsed water collection bottle was used to collect water samples from about 30 cm (1 ft) below the water surface and used to fill acid-preserved sample bottles. Following collection, samples were placed in an ice-filled cooler and delivered to the analytical laboratory for analysis within 24 hours. Water depth and field variables (temperature, dissolved oxygen, pH, and specific conductance) were also recorded during all water chemistry sampling events. Water chemistry samples were analyzed for total Kjeldahl nitrogen, nitrate+nitrite nitrogen, and ammonia nitrogen by Advanced Environmental Labs, Gainesville FL, (FDOH certified laboratory # E82620).

8

Lower Ichetucknee Baseline Assessment

Figure 5. Image of data sonde housing with holes that allow free movement of water, while the locking cap and cable provide security.

2.3 Biology 2.3.1 Plant Community Characterization The distribution and percent cover of aquatic plant communities (macroalgae and submerged aquatic vegetation) in the study segment were visually estimated during the baseline sampling events. Aquatic vegetative cover was documented along transects at each of the 15 stations in the Lower Ichetucknee River (Figure 2) using the line-intercept method. A tape measure was stretched along each transect, and all aquatic vegetation intercepting the vertical plane of line was recorded. Line-intercept data were used to estimate percent cover, frequency, relative cover, and relative frequency. Frequency was based on dividing each transect into 8 equal sized

9

Lower Ichetucknee Baseline Assessment sub-transects. Values by species were summed and averaged to yield an importance value as follows: Linear Cover Distance for Species A = line intercept distances for Species A (m) Linear cover distance of Species A (m) Percent Cover = x 100 Total transect distance (m) Linear cover distance of Species A (m) Relative Percent Cover = x 100 Total linear cover distance of all species (m) Number of subtransec ts in which Species A occurred Absolute Frequency = Total number of subtransec ts Absolute frequency of Species A Relative Frequency = x 100 absolute frequencie s of all species Relative Vegetative Cover  Relative Frequency  Importance Value = 2 Observed plants were identified to species or lowest practicable taxonomic classification. No quantitative plant biomass samples are collected. 2.3.2 Adult Aquatic Insects Aquatic insect species diversity and populations were characterized based on collections of adults as they emerge from the water. Insect emergence was measured through the use of floating pyramidal traps, each with a sampling area of 0.25 m2 (Figure 6). The trap design is based on traps used for midge and mosquito sampling from wetland and aquatic environments (Walton et al. 1999). Each trap was constructed of wood and has four sides covered with fiberglass window screen. Flotation was provided by foam “noodles” attached along the bottom wooden supports. The traps work under the premise that insects emerging into the trap generally seek the highest spot and in the process travel through an inverted funnel into a 500 mL jar inverted over the end of the funnel. A total of up to ten traps were deployed at locations along the periphery of the spring run. At each location the substrate was noted. Traps were deployed and the jars containing the emergent insects collected at 24 to 48 hour intervals at the beginning and end of each study period. Insect identifications were made to the lowest practical taxonomic level. The number of insects captured in traps were used to calculate emergence rates and extrapolated across the wetted area of the study segments.

10

Lower Ichetucknee Baseline Assessment

Figure 6. Trap used to collect adult aquatic insects as they emerge from the water

2.3.3 Snails Quantitative snail population surveys were performed to target the snail populations in the spring segment at each of the 15 stations in the Lower Ichetucknee River (Figure 2). A 0.32 m2 PVC frame was used to delineate each sample location and two replicate counts of visible snails in underwater photographs were made at each station (Figure 7). All snails were identified to the lowest practical taxonomic unit. A small number of snails were collected for measurement and weighing to provide data for biomass estimates. A visual survey for viable (unhatched) apple snail egg clutches was conducted between each of the 15 stations (totaling 14 segments) in the Lower Ichetucknee River (Figure 2). The number of viable egg masses and estimated clutch size (number of eggs per clutch) was documented along each shoreline for each segment.

2.3.4 Fish Visual surveys of the fish communities were made in the Lower Ichetucknee River along the length of the study segment (Figure 2). Multiple surveys of fish communities were made by three to five people using mask and snorkel gear. The fish observers started each count at an upstream location and worked their way downstream, traveling with the current. The spring

11

Lower Ichetucknee Baseline Assessment run segment was partitioned into approximately equal sections from bank-to-bank with one observer counting in each section. Observers noted the fish species or groups of similar species (lowest practical taxonomic level) of all observed fish, and these observations were reported to a data recorder, who followed the observers in a boat. Following each survey, observers estimated the total length (average and range) by fish species. Fish density was calculated for each sub-section by dividing the average number of individuals counted, by the area sampled. Biomass of fish species was estimated using published length-weight relationships (Schneider et al. 2000) and average species total lengths and numbers. Fish assemblage diversity was calculated using the Shannon-Wiener diversity index based on the calculated densities of individual species (Zar 1984).

Figure 7. Snail count example (0.32 m2 frame)

12

Lower Ichetucknee Baseline Assessment

2.3.5 Turtles Quantitative monitoring of the aquatic turtle community was conducted on the portion of the study segment between LIR-4 and LIR-14 on July 19, 2015 by the North American Freshwater Turtle Research Group (NAFTRG). During each sampling event, turtle censuses were conducted by snorkelers who swam along the study segment, captured all observed turtles by hand or net, and delivered them to volunteers in the accompanying boats for data collection and recording. After capture, data were collected on turtle species and sex (using sexual differences in tail length and forefoot claw length). The aquatic turtle population density was reported as the number of individuals for each species divided by the surface area of the study segment. 2.3.6 Human Use Detailed observations of human use were made throughout the time that the study spring was visited. These observations were made only during day-light hours and for the visible portions of the spring run and surrounding upland areas. The count area is referred to as the “observation area”. Primary water contact activities were categorized as: wading (less than waist deep), bathing (greater than waist deep and less than neck deep), swimming, snorkeling, tubing, canoeing/kayaking, power boating, and fishing. Primary out-of-water activities included: sitting, walking, sunbathing, nature study, and picnicking. For each of these activity categories, the counts of all persons within the observation area were made at 15 minute intervals. Individual counts were multiplied by 0.25 hours (15 minutes) to estimate the average person-hours throughout the period of observation. The total human-use during a one-day period, reported in units of person-hours, was estimated as the sum of the 15- minute counts as follows:

t 2 no.persons.dt = person-hours t1 Where: T = time (hours) t1 = time (start) t2 = time (finish) Person-hour estimates were in turn divided by the total observation interval in hours to estimate an average number of persons involved with in-water and out-of-water activities for each day of observation. Water and upland areas within the zone of observation were estimated from maps and aerial photographs to normalize data on a per-area basis: Human-Use Density = no. persons/area counted The resulting data were tabulated and reported as the average number of persons and human- use density (persons per area) basis by activity and location.

13

Lower Ichetucknee Baseline Assessment 2.4 Ecosystem Level Monitoring 2.4.1 Ecosystem Metabolism Ecosystem metabolism was calculated in the spring segment using an Excel spreadsheet adaptation of the upstream/downstream dissolved oxygen (DO) change methods of H.T. Odum (1957a, 1957b). This method estimates and subtracts upstream from downstream DO mass fluxes corrected for atmospheric diffusion to determine the metabolic oxygen rate-of- change of the aquatic ecosystem. Dissolved oxygen mass inputs typically include spring discharges, atmospheric diffusion into the water column (when DO is less than 100% saturation), accretion from other undocumented stream or spring seep inflows, and the release of DO as a by-product of aquatic plant photosynthesis. Oxygen losses include diffusion from the water column to the atmosphere (under super-saturated conditions), the metabolic respiration of the aquatic microbial, plant, and communities, and sediment biological oxygen demand. The downstream DO concentration measured at any time is the net effect of these gains and losses as shown in the following conceptual equation: Δ DO = GPP – CR + Din + A Where:

Δ DO = DO rate-of-change, g O2/m2/d

GPP = gross primary productivity, g O2/m2/d

CR = community respiration, g O2/m2/d

Din = diffusion into the water under unsaturated conditions, g O2/m2/d

A = accrual of DO from other spring boils, g O2/m2/d The DO measurements used to estimate segment ecosystem metabolism were collected at the upstream and downstream end of the Lower Ichetucknee study segment at 30 minute intervals using recording YSI 6920 data sondes with optical DO sensors. Upstream and downstream dissolved oxygen data were each shifted by one-half of the estimated travel time between the upstream and downstream stream segment stations and an oxygen rate-of-change curve was prepared. Areas, volumes, current velocities and diffusion measurements were used to estimate ecosystem metabolism. Water surface area was estimated for the study segment using the survey methods described above and corrected hourly using an estimated stage: area relationship. Average velocities were estimated from the stage: volume relationship and spring discharge measurements. Nominal travel times for the water mass were estimated based on the length of the spring run and the estimated hourly current velocities. This DO rate-of-change curve is corrected for atmospheric diffusion based on measured percent oxygen saturation in the water, and oxygen diffusion rates corrected for water velocity. The corrected oxygen rate-of-change curve for each 24-hour period was used to estimate gross primary productivity (GPP), community respiration (CR), net primary productivity (NPP), production/respiration (P/R) ratio, and ecological efficiency. Figure 8 illustrates these metabolism measurements based on a typical oxygen rate-of-change curve. Descriptions of the ecosystem metabolism parameters follow below:

14

Lower Ichetucknee Baseline Assessment

• Gross primary productivity (GPP) is estimated as the entire area under the oxygen rate-of-change curve, calculated by extending the nighttime corrected oxygen rate- of-change through the daylight hours and estimating the entire area under the daytime curve in g O2/m2/d. GPP is a measure of all aquatic plant productivity occurring below the water surface within the stream segment. GPP includes primary productivity of both algae (including photosynthetic bacteria) and submerged vascular plants. • Community respiration (CR) is the average of the corrected nighttime oxygen rate- of-change values in g O2/m2/d. CR is a measure of the total dark metabolism of the entire submerged ecosystem within each stream segment. CR includes the respiration of all microbes in the sediments and water column, respiration of bacteria, algae, and plants in the water column, and respiration of all aquatic , including protozoans, macroinvertebrates, crustaceans, and fish. Respiration of turtles, alligators, frogs, snakes, manatees, and other air-breathing aquatic fauna is not included in this calculation. • Net primary productivity (NPP) is equal to the difference between these two estimates (GPP-CR). NPP provides an estimate of the net fixed carbon that remains each day after the respiratory needs of the aquatic ecosystem are met. CR may be higher than GPP in some streams and during some periods of time, indicating that there are unmeasured inputs of fixed carbon or losses of fixed carbon that were previously stored in the ecosystem. • The P/R ratio or ecological quotient is equal to GPP/CR. A P/R ratio of one indicates that production and consumption are equally balanced. A ratio greater than one indicates an autotrophic aquatic ecosystem while a value less than one indicates a heterotrophic ecosystem. • Photosynthetic efficiency (PE) is equal to the rate of gross primary productivity divided by the incident PAR during a specified time interval. It estimates the overall efficiency of an aquatic ecosystem to utilize the visible fraction of incident solar radiation, the principal forcing function for autotrophic stream ecosystems. PAR reaching the plant level is estimated based on river stage, the plant community characterization data for segment depth, and the light attenuation coefficient estimated for each sampling event. PE is reported as PAR Efficiency by dividing GPP in O2/m2/d by mole/m2/d, resulting in units of g O2/mole. PAR Efficiency is also reported as a percentage using the conversion factors employed by Knight (1980; 1983): 4.22 Kcal/g O2 and 52.27 Kcal/mole of photons (McCree 1972).

15

Lower Ichetucknee Baseline Assessment

10 2500 Upstream Air 9 Downstream Plant Level 8 2000

7 Air = 39.30 mol/m2/d /s) 6 2 1500 Plant Level = 28.52 mol/m2/d 5

4 1000 PAR (umol/mPAR

3 Dissolved Oxygen (mg/L)Oxygen Dissolved 2 500

1

0 0 5/15/05 0:00 5/15/05 6:00 5/15/05 12:00 5/15/05 18:00 5/16/05 0:00 5/15/05 0:00 5/15/05 6:00 5/15/05 12:00 5/15/05 18:00 5/16/05 0:00

1.5 Corrected Uncorrected 1.2 1.0

1 /hr) 2 2 GPP = 8.45 g/m /d

/hr) 0.8 2 0.6 2 0.5 CR = 8.40 g/m /d 0.4 0.2

0 0.0 -0.2 -0.4 DO Rate-of-Change (g/m DO Rate-of-Change -0.5 -0.6 2

-0.8 NPP = GPP- CR = +0.05 g/m /d CorrectedRate-of-Change DO (g/m PAR Eff. = GPP / PAR = 0.30 g O2/mol -1 -1.0 5/15/05 0:00 5/15/05 6:00 5/15/05 12:00 5/15/05 18:00 5/16/05 0:00 5/15/05 0:00 5/15/05 6:00 5/15/05 12:00 5/15/05 18:00 5/16/05 0:00

Figure 8. Example determination of ecosystem metabolism based on upstream- downstream dissolved oxygen data (from WSI 2007).

2.4.2 Nutrient Assimilation Nutrient assimilation/dissimilation rates for total nitrogen, nitrate, and ammonia were estimated for the spring segment by calculating upstream-downstream changes in nutrient mass. Average nutrient mass inputs and outputs were estimated based on average water chemistry concentrations and flows over the period of study. Positive nutrient mass changes indicate assimilation/dissimilation of nutrients, while negative changes indicate an increase in nutrient mass with travel of the spring flow downstream. 2.4.3 Community Export Community export of particulate suspended matter was quantified for the study segment using a plankton net suspended in the current at mid-depth (Figure 9). The mesh size of the plankton net was 153 µm. Three replicate plankton net samples were collected at the upstream and downstream end of each segment. Sample material collected in the plankton net was rinsed into a sample bottle and returned to the laboratory for wet, dry, and ash-free (combusted at an oven temperature of 450 °C) dry weight analyses. As samples were collected, the velocity of the water at the mouth of the net was measured as was the time of net deployment. These data allow calculation of the volume of water passing through the net. The amount of particulate material collected in the net was expressed on an area (based on upstream wetted surface area) basis. Particulate export results are reported as dry weight (DW) and ash-free dry weight (AFDW) per upstream area per time (g DW/m2/d and g AFDW/m2/d, respectively). Overall particulate

16

Lower Ichetucknee Baseline Assessment export for the study segment was calculated as the difference between the upstream and downstream export rates.

Figure 9. Image of plankton net capturing suspended material with flow meter upstream

17

Lower Ichetucknee Baseline Assessment Section 3.0 Results 3.1 Physical Environment 3.1.1 Underwater Light Transmission The input of solar energy is the one major environmental factor that is seasonally variable in springs. The influx of light is also the most important determinant of overall ecosystem primary productivity in clear-water springs. Light attenuation by dissolved and particulate matter in spring water limits solar energy available to submersed aquatic plants and other primary producers. Figure 10 and Figure 11 provide a summary of the measured Lower Ichetucknee River percent transmittance and diffuse attenuation coefficients by station and by monitoring date. Detailed light measurement data are provided in Appendix A. The percent transmittance between the stations averaged 61.5 percent at 1 m, ranging from 48.3 percent (LIR-1) to 87.2 percent (LIR-12), while the diffuse attenuation coefficient averaged 0.56 m-1 (range 0.14 to 0.97 m-1). The higher attenuation at LIR-1 was likely due to an increase in the suspension of particulate matter as a result of higher water velocities immediately downstream of the narrow US 27 bridge. The average percent transmittance for the entire spring run segment varied from 48.1 percent at 1 m (July 25, 2015) to 70.5 percent at 1 m (January 11, 2016) during the two baseline monitoring events. The diffuse attenuation coefficient ranged from 0.37 m-1 to 0.84 m-1 for the same time period. Light transmittance values from the study segment were compared to other spring run systems in Florida and showed similar ranges for average light transmittance values as shown in Figure 12. Light transmittance results from the Ichetucknee River since 2007 are also included in this figure; however, these were measured upstream of Highway 27 closer to the spring vents. Light transmittance values measured near spring vents generally are higher and show less variability than measurements farther downstream in the spring run. Much of this decline is the direct result of increasing particulate matter, resulting from the release of attached algal cells from plants and sediments from autotrophic production with distance downstream. This release of particulate matter in spring runs may also be the combined result of natural causes like primary productivity, current velocity, and human causes from physical disturbance and nutrification. 3.1.2 Stream Discharge and Current Velocity Spring discharge is second only to solar input as one of the most important forcing functions that regulates overall spring habitat support of plant, fish, and wildlife communities (Odum 1957a; Knight 2015). Stream discharge and velocity were measured at the upstream and downstream ends of the study segment using a portable flow meter. Table 1 provides a summary of discharges measured during the baseline assessment at the upstream and downstream ends of the spring segment, while Appendix B provides detailed discharge measurements. Stream discharges in the Lower Ichetucknee River study segment averaged 274 cfs and 279 cfs during the July 2015 and January 2016 events, respectively. Figure 13 provides a summary of monthly average discharge on the Lower Ichetucknee River since 1917 for USGS 02322700 at US 27. Stream discharges at USGS 02322700 averaged 341 cfs (range 164 cfs to 578 cfs) since 1917, displaying a general declining trend since about 1976.

18

Lower Ichetucknee Baseline Assessment

100

90

80

70

60

50

40

30 PercentTransmittance m) 1 (@

20

10

0 LIR-1 LIR-2 LIR-3 LIR-4 LIR-5 LIR-6 LIR-7 LIR-8 LIR-9 LIR-10 LIR-11 LIR-12 LIR-13 LIR-14 LIR-15

1.2

1

1) -

0.8

0.6

0.4 Diffuse Diffuse AttenuationCoefficient (m

0.2

0 LIR-1 LIR-2 LIR-3 LIR-4 LIR-5 LIR-6 LIR-7 LIR-8 LIR-9 LIR-10 LIR-11 LIR-12 LIR-13 LIR-14 LIR-15

Figure 10. PAR percent transmittance (@ 1m) and diffuse attenuation coefficient estimates by station (July 2015, January 2016)

19

Lower Ichetucknee Baseline Assessment

80.00

70.00

60.00

50.00

40.00

30.00

PercentTransmittance m) 1 (@ 20.00

10.00

0.00 7/20/2015 7/25/2015 7/31/2015 9/23/2015 1/11/2016 1/22/2016

0.9

0.8

0.7

1) -

0.6

0.5

0.4

0.3

Diffuse Diffuse AttenuationCoefficient (m 0.2

0.1

0 7/20/2015 7/25/2015 7/31/2015 9/23/2015 1/11/2016 1/22/2016

Figure 11. PAR percent transmittance (@ 1m) and diffuse attenuation coefficient estimates by monitoring date

20

Lower Ichetucknee Baseline Assessment

100.0 (Average ± 1 Std Dev) 90.0

80.0

70.0

60.0

50.0

40.0

30.0 PercentTransmittance (1m)

20.0

10.0

0.0

Figure 12. Average PAR percent transmittance (@ 1m) for Florida spring runs

600

500

400

300

Discharge Discharge (cfs) Monthly Discharge Stats Discharge (cfs) 200 Average 341 Median 336 Maximum 578 Minimum 164 Discharge 100 Std Dev 71.3 Discharge LOESS N 604 POR Feb-1917 Apr-2016 0 Jan-17 Sep-30 May-44 Jan-58 Oct-71 Jun-85 Feb-99 Oct-12 Jul-26 Month

Figure 13. USGS 02322700 Ichetucknee River @ Highway 27 near Hildreth, FL – Monthly average discharge

21

Lower Ichetucknee Baseline Assessment

Table 1. Lower Ichetucknee River flow measurements Avg. USGS Width Depth Discharge 02322700 Date Station (ft) (ft) (cfs) (cfs) 7/22/2015 LIR-4 49 2.2 305 274 LIR-15 93 1.8 313 7/29/2015 LIR-4 52 2.1 290 274 LIR-15 104 2.3 281 1/13/2016 LIR-4 67 2.2 277 278 1/21/2016 LIR-4 56 2.2 279 280 LIR-12 82 3.9 278

3.1.3 Stream Segment Morphometry Table 2 summarizes segment depth, area, and water volume estimated from Lower Ichetucknee River stream cross sectional depth profile data collected along the 15 transects (Figure 2). Detailed depth cross section measurements are presented in Appendix C. The wetted surface area and volume of the spring segment was 16.8 ac and 49.5 ac-ft, respectively. Nominal hydraulic residence time was estimated at 2.2 hours based on this estimated water volume and an average flow of 276 cfs during this period.

Table 2. Lower Ichetucknee River Physical Description (July 20 & 27, 2015) Segment Volume 1 Area 1 Width Length 1 Avg Depth Max Depth (ac-ft) (ac) (ft) (ft) (ft) (ft) LIR-1 1.82 0.42 75.0 269 5.00 6.44 LIR-2 3.65 0.94 60.0 643 3.71 5.60 LIR-3 3.28 0.87 67.0 577 4.08 6.28 LIR-4 3.90 1.08 64.0 728 3.46 4.89 LIR-5 3.24 0.88 65.0 512 3.77 5.70 LIR-6 3.37 0.94 84.0 554 3.64 --- LIR-7 4.69 1.30 64.0 764 3.51 4.85 LIR-8 3.36 0.96 84.0 581 3.71 7.02 LIR-9 4.77 1.55 60.0 938 3.28 5.45 LIR-10 4.46 1.85 83.6 935 2.88 4.89 LIR-11 3.31 1.57 89.0 807 1.93 3.79 LIR-12 2.76 1.15 80.0 653 2.30 3.42 LIR-13 3.07 1.34 73.0 702 2.51 4.62 LIR-14 3.84 1.97 93.8 810 2.05 3.24 LIR-15 ------118.0 --- 1.85 2.88 Total 49.5 16.8 9,473 Avg 77.4 3.18 4.93 1 estimated between the beginning of one segment to the next LIR-6 not surveyed; estimated from aerial photography and neighboring stations USGS 02322700 Stage (ft NGVD29): 7/20/15 - 15.09; 7/27/2015 - 15.07

22

Lower Ichetucknee Baseline Assessment

3.1.4 Secchi Disk Visibility Horizontal Secchi disk visibility measurements were collected on multiple dates at the upstream, midpoint, and downstream stations (Table 3). These measurements provide additional information concerning water clarity and the light attenuation properties of the water in the spring run. During the July 2015 monitoring events, Secchi disk visibility generally decreased from upstream to downstream, while the opposite was observed in January 2016.

Table 3. Horizontal Secchi disk (ft) measurements in the Lower Ichetucknee River Date Upstream Midpoint Downstream 7/20/15 34.1 38.0 25.9 7/27/15 29.8 27.9 23.9 7/31/15 44.9 44.9 34.1 9/23/15 ------45.3 1/11/16 46.9 --- 76.1 1/22/16 39.0 --- 68.9 Average 39.0 37.0 45.7 Upstream: LIR-1/2; Midpoint: LIR-7; Downstream: LIR-12/15

3.1.5 Weather Station Local area weather was estimated using the Alachua Station from University of Florida – Florida Automated Weather Network (FAWN). Table 4 provides a summary of daily weather data collected for the months with baseline monitoring (July 2015 and January 2016).

Table 4. Weather Summary - University of Florida FAWN Alachua Station

Parameter Stats July 2015 January 2016 Air Temperature (C) Average 26.7 10.6 Min 18.4 -3.62 Max 36.9 24.1 Rainfall (in) Total 6.78 2.82 Solar Radiation (W/m2) Average 208.1 96.6 Max 265.2 160.7 Evapotranspiration (in) Total 5.00 1.55

Long-term (97 year) average rainfall in the Ichetucknee Springshed is about 53 in/yr, and more recently is averaging about 52 in/yr (Figure 14).

23

Lower Ichetucknee Baseline Assessment

600 100

90

500 80

70 400

60

300 50

40 Annual Rainfall Annual Rainfall (in)

Average Discharge Average Discharge (cfs) 200 30 Discharge

Discharge LOESS 20 100 Rainfall Rainfall LOESS 10

0 0 1880 1900 1920 1940 1960 1980 2000 2020 Year

Figure 14. Annual rainfall record and discharge from USGS 02322700 at US 27 (1900 – 2014)

3.1.6 Water Quality Table 5 provides a summary of average water quality grab sample results at upstream (LIR-1), midpoint (LIR-7), and downstream (LIR-15) stations during the baseline monitoring events. Detailed water quality data are presented in Appendix D Average TN concentrations increased slightly from 0.70 mg/L at the upstream station to 0.72 mg/L at the downstream station. The predominant form of nitrogen was nitrate with an average low concentration of 0.55 mg/L at the downstream station to an average high concentration of 0.58 mg/L at the upstream station. Dissolved oxygen, pH, and water temperature increased from the upstream to downstream station, while conductivity remained relatively unchanged. Turbidity was low throughout the Lower Ichetucknee River segment with average measured values less than 0.3 NTU. Dissolved oxygen data from the study segment were compared to other Florida springs (near the spring vents) as shown in Figure 15. Figure 16 provides a summary of average daily NOx-N concentrations within the Ichetucknee River reported by the SRWMD, FDEP, and USGS. NOx-N concentrations averaged 0.74 mg/L, 0.77 mg/L, and 0.50 mg/L for the Head Spring, Blue Hole, and spring run at US 27, respectively. These data show an increase in nitrate at the head spring area from less than 0.1 mg/L in 1965 to 0.8 mg/L in 2016. Nitrate data from the study segment were compared to other Florida springs as shown in Figure 17.

24

Lower Ichetucknee Baseline Assessment

Table 5. Lower Ichetucknee River average water quality grab sample results LIR- PARAMETER GROUP PARAMETER UNITS LIR-UP LIR-MID DOWN JULY 2015 DISSOLVED OXYGEN DO % 51.9 54.2 79.8 DO mg/L 4.57 4.75 6.95 NITROGEN NH4-N mg/L 0.013 0.073 0.018 NOx-N mg/L 0.58 0.56 0.55 OrgN mg/L 0.05 0.00 0.03 TKN mg/L 0.05 0.06 0.05 U TN mg/L 0.65 0.64 0.60 PHYSICAL pH SU 7.45 7.75 7.62 SpCond umhos/cm 340 339 342 Turb NTU 0.3 U --- 0.7 TEMPERATURE Wtr Temp C 21.7 21.8 22.6 JANUARY 2016 DISSOLVED OXYGEN DO % 73.4 84.5 86.9 DO mg/L 6.62 7.53 7.85 NITROGEN NH4-N mg/L 0.008 0.008 0.01 U NOx-N mg/L 0.58 0.57 0.55 OrgN mg/L 0.17 0.21 0.29 TKN mg/L 0.18 0.22 0.30 TN mg/L 0.76 0.78 0.85 PHYSICAL pH SU 7.77 8.04 8.11 SpCond umhos/cm 331 327 334 Turb NTU 0.3 U 0.3 U 0.3 U TEMPERATURE Wtr Temp C 20.2 20.9 20.0

25

Lower Ichetucknee Baseline Assessment

8.00

7.00

6.00

5.00

4.00

3.00

Dissolved Dissolved Oxygen (mg/L) 2.00

1.00

0.00

Figure 15. Average dissolved oxygen concentrations in Florida springs near the spring vents

26

Lower Ichetucknee Baseline Assessment

1 0.9 Ichetucknee Head Spring 0.8 0.7 0.6

0.5 N (mg/L) - 0.4

NOx 0.3 0.2 0.1 0 1/1/1965 6/24/1970 12/15/1975 6/6/1981 11/27/1986 5/19/1992 11/9/1997 5/2/2003 10/22/2008 4/14/2014 10/5/2019

1 0.9 Blue Hole Spring at Ichetucknee 0.8 0.7 0.6

0.5 N (mg/L) - 0.4

NOx 0.3 0.2 0.1 0 1/1/1991 9/27/1993 6/23/1996 3/20/1999 12/14/2001 9/9/2004 6/6/2007 3/2/2010 11/26/2012 8/23/2015 5/19/2018

2.5 Ichetucknee River at US 27 2

1.5 N (mg/L)

- 1 NOx

0.5

0 1/1/1988 6/23/1993 12/14/1998 6/5/2004 11/26/2009 5/19/2015

Figure 16. Ichetucknee Spring and Spring Run - Daily average NOx-N concentrations

27

Lower Ichetucknee Baseline Assessment

Average NOx-N (mg/L) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 1 Spring ID Spring ID Spring ID 4 Beecher Spring 1 Wakulla Tubing A/D-Tunnel 45 Blue Hole Spring (Columbia) 89 7 Newport Spring 2 Starbuck Spring 46 Cedar Head Spring 90 10 Green Cove Spring 3 Beckton Springs 47 Gadsen Spring 91 Orange Spring 4 Black Spring (Jackson) 48 Citrus Blue Spring 92 13 Waldo Spring 5 Columbia Spring 49 Weeki Wachee Main Spring 93 16 Warm Mineral Spring 6 Wakulla Tubing K-Tunnel 50 Double Spring 94 Suwannee Springs 7 Treehouse Spring 51 Jackson Mill Pond Spring 95 19 Welaka Spring 8 Cypress Spring 52 Wekiwa Springs 96 22 Nutall Rise 9 Turtle Spring 53 Falmouth Spring 97 25 Alexander Springs 10 Ellaville Spring 54 Otter Spring 98 Silver Glen Springs 11 Washington Blue Spring (Econfina) 55 Silver Spring Main 99 28 Rise 12 Wakulla Spring 56 Rock Springs 100 31 St. Marks River Rise (Leon) 13 Mill Pond 57 Rainbow Spring #6 101 34 Fern Hammock Springs 14 Salt Spring (Hernando) 58 Guaranto Spring 102 Juniper Springs 15 Hornsby Spring 59 Reception Hall Spring 103 37 Salt Springs (Marion) 16 Bugg Spring 60 Little River Spring 104 40 Washington Blue Spring (Choctawhatchee) 17 Holmes Blue Spring 61 Blue Grotto Spring 105 Crays Rise 18 Jackson Blue Hole Spring 62 Ginnie Spring 106 43 Santa Fe River Rise (Alachua) 19 Suwanacoochee Spring 63 Madison Blue Spring 107 46 Santa Fe Spring (Columbia) 20 Gator Spring (Hernando) 64 Gum Spring Main 108 49 Holton Creek Rise 21 Copper Spring 65 Sun Springs 109 Fenney Spring 22 Sanlando Springs 66 Devils Eye 110 52 Devils Ear Spring (Gilchrist) 23 Magnolia Spring 67 Owens Spring 111 55 Spring Creek Rise #1 24 Deleon Spring (Volusia) 68 Troy Spring 112 58 Spring Creek Rise #2 25 Mission Spring 69 Buckhorn Spring 113 Gainer Spring #1C 26 Chassahowitzka Spring Main 70 Crystal Springs 114 61 Morrison Spring 27 Hunter Spring 71 Mearson Spring 115 64 Big Spring (Big Blue Spring) (Jefferson) 28 Levy Blue Spring 72 Gilchrist Blue Spring 116 Wacissa Springs #2 29 Homosassa #2 73 Manatee Spring 117 67 Shepherd Spring 30 Branford Spring 74 Rainbow Spring #1 118 Allen Mill Pond Spring 31 Chassahowitzka Spring #1 75 Rainbow Spring #4 119 Spring Spring ID 70 73 Brunson Landing Spring 32 Springboard Spring 76 Unknown 11365 120 Poe Spring 33 Wakulla Tubing C-Tunnel 77 Hart Springs 121 76 Tarpon Hole Spring 34 Ponce De Leon Springs 78 Lithia Springs Major 122 79 Gainer Spring #3 35 Wakulla Tubing D-Tunnel 79 Running Springs 123 Sulphur Spring (Hillsborough) 36 Homosassa #1 80 Rock Bluff Springs 124 82 Horn Spring 37 Homosassa #3 81 Telford Spring 125 85 Ich Head Sp Gainer Spring #2 38 Rise 82 Lafayette Blue Spring 126 88 Rhodes Spring #1 39 Siphon Creek Rise 83 Hays Spring (Jackson) 127 Rhodes Spring #2 40 Wakulla Tubing B-Tunnel 84 Jackson Blue Spring 128 91 Blue Hole Rhodes Spring #4 41 Bubbling Spring 85 Apopka Spring 129 94 Wakulla Tubing A/K-Tunnel 42 Little Springs (Hernando) 86 Shangri-La Springs 130 97 Volusia Blue Spring 43 Williford Spring 87 Fanning Springs 131 Natural Bridge Spring 44 Ichetucknee Head Spring (Suwannee) 88 Lafayette Ruth Spring 132 100 103 106 109 112 115 118 121 124 127 130

Figure 17. Average nitrate nitrogen concentration in Florida springs

28

Lower Ichetucknee Baseline Assessment

Table 6 summarizes average field parameter data collected every 30 minutes with the water quality data sondes at the upstream (LIR-1), midpoint (LIR-7), and downstream (LIR-12) stations during the baseline monitoring events. Detailed time series plots are presented in Appendix D. Dissolved oxygen concentrations and pH were observed to vary in a diurnal pattern (Figure 18), showing a rise in concentration during the day due to primary productivity and decreasing concentrations at night as a result of community respiration.

Table 6. Lower Ichetucknee River average water quality data sonde measurements

PARAMETER GROUP PARAMETER UNITS LIR-UP LIR-MID LIR-DOWN July 20 – 31, 2015 DISSOLVED OXYGEN DO % 66.3 67.2 75.5 DO mg/L 5.72 5.80 6.52 PHYSICAL pH SU 8.04 7.88 7.65 SpCond umhos/cm 344 337 349 Turb NTU 0.7 --- 1.2 TEMPERATURE Wtr Temp C 22.44 22.45 22.43 January 11 – 22, 2016 DISSOLVED OXYGEN DO % 68.7 --- 75.9 DO mg/L 6.20 --- 6.88 PHYSICAL pH SU 7.94 --- 7.92 SpCond umhos/cm 336 --- 342 Turb NTU ------<0.3 TEMPERATURE Wtr Temp C 20.24 --- 20.08

29

Lower Ichetucknee Baseline Assessment

9.5 8.25 DO (mg/L) 9.0 8.20 pH (SU) 8.15 8.5 8.10 8.0 8.05 7.5 8.00

7.0 7.95 pH(SU) DO DO (mg/L) 7.90 6.5 7.85 6.0 7.80 5.5 7.75 5.0 7.70 0:00 12:00 0:00 12:00 0:00 12:00 0:00

Figure 18. Typical diurnal pattern for dissolved oxygen and pH in the Lower Ichetucknee River

3.2 Biology 3.2.1 Plant Community Characterization The distribution and percent cover of aquatic plant communities (macroalgae and submerged aquatic vegetation) within the spring run at the Lower Ichetucknee River study area is summarized in Table 7 through Table 9. Detailed aquatic plant data are provided in Appendix E. A total of nine plant and algal species or groups were identified at the Lower Ichetucknee River monitoring transects during the July 2015 monitoring event. The most common species occurring were musk grass (Chara sp.), fanwort (Cabomba caroliniana), Tape grass (Vallisneria americana), and algae. Bare sand and rock had an average percent cover of approximately 68 percent, while all aquatic vegetation combined averaged 39 percent. A range of 2 to 5 aquatic vegetation species occurred within each of the 15 vegetation transects. Limited aquatic vegetation data is available for the lower Ichetucknee River, however the upper Ichetucknee River (Ichetucknee River State Park) has been surveyed since 1989 by FDEP (Figure 19). Findings from the FDEP 2015 survey identified strap-leaved sagittaria and tape grass as the most common vascular plant species in the upper Ichetucknee River (Sam Cole/FDEP, personal communication). While the percent coverage of aquatic vegetation increased from 46 percent in 1989 to 63 percent in 2015, the diversity of aquatic vegetation has decreased for the same period.

30

Lower Ichetucknee Baseline Assessment

Table 7. Lower Ichetucknee River aquatic vegetation summary overall average for the study segment (July 2015)

Total Linear Cover Frequency Importance Scientific Name Common Name Distance (m) Percent Relative Absolute Relative Value Chara sp. Muskgrass 62.04 18.71 48.46 0.73 42.71 45.58 Cabomba caroliniana Fanwort 22.32 6.73 17.43 0.26 15.10 16.27 Vallisneria americana Tape grass 21.98 6.63 17.17 0.20 11.46 14.31 Algae Algae 6.88 2.08 5.38 0.24 14.06 9.72 Fontinalis antipyretica Common Water Moss 7.77 2.34 6.07 0.15 8.85 7.46 Najas guadalupensis Southern naiad 6.77 2.04 5.29 0.09 5.21 5.25 Ludwigia repens Red ludwigia 0.20 0.06 0.16 0.03 1.56 0.86 Hydrocotyle sp. Penny-wort 0.05 0.01 0.04 0.01 0.52 0.28 Bacopa caroliana Bacopa 0.01 0.00 0.01 0.01 0.52 0.26 Total 128.0 38.61 100.0 1.71 100.0 100.0

31

Lower Ichetucknee Baseline Assessment

Table 8. Lower Ichetucknee River aquatic vegetation transect importance value summary by station (July 2015)

Scientific Name Common Name LIR-1 LIR-2 LIR-3 LIR-4 LIR-5 LIR-7 LIR-8 LIR-9 LIR-10 LIR-11 LIR-12 LIR-13 LIR-14 LIR-15 Algae Algae 6.75 10.2 11.6 4.28 6.18 4.43 9.15 15.7 Bacopa caroliana Bacopa 2.52 Cabomba caroliniana Fanwort 31.1 7.15 6.80 25.1 13.9 3.45 6.32 3.04 1.82 9.43 Chara sp. Muskgrass 19.7 31.1 49.8 15.2 36.3 24.9 24.4 20.4 14.6 19.2 14.7 28.1 13.1 9.65 Fontinalis antipyretica Common Water Moss 3.39 22.5 3.28 6.58 10.9 Hydrocotyle sp. Penny-wort 2.30 Ludwigia repens Red ludwigia 2.40 2.52 2.02 Najas guadalupensis Southern naiad 14.2 13.7 Vallisneria americana Tape grass 29.1 36.3 39.8 3.70 3.30 Total 56 73 81 65 72 47 52 28 35 25 40 49 44 30

Table 9. Lower Ichetucknee River aquatic vegetation transect percent cover summary by station (July 2015)

Scientific Name Common Name LIR-1 LIR-2 LIR-3 LIR-4 LIR-5 LIR-7 LIR-8 LIR-9 LIR-10 LIR-11 LIR-12 LIR-13 LIR-14 LIR-15 Algae Algae 1.38 5.25 0.52 6.00 1.02 0.64 7.05 8.18 Bacopa caroliana Bacopa 0.05 Cabomba caroliniana Fanwort 32.5 4.61 4.49 26.7 15.5 2.47 5.29 2.33 0.72 0.81 Chara sp. Muskgrass 12.7 34.1 48.1 10.2 45.7 31.6 25.4 26.1 12.4 7.61 5.49 27.1 2.78 1.63 Fontinalis antipyretica Common Water Moss 2.29 21.5 2.00 1.30 6.46 Hydrocotyle sp. Penny-wort 0.23 Ludwigia repens Red ludwigia 0.04 0.67 0.04 Najas guadalupensis Southern naiad 19.5 7.09 Vallisneria americana Tape grass 23.0 35.7 43.9 2.58 2.06 Total 37.0 72.4 80.6 59.3 74.5 38.7 52.2 34.1 29.0 10.8 30.9 37.8 18.8 8.9

32

Lower Ichetucknee Baseline Assessment

SAG VAL MYR CHA LUD HYD HYM ZIZ RHY OTH Diversity 80

70

60

50

40 1989 1990 1991 30

20

Average Average SAV Percent Cover Diversity / 10

0

Year SAG = Sagittaria kurziana CHA = Chara (prob.)zeylonica HYM = Hymenocallis rotata OTH = Others VAL = Valisineria americana LUD = Ludwigia repens ZIZ = Zizania aquatica MYR = Myriophyllum heterophyllum HYD = Hydrocotyle (prob.) verticillata RHY = Rhynchospora sp. or Carex sp.

Figure 19. Upper Ichetucknee River aquatic vegetation transect summary (source FDEP)

33

Lower Ichetucknee Baseline Assessment

Riparian shading (canopy cover of shoreline trees) was assessed within the spring run segment at each aquatic vegetation transect (Figure 2). Canopy cover ranged from 3 percent (LIR-14) to 75 percent (LIR-9) and averaged 22 percent over the spring run (Figure 20).

80

70

60

50

40

30 CanopyCover (%)

20

10

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 LIR Station

Figure 20. Estimated canopy cover on the Lower Ichetucknee River transects (July 2015)

3.2.2 General Faunal Observations Multiple bird surveys were conducted on the Lower Ichetucknee River from US 27 to the confluence with the Santa Fe River. Along the spring run and upland areas, there was a total of 54 species observed (33 species in July 2015; 40 species in January 2016) [Figure 21]. The most commonly occurring species were the Carolina wren (Thryothorus ludovicianus), American crow (Corvus brachyrhynchos), Carolina chickadee (Poecile carolinensis), yellow-rumped warbler (Setophaga coronata), and American goldfinch (Spinus tristis). Detailed bird survey data are provided in Appendix F.

34

Lower Ichetucknee Baseline Assessment

60 54

50

40 40 33

30

20 NumberofSpecies

10

0 Jul-15 Jan-16 Overall Survey Period

Figure 21. Lower Ichetucknee River bird survey

Incidental wildlife observations while conducting other monitoring include the following:  Manatee observed in the lower section of the spring run (1/21/16)  Deceased beaver observed near Midpoint Park (1/17/16)

3.2.3 Adult Aquatic Insects Table 10Error! Reference source not found. presents a summary of adult aquatic insect emergence rates from the Lower Ichetucknee River spring run study segment. Insect emergence rates averaged 74 organisms/m2/d and 12 organisms/m2/d in July 2015 and January 2016, respectively. This equates to approximately 2,901,300 organisms/day over the study segment area on average. The most commonly collected insects were non-biting midges (Diptera), with 92% of the sample belonging to this family. Figure 22Error! Reference source not found. provides a summary of estimated adult aquatic insect emergence rates compared with other Florida spring run systems studied using the same emergent trap technique, including results from Ichetucknee Springs in 2009 (WSI 2010). The Lower Ichetucknee River study segment had a greater estimated emergence rate than eight of the other springs studied.

35

Lower Ichetucknee Baseline Assessment

Table 10. Lower Ichetucknee River adult aquatic insect emergence rates

Deployment Date Order Suborder Family 7/20/15 7/27/15 Avg 1/11/16 1/21/16 Avg Diptera Nematocera Ceratopogonidae 2 1 0 Chironomidae 241 333 287 96 15 55 Dixidae 5 9 7 2 1 Tipulidae 1 0.5 0 Hemiptera Heteroptera Veliidae 1 0.5 0 Glossata 1 1 1 0 Odonata Zygoptera - 1 0.5 1 0.5 Trichoptera - - 4 9 6.5 14 3.0 8.5 Unidentified - - 2 1 0 Total 256 354 305 113 18.0 66

Emergence Rate (#/m²/d) 68 80 74 17 7 12

140

120

100

/d) 2

80

60

40 Emergence Rate (#/m

20

0

Figure 22. Lower Ichetucknee River adult aquatic insect emergence rates compared to other Florida spring runs

36

Lower Ichetucknee Baseline Assessment

3.2.4 Snails A visual survey for apple snail egg clutches was conducted during each monitoring event. Table 11 provides a summary of Florida apple snail egg counts conducted in July 2015 by segment (Figure 2). A total of 799 egg clutches was observed, averaging 29 eggs/clutch (23,155 eggs or 4.0 eggs/meter of shoreline). No viable apple snail eggs were observed during the January 2016 monitoring period.

Table 11. Lower Ichetucknee River viable apple snail egg count - July 12, 2015

West Side East Side Total # Egg Eggs / # Egg Eggs / # Egg Eggs / Segment Masses # Eggs Mass Masses # Eggs Mass Masses # Eggs Mass 1 7 435 62 7 105 15 14 540 39 2 9 300 33 7 130 19 16 430 27 3 5 145 29 8 235 29 13 380 29 4 2 95 48 20 480 24 22 575 26 5 5 145 29 4 110 28 9 255 28 6 11 400 36 14 355 25 25 755 30 7 15 435 29 41 1,010 25 56 1,445 26 8 15 420 28 15 420 28 30 840 28 9 46 1,385 30 65 1,830 28 111 3,215 29 10 64 2,150 34 77 2,235 29 141 4,385 31 11 36 1,060 29 32 825 26 68 1,885 28 12 45 1,665 37 58 1,265 22 103 2,930 28 13 43 1,520 35 37 900 24 80 2,420 30 14 51 1,880 37 60 1,220 20 111 3,100 28 Totals 354 12,035 34 445 11,120 25 799 23,155 29 Density * 4.2 3.9 8.0 * Eggs per meter of shoreline

Quantitative snail population surveys were performed to target the snail populations in the spring run using a 0.32 m2 square frame (Table 12). Elimia were the only snail species observed averaging 485 snails/m2 in the spring run, with the highest density observed at LIR-6 (1,531 snails/m2) in July 2015. Snail biomass in the spring run averaged 146 g wet/m2 (92.2 g dry/m2). This equates to an estimated total of 32,978,545 snails in the spring run with an estimated wet weight of 9.9 metric tons (estimated snail dry weight 6.3 metric tons). Detailed snail survey data are provided in Appendix G.

37

Lower Ichetucknee Baseline Assessment

Table 12. Lower Ichetucknee River snail (Elimia sp.) densities

Snail Density (#/m2) Station 7/22/2015 1/21/2016 LIR-1 --- 479 LIR-2 --- 723 LIR-2.5 107 --- LIR-3 --- 196 LIR-4 236 679 LIR-5 519 729 LIR-6 1,531 190 LIR-6.5 467 --- LIR-7 560 857 LIR-8 409 589 LIR-9 362 551 LIR-10 649 518 LIR-10.5 868 --- LIR-11 251 443 LIR-12 629 399 LIR-13 222 85 LIR-14 93 138 LIR-15 318 17 Average 481 489

Table 13. Lower Ichetucknee River Snail (Elimia sp.) biomass estimates

Collection Date 7/27/2015 1/21/2016 Average Number of Snails 238 106 172 Snail Wet Weight (g) 82.2 27.2 54.7 Wet Weight / Snail (g) 0.35 0.26 0.30 Snail Dry Weight (g) 53.7 16.4 35.1 Dry Weight / Snail (g) 0.23 0.16 0.19 Density (snails/m2) 481 489 485 Biomass (g wet/m2) 166 126 146 Biomass (g dry/m2) 109 75.9 92.2

3.2.5 Fish Table 14 presents the fish survey from July 2015 and Table 15 presents the fish survey from January 2016. Detailed fish data are provided in Appendix H. A total of 19 fish species or groups of similar species were observed with 18 species in July 2015 and 13 in January 2016. Individual segments ranged from 5 to 11 species over the period of study. Fish density in the spring run averaged 822 fish/ac with 1,419 fish/ac in July 2015 and 345 fish/ac in January 2016 (Table 16). Minnows (Notropis sp.), sunfish (Lepomis sp.), largemouth bass (Micropterus salmoides),

38

Lower Ichetucknee Baseline Assessment and spotted suckers (Minytrema melanops) were observed at the highest densities over the study period. Total estimated fish biomass averaged 27 lbs/ac with 28 lbs/ac in July 2015 and 25 lbs/ac in January 2016. A higher Shannon-Wiener diversity index for fish was observed in January 2016 (H’ = 2.16) compared with July 2015 (H’ = 1.15). Estimated fish biomass and population densities were compared with other Florida springs (includes spring boils and spring runs) studied using the same visual count technique, including results from the Ichetucknee River in 2009 (WSI 2010). Figure 23 visually displays this comparison of the Lower Ichetucknee River study segment fish population estimates to other Florida spring runs. For the study segment, the estimated fish densities were within the middle range of other studied springs. For fish biomass, the Lower Ichetucknee River study segment had a lower estimated fish biomass compared to all but one of the other springs studied.

39

Lower Ichetucknee Baseline Assessment

Table 14. Lower Ichetucknee River Fish Summary – July 2015

7/21/15 7/28/15 Average Density Biomass Density Biomass Density Biomass Scientific Name Common Name Count (#/ac) (lbs/ac) Count (#/ac) (lbs/ac) Count (#/ac) (lbs/ac) Acipenser oxyrinchus Sturgeon 1 0.060 0.0005 0.00 0.00 0.5 0.030 0.0003 Erimyzon sucetta Lake Chubsucker 99 5.89 1.36 55 3.27 0.757 77 4.58 1.06 Esox sp. Pickeral 3 0.179 0.076 2 0.119 0.050 2.5 0.149 0.063 Etheostoma sp. Darter sp. 347 20.7 0.057 302 18.0 0.049 325 19.3 0.053 Fundulus seminolis Seminole Killifish 0.00 0.00 3 0.179 0.0010 1.5 0.089 0.0005 Fundulus sp. Killifish sp. 13 0.774 0.004 10 0.595 0.003 12 0.685 0.004 Ictalurus natalis Catfish 1 0.060 0.016 1 0.060 0.016 1.0 0.060 0.016 Lepisosteus platyrhincus Florida Gar 1 0.060 0.137 0.00 0.00 0.5 0.030 0.068 Lepomis sp. Sunfish sp. 2,258 134 3.87 2,060 123 3.53 2,159 129 3.70 Micropterus notius Suwannee Bass 8 0.476 0.162 8 0.476 0.161 8.0 0.476 0.161 Micropterus salmoides Largemouth Bass 1,034 61.5 10.8 1,281 76.3 13.3 1,158 68.9 12.0 Minytrema melanops Spotted sucker 505 30.1 6.22 639 38.0 7.86 572 34.0 7.04 Notemigonus crysoleucas Golden Shiner 366 21.8 2.02 310 18.5 1.71 338 20.1 1.87 Notropis sp. Minnows 19,694 1,172 1.95 18,540 1,104 1.83 19,117 1,138 1.89 Poecilia latipinna Sailfin Molly 2 0.119 0.0002 0.00 0.00 1.0 0.060 0.0001 Pomoxis nigromaculatus Black Crappie 35 2.08 0.200 67 3.99 0.383 51 3.04 0.291 Strongylura marina Atlantic Needlefish 10 0.595 0.059 8 0.476 0.047 9.0 0.536 0.053 Trinectes maculatus Hogchocker 2 0.119 0.002 2 0.119 0.002 2.0 0.119 0.002 Total 24,379 1,451 26.9 23,288 1,386 29.7 23,834 1,419 28.3 Shannon Wiener Diversity Index (H') 1.12 1.17 1.15 Survey area: 16.8 ac

40

Lower Ichetucknee Baseline Assessment

Table 15. Lower Ichetucknee River Fish Summary – January 2016

Scientific Name Common Name Count Density (#/ac) Biomass (lbs/ac) Erimyzon sucetta Lake Chubsucker 23 1.37 0.317 Esox sp. Pickeral 3 0.179 0.076 Etheostoma sp. Darter sp. 169 10.1 1.12 Fundulus seminolis Seminole Killifish 4 0.238 0.001 Lepomis sp. Sunfish sp. 1,722 103 2.95 Micropterus notius Suwannee Bass 15 0.893 0.282 Micropterus salmoides Largemouth Bass 848 50.5 8.82 Minytrema melanops Spotted sucker 821 48.9 10.1 Notemigonus crysoleucas Golden Shiner 36 2.14 0.198 Notropis sp. Minnows 2,122 126 0.210 Strongylura marina Atlantic Needlefish 8 0.476 0.047 Trinectes maculatus Hogchocker 1 0.060 0.001 Mugil sp. Mullet 17 1.01 0.873 5,789 345 25.0 Total Shannon Wiener Diversity Index (H') 2.16 Survey area: 16.8 ac Table 16. Lower Ichetucknee River Fish Summary

Density (#/ac) Biomass (lbs/ac) Scientific Name Common Name Jul-15 Jan-16 Average Jul-15 Jan-16 Average Acipenser oxyrinchus Sturgeon 0.030 0.00 0.015 0.000 0.000 0.000 Erimyzon sucetta Lake Chubsucker 4.58 1.37 2.98 1.06 0.317 0.689 Esox sp. Pickeral 0.149 0.179 0.164 0.063 0.076 0.069 Etheostoma sp. Darter sp. 19.3 10.1 14.7 0.053 1.12 0.586 Fundulus seminolis Seminole Killifish 0.089 0.238 0.164 0.001 0.001 0.001 Fundulus sp. Killifish sp. 0.685 0.00 0.342 0.004 0.000 0.002 Ictalurus natalis Catfish 0.060 0.00 0.030 0.016 0.000 0.008 Lepisosteus platyrhincus Florida Gar 0.030 0.00 0.015 0.068 0.000 0.034 Lepomis sp. Sunfish sp. 129 103 116 3.70 2.95 3.33 Micropterus notius Suwannee Bass 0.476 0.893 0.685 0.161 0.282 0.222 Micropterus salmoides Largemouth Bass 68.9 50.5 59.7 12.0 8.82 10.4 Minytrema melanops Spotted sucker 34.0 48.9 41.5 7.04 10.1 8.57 Notemigonus crysoleucas Golden Shiner 20.1 2.14 11.1 1.87 0.198 1.03 Notropis sp. Minnows 1,138 126 632 1.89 0.210 1.05 Poecilia latipinna Sailfin Molly 0.060 0.00 0.030 0.000 0.000 0.000 Pomoxis nigromaculatus Black Crappie 3.04 0.00 1.52 0.291 0.000 0.146 Strongylura marina Atlantic Needlefish 0.536 0.476 0.506 0.053 0.047 0.050 Trinectes maculatus Hogchocker 0.119 0.060 0.089 0.002 0.001 0.002 Mugil sp. Mullet 0.00 1.01 0.506 0.000 0.873 0.437 1,419 345 882 28.3 25.0 26.6 Total

41

Lower Ichetucknee Baseline Assessment

10,000.0

1,000.0

100.0 Density (#/ac) Density

10.0

1.0

10,000.0

1,000.0

100.0 Biomass (lbs/ac) Biomass

10.0

1.0

Figure 23. Lower Ichetucknee River fish density and biomass compared to other Florida springs

3.2.6 Turtles In July 2015, a total of 5 species and 25 individual turtles were captured, with loggerhead musk (Sternotherus minor) being the most common (Table 17). This results in an estimated turtle population density of 2.0 turtles/ac for this section of the spring run. Detailed capture data are

42

Lower Ichetucknee Baseline Assessment provided in Appendix I. Turtle population estimates of 13 turtles/ac have been reported on the upper Ichetucknee River within the State Park by Chaplin et al (2010).

Table 17. Lower Ichetucknee River Turtle Summary – July 19, 2015

Adult Juvenile Unknown Common Name Species F M Unk Unk F M Unk Total Red-eared Slider (Hybrid) Trachemys s. elegans 2 - - - 1 - - 3 Florida Red-bellied Turtle Pseudemys nelsoni 1 ------1 Loggerhead Musk Sternotherus minor 2 1 2 4 - 1 1 11 River Cooter Pseudemys cocinna 2 1 - 1 - - - 4 Yellow-bellied Slider Trachemys s. scripta 4 - - - 1 - - 5 Unknown - - - 1 - - - - 1 Total 11 2 3 5 2 1 1 25 Density (#/ac) 0.87 0.16 0.24 0.40 0.16 0.08 0.08 1.98 Survey area: 12.6 ac

3.2.7 Human Use Figure 24 provides a summary of total in-water and out-of-water activities in July 2015, while detailed activities are summarized in Appendix J. Very little human use activity was noted during the January 2016 monitoring events. The location and activities of the 5 individuals observed during monitoring activities in January 2016 are tabulated in Appendix J. Based on these results, it is concluded that this area of the Ichetucknee River receives higher levels of human activity during the warmer season (July 2015), particularly during the weekend survey periods. In July 2015, in-water activities averaged 2.2 people/ac during the weekday and 10 people/ac during the weekend survey (Figure 24), with wading, power boating, and tubing being the most common activities.

43

Lower Ichetucknee Baseline Assessment

30.00

Out-of-Water 25.00 In-Water

20.00

15.00

Average # People/ac 10.00

5.00

0.00 Hodor Pointe Hodor Pointe Hodor Pointe 7/22/2015 7/25/2015 Total Wednesday Saturday

Figure 24. Lower Ichetucknee River Human Use Summary – July 2015

3.3 Ecosystem Level Monitoring 3.3.1 Ecosystem Metabolism Table 18 provides a summary of ecosystem metabolism parameters collected in the study segment with detailed results in Appendix K. Average GPP ranged from 4.72 g O2/m2/d (January 2016) to 8.58 g O2/m2/d (July 2015) over the study period. CR ranged from 4.87 g O2/m2/d (January 2016) to 7.76 g O2/m2/d (July 2015), resulting in an average NPP of -0.17 g O2/m2/d in January 2016, to 1.00 g O2/m2/d in July 2015. For these data the estimated P/R ratio ranged from 1.00 (January 2016) to 1.14 (July 2015), and the photosynthetic efficiency ranged was from 3.76% (or 0.47 g O2/mol) in January 2016 to 4.09% (or 0.51 g O2/mol) in July 2015. Ecosystem metabolism estimates from the study segment were compared to similar data from other Florida springs that have previously been studied (Figure 25). This comparison indicates that the study segment has similar GPP, NPP, and CR values compared to other spring systems. When normalized for the amount of incident solar radiation, the study segment was found to have a photosynthetic efficiency about average to other Florida springs. Figure 26 and Figure 27 shows the existing data relating photosynthetic efficiency, spring discharge, and NOx-N concentration for the studied Florida spring systems. The study segment follows the same general relationship observed for other springs. In general, spring photosynthetic efficiency increases with increasing spring discharge (Figure 26), while NOx-N concentration may have a subsidy-stress effect on photosynthetic efficiency (Figure 27).

44

Lower Ichetucknee Baseline Assessment

Table 18. Lower Ichetucknee River ecosystem metabolism estimates PAR PAR GPP NPP CR PAR (24hr) Efficiency Efficiency 2 2 2 2 Stats (g O2/m /d) (g O2/m /d) (g O2/m /d) P/R Ratio (mol/m /d) (%) (g O2/mol) July 21 – 30, 2015 Avg 8.58 1.00 7.76 1.14 17.21 4.09 0.51 Max 9.44 1.72 9.57 1.24 21.38 4.88 0.60 Min 7.90 -0.47 6.81 0.94 13.09 3.33 0.41 January 12 – 21, 2016 Avg 4.72 -0.17 4.87 1.00 11.29 3.76 0.47 Max 5.78 1.19 6.39 1.32 14.75 7.24 0.90 Min 3.41 -2.17 3.66 0.61 5.61 2.63 0.33

45

Lower Ichetucknee Baseline Assessment

25 10 30 3 40 10 1.2 P-95P-95

9 35 5 25 2.5 1 8 20 P-75P-75 30 AVG 7 P-50P-50 0 20 2 0.8 SITE 25 15 6 P-25P-25

-5 15 1.5 20 5 0.6

P-5P-5 10 4 15

-10 10 1 0.4 Ichetucknee Segment 3 July 2015 10 January 2016 5 2 -15 5 0.5 0.2 5 1

0 -20 0 0 0 0 0 GPP NPP CR P/R Ratio PAR (24hr) GPP Efficiency GPP Efficiency (g O2/m2/d) (g/O2/m2/d) (g O2/m2/d) (mol/m2/d) (%) (g O2/mol)

Figure 25. Comparison of ecosystem productivity and photosynthetic efficiency in Florida springs (based on historic and recent data from a total of 22 springs)

46

Lower Ichetucknee Baseline Assessment

14

y = 0.3395x0.4491 12 R² = 0.4284

10

8

6 LIR (July 15)

AverageGPP(%)Efficiency 4

LIR (Jan 16) 2

0 0 100 200 300 400 500 600 700 800 900 Average Discharge (cfs)

Figure 26. Gross primary productivity efficiency versus discharge in Florida springs (based on historic and recent data from a total of 22 springs)

47

Lower Ichetucknee Baseline Assessment

14

12

10

y = -1.2118x2 + 3.8483x + 1.7018 8 R² = 0.2093

6 LIR

Average(%)GPPEfficiency 4

2

0 0 0.5 1 1.5 2 2.5 3 3.5 4 Inlet NOx-N (mg/L)

Figure 27. Gross primary productivity efficiency versus NOx-N concentration in Florida springs (based on historic and recent data from a total of 22 springs)

3.3.2 Nutrient Assimilation Figure 28 provides a summary of the average mass removals in the study segment with details provided in Appendix L. The mass of TN increased by an average of 1.8 lbs/ac/d within the study segment with OrgN increasing by 4.3 lbs/ac/d. The mass of NOx-N was reduced by 2.7 lbs/ac/d while NH4-N slightly increased within the study segment (-0.1 lbs/ac/d). Figure 29 provides a summary of mass removals by monitoring period. The mass of TN, OrgN, and TKN decreased in the study segment during July 2015 (7.6, 10.3, and 10.3 lbs/ac/d, respectively) and increased in January 2016 (4.0, 1.8, and 2.4 lbs/ac/d, respectively). The mass of NOx-N was reduced during both periods (July 2015: 2.6 lbs/ac/d and January 2016: 2.7 lbs/ac/d) while NH4-N showed an increase (0.4 lbs/ac/d, July 2015) and decrease (0.2 lbs/ac/d, January 2016) in the study segment. Nutrient mass removal data from the study segment were compared to other Florida spring runs as shown Figure 30. This comparison indicates that the study segment nitrogen mass removal rates are within ranges observed in other Florida springs.

48

Lower Ichetucknee Baseline Assessment

4.00 3.00 2.00 1.00 0.00 -1.00 -2.00

-3.00 Mass Mass Removal (lbs/ac/d) -4.00 -5.00 NH4-N NOx-N Org N TKN TN

Figure 28. Lower Ichetucknee River estimated nutrient mass removals

6.00 4.00 2.00 0.00 -2.00 -4.00 -6.00

-8.00 Mass Mass Removal (lbs/ac/d) -10.00 -12.00 Jul-15 Jan-16 Jul-15 Jan-16 Jul-15 Jan-16 Jul-15 Jan-16 Jul-15 Jan-16 NH4-N NOx-N Org N TKN TN

Figure 29. Lower Ichetucknee River estimated nutrient mass removals by monitoring period

49

Lower Ichetucknee Baseline Assessment

4.0 FWC Phase I 3.0 NH4 mass removal 2.0 Spring Run 1.0 0.0 -1.0 -0.1 Wakulla -2.0 De Leon -3.0 Manatee

MassRemoval (lbs/ac/d) -4.0 Rainbow -5.0 -57 Silver Glen

Silver

15.0 NOx 10.0

5.0 2.7

0.0

-5.0 MassRemoval (lbs/ac/d)

-10.0 -51

15.0 10.0 TKN 5.0 0.0 -5.0 -4.0 -10.0 -15.0 -20.0

MassRemoval (lbs/ac/d) -25.0 -361 -30.0

30.0 TN 20.0

10.0

0.0 -1.8 -10.0

-20.0 MassRemoval (lbs/ac/d) -46 -348 -30.0

Figure 30. Nutrient mass removals for Florida spring runs

50

Lower Ichetucknee Baseline Assessment

3.3.3 Community Export Community export data for the study segment are summarized in Table 19 with detailed data provided in Appendix M. Segment particulate organic matter export rates varied widely. Positive values indicate a net production of detrital material (material leaving the study segment), while negative values indicate a net accrual of detrital material (material being deposited in the study segment). For July 2015, organic matter export rates were positive for both events (2.69 g/m2/d and 0.76 g/m2/d), and the January 2016 events were negative (-0.74 g/m2/d and -1.27 g/m2/d). Particulate organic matter export data from the study segment were compared to other Florida spring runs as shown Figure 31.

Table 19. Lower Ichetucknee River particulate export Organic Dry Matter Organic Dry Matter Matter Date Station (g/d) Matter (g/d) (g/m2/d) (g/m2/d) 7/22/2015 Up 45,220 25,549 0.24 0.14 Down 338,170 172,441 1.41 0.72 Segment 292,950 146,891 5.36 2.69 7/29/2015 Up 38,072 20,709 0.21 0.11 Down 121,534 62,506 0.51 0.26 Segment 83,462 41,798 1.53 0.76 1/13/2016 Up 92,749 48,631 0.50 0.26 Down 13,249 8,150 0.06 0.03 Segment -79,500 -40,481 -1.46 -0.74 1/21/2016 Up 133,878 75,316 0.72 0.41 Down 9,948 5,888 0.04 0.02 Segment -123,930 -69,428 -2.27 -1.27 Segment Areas = Up - Head Spring to LIR-4 (185,039 m2); Down - Head Spring to LIR-15 (239,677 m2); LIR-4 to LIR-15 (54,638 m2)

51

Lower Ichetucknee Baseline Assessment

4.50

4.00

3.50

/d) 2 3.00

2.50

2.00

1.50

1.00

Organic Organic Matter Export g/m 0.50

0.00

-0.50

Figure 31. Particulate organic material export in Florida spring runs

52

Lower Ichetucknee Baseline Assessment Section 4.0 Discussion 4.1 Overview The Lower Ichetucknee River baseline study segment was about 1.8 miles in length, had a wetted surface area of about 16.8 ac, a water volume of about 53 ac-ft, and an average water depth of 3.2 ft. The 2015/2016 monitoring data reported during this baseline study from the Lower Ichetucknee River indicate that this segment is impaired in several respects, but none- the-less, retains a relatively healthy ecological structure compared to other spring runs. Average flows in the Ichetucknee River have been declining since the 1970s. The baseline flows averaged 276 cfs compared to a period-of-record average flow of 341 cfs (a 19% decline). Dissolved oxygen concentration in the Lower Ichetucknee River are generally above 5 mg/L, pH varies around 7.8 standard units, temperature is about 20 oC in the winter and 22 oC in the summer, and specific conductance varies around 340 uS.

Nitrate+nitrite nitrogen concentrations at the springs feeding the Ichetucknee River average about 0.8 mg/L, about 16 times higher than background levels of this nutrient (about 0.05 mg/L) and 2.3 times higher than the Florida numeric springs standard of 0.35 mg/L. However, these nitrogen concentrations are considerably lower than other major springs in the Santa Fe and drainages (e.g., Fanning Springs at about 5 mg/L and Gilchrist Blue Spring at 2.1 mg/L). The Upper Ichetucknee River ecosystem does naturally attenuate the nitrate+nitrite nitrogen concentration to an average of about 0.5 mg/L at the US 27 bridge, which was the upstream boundary of the Lower Ichetucknee River baseline study segment. A small amount of additional nitrate+nitrite assimilation was measured in the study segment (about 45 lbs/d).

Based on the results of other Florida spring studies, declining flow and elevated nitrogen are often associated with ecological changes. The Lower Ichetucknee Segment with relatively high spring inflows and lower nitrogen contamination than other springs, has a relatively low natural cover of submerged aquatic plants (about 39% overall) and low cover by filamentous algae (about 2%). Eight species of aquatic vascular plants were relatively common in this study reach, indicating an above average plant diversity. This plant community supports moderate to low levels of aquatic insects, snails, fish, turtles, and mammals. Gross ecosystem primary productivity was moderate (about 7 g/O2/m2/d), resulting in elevated summer particulate algae export and lowered underwater visibility. Photosynthetic efficiency of this plant community is in the moderate range, averaging about 4%, supporting the other evidence of a moderately healthy spring run ecosystem. Human use of the Lower Ichetucknee River is highest on spring weekends and generally much lower during week days and during colder months. 4.2 Ichetucknee Springs Updated Report Card The updated 2016 Ichetucknee Springs report card is presented in Figure 32 with detailed data provided in Appendix N. The 2016 environmental health of Ichetucknee Springs and River is quantitatively rated as slightly below average.

53

Lower Ichetucknee Baseline Assessment

ICHETUCKNEE SPRINGS AND RIVER ENVIRONMENTAL HEALTH - 2016 REPORT CARD 2016 GRADE C-

F D C B 306 cfs Spring Discharge D 200 220 240 260 280 300 320 340 360 380 400 Discharge (cfs)

F D C B A Water Clarity 61 % B- 30 35 40 45 50 55 60 65 70 75 Percent Transmittance @ 1 meter

0.79 F D C B A A Nitrate 0.79 mg/L B C D D 1.20 1.00 0.80 0.60 0.40 0.20 0.00 F Nitrate-N (mg/L) D

30 F D C B A A 30 Fish Biomass (kg/ha) B C F D 0 50 100 150 200 250 300 350 400 F Fish Biomass (kg/ha) F

54 F D C B A Submerged Aquatic Vegetation 54 % A B C B D 20 25 30 35 40 45 50 55 60 65 70 F Percent Cover & Diversity B

3.93 F D C B A A Photosynthetic Efficiency 3.93 B C C D 0 1 2 3 4 5 6 7 8 F Photosynthetic Efficiency (%) C

Figure 32. Ichetucknee Springs 2016 report card

54

Lower Ichetucknee Baseline Assessment Section 5.0 References Chapin, K.J. and Peter A. Meylan (2010). Turtle Populations at a Heavily Used Recreational Site: Ichetucknee Springs State Parke, Columbia County, Florida. Herpetological Conservation and Biology 6(1):51-60. December 2010. Florida Automated Weather Network (FAWN). Website: http://fawn.ifas.ufl.edu/ Knight, R.L. 2015. Silenced Springs – Moving from Tragedy to Hope. Florida Springs Institute Press. Knight, R. L. 1983. Energy Basis of Ecosystem Control at Silver Springs, Florida, pp. 161-179 In T. D. Fontaine and S. M. Bartell [eds.], Dynamics of Lotic Ecosystems. Ann Arbor Science. Knight, R.L. 1980. Energy Basis of Control in Aquatic Ecosystems. Ph.D. Dissertation, University of Florida, Gainesville, FL. 200 pp. LI-COR Biosciences. LI-COR Quantum Sensors for the measure of photosynthetically active radiation. Lincoln, NE. Website: http://www.licor.com Marsh-McBirney, Inc. Flo-Mate Model 2000 portable flow meter. Frederick, MD. Website: http://www.marsh-mcbirney.com McCree, K.J. 1972. Test of Current Definitions of Photosynthetically Active Radiation against Leaf Photosynthesis Data. Agricultural Meteorology 10:443-453. Odum, H.T. 1957a. Trophic Structure and Productivity of Silver Springs, Florida. Ecological Monographs. Volume 27 (1): 55-112. Odum, H.T. 1957b. Primary Production Measurements in Eleven Florida Springs and a Marine Turtle-Grass Community. Limnology and Oceanography 2:85-97. Schneider, J.C., P.W. Larrman, and H. Gowing. 2000. Length-weight relationships, Chapter 17, In Schneider, J.C. [Ed.] Manual of Fisheries Survey Methods II: With Periodic Updates. Michigan Department of Natural Resources, Fisheries Special Report 25, Ann Arbor, MI. Walton, W.E., P.D. Workman, and J.B. Keiper. 1999. An inexpensive collapsible pyramidal emergence trap for the assessment of wetland insect populations. Proceedings and Papers of the Sixty-Seventh Conference of the California Mosquito Control Association. 15-17. Wetland Solutions, Inc. (WSI). 2007. Pollutant Load Reduction Goal (PLRG) Analysis for the and Rock Springs Run, Florida. Phase 3 Final Report. Report prepared for the St. Johns River Water Management District, Palatka, FL. 418 pp. Wetland Solutions, Inc. (WSI). 2010. An Ecosystem-Level Study of Florida’s Springs. Report prepared for the Florida Fish and Wildlife Conservation Commission, St. Johns River Water Management District, Southwest Florida Water Management District, Florida Parke Service, Florida Springs Initiative, and Three Rivers Trust, Inc. 1,458 pp. Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems. 3rd Ed. Academic Press, San Diego, CA. Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall. 130 p.

55

Lower Ichetucknee Baseline Assessment

Appendix A PAR Attenuation Estimates

56

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-1 7/20/2015 9:58 1 Air 128.4 128.4 0.858 42.42 57.58 0.03 128.4 128.4 4.85 air 0.15 128.4 116.9 4.76 0.093 0.611 water 0.30 128.4 91.9 4.52 0.334 1.095 ln(Io/Iz) 0.61 128.4 70.1 4.25 0.605 0.992 0.91 128.4 54.4 4.00 0.858 0.938 1.22 128.4 46.0 3.83 1.025 0.841 ICH LIR-1 7/20/2015 9:58 2 Air 140.7 140.7 0.592 55.34 44.66 0.03 140.7 134.0 4.90 air 0.15 140.7 87.8 4.47 0.472 3.094 water 0.30 140.7 75.2 4.32 0.626 2.055 ln(Io/Iz) 0.61 140.7 61.6 4.12 0.826 1.356 0.91 140.7 50.3 3.92 1.029 1.125 1.22 140.7 47.1 3.85 1.094 0.898 ICH LIR-2 7/20/2015 10:15 1 Air 175.3 175.3 0.530 58.87 41.13 0.03 175.3 161.0 5.08 air 0.15 175.3 116.6 4.76 0.407 2.671 water 0.30 175.3 103.6 4.64 0.526 1.726 ln(Io/Iz) 0.61 175.3 92.8 4.53 0.636 1.043 0.91 175.3 76.3 4.33 0.832 0.910 ICH LIR-2 7/20/2015 10:15 2 Air 175.5 175.5 0.506 60.28 39.72 0.03 175.5 158.3 5.06 air 0.15 175.5 115.6 4.75 0.418 2.740 water 0.30 175.5 104.7 4.65 0.516 1.694 ln(Io/Iz) 0.61 175.5 89.2 4.49 0.676 1.110 0.91 175.5 78.4 4.36 0.806 0.881 ICH LIR-3 7/20/2015 10:32 1 Air 185.0 185.0 0.583 55.84 44.16 0.03 185.0 133.5 4.89 air 0.15 185.0 122.0 4.80 0.416 2.731 water 0.30 185.0 111.9 4.72 0.503 1.651 ln(Io/Iz) 0.61 185.0 94.2 4.55 0.675 1.107 0.91 185.0 74.4 4.31 0.912 0.997 1.22 185.0 67.2 4.21 1.012 0.830 ICH LIR-3 7/20/2015 10:32 2 Air 163.3 163.3 0.666 51.35 48.65 0.03 163.3 133.3 4.89 air 0.15 163.3 121.8 4.80 0.293 1.923 water 0.30 163.3 110.3 4.70 0.393 1.289 ln(Io/Iz) 0.61 163.3 80.2 4.38 0.712 1.167 0.91 163.3 68.6 4.23 0.868 0.949 1.22 163.3 61.5 4.12 0.977 0.802 ICH LIR-4 7/20/2015 10:52 1 Air 160.0 160.0 0.407 66.55 33.45 0.03 160.0 120.8 4.79 air 0.15 160.0 99.0 4.59 0.480 3.150 water 0.30 160.0 100.0 4.61 0.470 1.541 ln(Io/Iz) 0.61 160.0 93.5 4.54 0.537 0.882 0.91 160.0 73.0 4.29 0.784 0.858 1.22 160.0 67.1 4.21 0.869 0.712 ICH LIR-4 7/20/2015 10:52 2 Air 60.2 60.2 0.329 71.98 28.02 0.03 60.2 195.1 5.27 air 0.15 60.2 127.1 4.84 -0.748 -4.907 water 0.30 60.2 112.0 4.72 -0.621 -2.037 ln(Io/Iz) 0.61 60.2 98.4 4.59 -0.491 -0.806 0.91 60.2 98.0 4.59 -0.488 -0.534 1.22 60.2 85.5 4.45 -0.351 -0.288

57

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-5 7/20/2015 11:08 1 Air 219.2 219.2 0.145 86.51 13.49 0.03 219.2 140.3 4.94 air 0.15 219.2 118.7 4.78 0.614 4.026 water 0.30 219.2 102.1 4.63 0.764 2.507 ln(Io/Iz) 0.61 219.2 98.3 4.59 0.802 1.316 0.91 219.2 95.2 4.56 0.835 0.913 1.22 219.2 98.8 4.59 0.796 0.653 ICH LIR-5 7/20/2015 11:08 2 Air 151.5 151.5 0.666 51.37 48.63 X 0.03 151.5 267.5 5.59 air 0.15 151.5 247.3 5.51 -0.490 -3.216 water 0.30 151.5 170.6 5.14 -0.119 -0.391 ln(Io/Iz) 0.61 151.5 157.5 5.06 -0.039 -0.064 0.91 151.5 133.1 4.89 0.129 0.141 1.22 151.5 108.8 4.69 0.331 0.272 ICH LIR-6 7/20/2015 11:23 1 Air 226.7 226.7 0.437 64.63 35.37 X 0.03 226.7 293.1 5.68 air 0.15 226.7 229.2 5.43 -0.011 -0.072 water 0.30 226.7 190.4 5.25 0.175 0.573 ln(Io/Iz) 0.61 226.7 156.1 5.05 0.373 0.612 0.91 226.7 151.2 5.02 0.405 0.443 1.22 226.7 138.3 4.93 0.494 0.405 ICH LIR-6 7/20/2015 11:23 2 Air 294.6 294.6 0.172 84.17 15.83 0.03 294.6 209.8 5.35 air 0.15 294.6 200.6 5.30 0.384 2.522 water 0.30 294.6 149.5 5.01 0.678 2.225 ln(Io/Iz) 0.61 294.6 161.6 5.09 0.600 0.985 0.91 294.6 161.0 5.08 0.604 0.661 1.22 294.6 148.0 5.00 0.688 0.565 ICH LIR-7 7/20/2015 11:42 1 Air 465.2 465.2 0.000 100.04 -0.04 X 0.03 465.2 374.5 5.93 air 0.15 465.2 251.5 5.53 0.615 4.036 water 0.30 465.2 343.4 5.84 0.304 0.996 ln(Io/Iz) 0.61 465.2 303.3 5.71 0.428 0.702 0.91 465.2 275.4 5.62 0.524 0.573 ICH LIR-7 7/20/2015 11:42 2 Air 626.3 626.3 0.428 65.20 34.80 0.03 626.3 375.0 5.93 air 0.15 626.3 490.1 6.19 0.245 1.609 water 0.30 626.3 302.2 5.71 0.729 2.391 ln(Io/Iz) 0.61 626.3 343.4 5.84 0.601 0.986 0.91 626.3 305.6 5.72 0.718 0.785 ICH LIR-8 7/20/2015 12:09 1 Air 153.4 153.4 1.826 16.10 83.90 0.03 153.4 139.6 4.94 air 0.15 153.4 504.8 6.22 -1.191 -7.816 water 0.30 153.4 342.3 5.84 -0.803 -2.634 ln(Io/Iz) 0.61 153.4 153.1 5.03 0.002 0.003 0.91 153.4 94.8 4.55 0.481 0.526 1.22 153.4 75.7 4.33 0.707 0.580 ICH LIR-8 7/20/2015 12:09 2 Air 41.3 41.3 0.046 95.47 4.53 X 0.03 41.3 52.4 3.96 air 0.15 41.3 49.4 3.90 -0.178 -1.167 water 0.30 41.3 51.5 3.94 -0.221 -0.725 ln(Io/Iz) 0.61 41.3 58.6 4.07 -0.350 -0.574 0.91 41.3 63.1 4.14 -0.423 -0.463 1.22 41.3 42.8 3.76 -0.035 -0.028

58

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-9 7/20/2015 12:40 1 Air 309.9 309.9 0.911 40.23 59.77 X 0.03 309.9 127.6 4.85 air 0.15 309.9 137.7 4.93 0.811 5.323 water 0.30 309.9 116.1 4.75 0.982 3.221 ln(Io/Iz) 0.61 309.9 74.7 4.31 1.423 2.335 0.91 309.9 58.0 4.06 1.675 1.832 1.22 309.9 54.9 4.01 1.731 1.420 ICH LIR-9 7/20/2015 12:40 2 Air 113.1 113.1 0.192 82.56 17.44 0.03 113.1 100.1 4.61 air 0.15 113.1 88.5 4.48 0.245 1.611 water 0.30 113.1 61.4 4.12 0.611 2.004 ln(Io/Iz) 0.61 113.1 70.6 4.26 0.471 0.773 0.91 113.1 80.2 4.38 0.344 0.376 1.22 113.1 57.6 4.05 0.674 0.553 ICH LIR-10 7/20/2015 12:57 1 Air 1,430.0 1,430.0 0.239 78.71 21.29 0.03 1,430.0 927.6 6.83 air 0.15 1,430.0 310.8 5.74 1.526 10.015 water 0.30 1,430.0 314.6 5.75 1.514 4.968 ln(Io/Iz) 0.61 1,430.0 281.3 5.64 1.626 2.667 ICH LIR-10 7/20/2015 12:57 2 Air 857.8 857.8 1.435 23.82 76.18 X 0.03 857.8 1,559.2 7.35 air 0.15 857.8 1,417.7 7.26 -0.502 -3.297 water 0.30 857.8 1,359.1 7.21 -0.460 -1.510 ln(Io/Iz) 0.61 857.8 762.2 6.64 0.118 0.194 ICH LIR-11 7/20/2015 13:26 1 Air 1,276.1 1,276.1 4.602 1.00 99.00 X 0.03 1,276.1 1,739.8 7.46 air 0.15 1,276.1 1,123.4 7.02 0.127 0.836 water 0.30 1,276.1 236.3 5.47 1.686 5.533 ln(Io/Iz) 0.61 1,276.1 115.4 4.75 2.403 3.942 ICH LIR-11 7/20/2015 13:26 2 Air 68.3 68.3 -0.099 110.38 -10.38 X 0.03 68.3 79.7 4.38 air 0.15 68.3 84.7 4.44 -0.215 -1.412 water 0.30 68.3 83.0 4.42 -0.196 -0.642 ln(Io/Iz) 0.61 68.3 88.0 4.48 -0.253 -0.416 ICH LIR-12 7/20/2015 13:39 1 Air 166.2 166.2 0.035 96.55 3.45 0.03 166.2 130.1 4.87 air 0.15 166.2 112.4 4.72 0.391 2.568 water 0.30 166.2 113.5 4.73 0.382 1.253 ln(Io/Iz) 0.61 166.2 112.3 4.72 0.392 0.643 0.91 166.2 109.7 4.70 0.416 0.454 ICH LIR-12 7/20/2015 13:39 2 Air 307.0 307.0 0.174 84.01 15.99 0.03 307.0 666.3 6.50 air 0.15 307.0 235.6 5.46 0.265 1.737 water 0.30 307.0 203.2 5.31 0.413 1.354 ln(Io/Iz) 0.61 307.0 749.2 6.62 -0.892 -1.464 0.91 307.0 139.3 4.94 0.790 0.864 ICH LIR-13 7/20/2015 14:05 1 Air 215.1 215.1 0.644 52.53 47.47 0.03 215.1 252.5 5.53 air 0.15 215.1 213.1 5.36 0.009 0.061 water 0.30 215.1 185.2 5.22 0.150 0.491 ln(Io/Iz) 0.61 215.1 157.8 5.06 0.310 0.508 0.91 215.1 128.2 4.85 0.517 0.566

59

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-13 7/20/2015 14:05 2 Air 143.9 143.9 0.268 76.50 23.50 0.03 143.9 169.4 5.13 air 0.15 143.9 145.4 4.98 -0.011 -0.069 water 0.30 143.9 138.3 4.93 0.039 0.129 ln(Io/Iz) 0.61 143.9 123.3 4.81 0.154 0.253 0.91 143.9 119.4 4.78 0.186 0.204 ICH LIR-14 7/20/2015 14:18 1 Air 139.2 139.2 0.313 73.14 26.86 0.03 139.2 135.9 4.91 air 0.15 139.2 110.4 4.70 0.232 1.521 water 0.30 139.2 99.1 4.60 0.339 1.113 ln(Io/Iz) 0.61 139.2 94.5 4.55 0.387 0.634 ICH LIR-14 7/20/2015 14:18 2 Air 129.9 129.9 0.230 79.43 20.57 0.03 129.9 136.5 4.92 air 0.15 129.9 107.2 4.67 0.192 1.260 water 0.30 129.9 104.4 4.65 0.219 0.717 ln(Io/Iz) 0.61 129.9 96.7 4.57 0.296 0.485 ICH LIR-15 7/20/2015 14:29 1 Air 124.7 124.7 1.005 36.62 63.38 0.03 124.7 92.9 4.53 air 0.15 124.7 82.2 4.41 0.417 2.734 water 0.30 124.7 70.5 4.26 0.570 1.869 ln(Io/Iz) ICH LIR-15 7/20/2015 14:29 2 Air 53.7 53.7 0.628 53.38 46.62 0.03 53.7 107.6 4.68 air 0.15 53.7 76.2 4.33 -0.350 -2.299 water 0.30 53.7 69.2 4.24 -0.255 -0.836 ln(Io/Iz) ICH LIR-1 7/25/2015 9:46 1 Air 59.6 59.6 1.467 23.07 76.93 0.03 59.6 98.0 4.58 air 0.15 59.6 44.5 3.80 0.291 1.907 water 0.30 59.6 22.5 3.11 0.974 3.195 ln(Io/Iz) 0.61 59.6 15.0 2.71 1.377 2.260 0.91 59.6 13.2 2.58 1.504 1.644 ICH LIR-1 7/25/2015 9:56 2 Air 41.5 41.5 2.102 12.22 87.78 0.03 41.5 86.6 4.46 air 0.15 41.5 81.1 4.40 -0.672 -4.407 water 0.30 41.5 38.3 3.64 0.080 0.262 ln(Io/Iz) 0.61 41.5 21.6 3.07 0.654 1.073 0.91 41.5 14.9 2.70 1.026 1.123 ICH LIR-2 7/25/2015 9:59 1 Air 492.2 492.2 0.754 47.05 52.95 0.03 492.2 503.1 6.22 air 0.15 492.2 85.5 4.45 1.750 11.485 water 0.30 492.2 53.3 3.98 2.223 7.294 ln(Io/Iz) 0.61 492.2 45.6 3.82 2.379 3.903 0.91 492.2 60.5 4.10 2.096 2.293 1.22 492.2 27.5 3.31 2.885 2.366 ICH LIR-2 7/25/2015 10:13 2 Air 199.6 199.6 0.116 89.02 10.98 0.03 199.6 865.0 6.76 air 0.15 199.6 56.7 4.04 1.258 8.254 water 0.30 199.6 56.7 4.04 1.258 4.128 ln(Io/Iz) 0.61 199.6 57.3 4.05 1.248 2.047 0.91 199.6 41.3 3.72 1.575 1.722 1.22 199.6 56.6 4.04 1.260 1.034 ICH LIR-3 7/25/2015 10:17 1 Air 54.3 54.3 0.614 54.10 45.90 0.03 54.3 118.4 4.77 air 0.15 54.3 42.2 3.74 0.254 1.664 water 0.30 54.3 30.4 3.41 0.580 1.904 ln(Io/Iz) 0.61 54.3 26.5 3.28 0.717 1.176 0.91 54.3 22.7 3.12 0.873 0.954 1.22 54.3 20.3 3.01 0.982 0.806

60

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-3 7/25/2015 10:30 2 Air 34.8 34.8 0.857 42.44 57.56 0.03 34.8 57.4 4.05 air 0.15 34.8 44.4 3.79 -0.243 -1.595 water 0.30 34.8 39.6 3.68 -0.129 -0.423 ln(Io/Iz) 0.61 34.8 21.4 3.06 0.488 0.801 0.91 34.8 21.5 3.07 0.481 0.526 1.22 34.8 18.2 2.90 0.646 0.530 ICH LIR-4 7/25/2015 10:36 1 Air 147.8 147.8 1.054 34.85 65.15 0.03 147.8 120.3 4.79 air 0.15 147.8 124.0 4.82 0.175 1.151 water 0.30 147.8 57.1 4.04 0.952 3.123 ln(Io/Iz) 0.61 147.8 36.0 3.58 1.413 2.317 0.91 147.8 51.6 3.94 1.053 1.151 ICH LIR-4 7/25/2015 10:44 2 Air 332.0 332.0 0.867 42.02 57.98 0.03 332.0 177.2 5.18 air 0.15 332.0 95.5 4.56 1.246 8.177 water 0.30 332.0 23.2 3.14 2.662 8.733 ln(Io/Iz) 0.61 332.0 36.6 3.60 2.205 3.617 0.91 332.0 32.1 3.47 2.337 2.556 ICH LIR-5 7/25/2015 10:48 1 Air 94.9 94.9 0.838 43.26 56.74 0.03 94.9 89.0 4.49 air 0.15 94.9 72.2 4.28 0.274 1.798 water 0.30 94.9 47.0 3.85 0.702 2.305 ln(Io/Iz) 0.61 94.9 23.5 3.16 1.395 2.289 0.91 94.9 29.8 3.39 1.159 1.267 1.22 94.9 26.8 3.29 1.264 1.037 ICH LIR-5 7/25/2015 10:57 2 Air 84.5 84.5 1.844 15.82 84.18 0.03 84.5 141.7 4.95 air 0.15 84.5 106.7 4.67 -0.233 -1.530 water 0.30 84.5 99.9 4.60 -0.168 -0.550 ln(Io/Iz) 0.61 84.5 78.2 4.36 0.078 0.128 0.91 84.5 20.1 3.00 1.438 1.573 1.22 84.5 19.7 2.98 1.455 1.194 ICH LIR-6 7/25/2015 11:02 1 Air 84.6 84.6 0.267 76.55 23.45 0.03 84.6 126.2 4.84 air 0.15 84.6 96.0 4.56 -0.127 -0.833 water 0.30 84.6 101.6 4.62 -0.184 -0.603 ln(Io/Iz) 0.61 84.6 65.4 4.18 0.257 0.422 0.91 84.6 87.9 4.48 -0.039 -0.043 ICH LIR-6 7/25/2015 11:11 2 Air 91.6 91.6 0.321 72.53 27.47 0.03 91.6 102.1 4.63 air 0.15 91.6 112.7 4.72 -0.207 -1.356 water 0.30 91.6 98.9 4.59 -0.076 -0.249 ln(Io/Iz) 0.61 91.6 104.9 4.65 -0.135 -0.221 0.91 91.6 83.3 4.42 0.096 0.105 ICH LIR-7 7/25/2015 11:14 1 Air 97.9 97.9 0.488 61.39 38.61 0.03 97.9 211.0 5.35 air 0.15 97.9 178.2 5.18 -0.599 -3.929 water 0.30 97.9 136.2 4.91 -0.330 -1.083 ln(Io/Iz) 0.61 97.9 101.7 4.62 -0.038 -0.062 0.91 97.9 80.0 4.38 0.202 0.221 1.22 97.9 113.9 4.73 -0.151 -0.124

61

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-7 7/25/2015 11:25 2 Air 97.9 97.9 0.488 61.39 38.61 0.03 97.9 211.0 5.35 air 0.15 97.9 178.2 5.18 -0.599 -3.929 water 0.30 97.9 136.2 4.91 -0.330 -1.083 ln(Io/Iz) 0.61 97.9 101.7 4.62 -0.038 -0.062 0.91 97.9 80.0 4.38 0.202 0.221 1.22 97.9 113.9 4.73 -0.151 -0.124 ICH LIR-8 7/25/2015 11:30 1 Air 341.2 341.2 3.822 2.19 97.81 X 0.03 341.2 226.1 5.42 air 0.15 341.2 1,038.1 6.95 -1.113 -7.301 water 0.30 341.2 180.6 5.20 0.636 2.088 ln(Io/Iz) 0.61 341.2 25.0 3.22 2.614 4.287 0.91 341.2 16.5 2.81 3.027 3.311 1.22 341.2 14.4 2.67 3.163 2.594 ICH LIR-8 7/25/2015 11:42 2 Air 231.6 231.6 3.123 4.40 95.60 X 0.03 231.6 281.0 5.64 air 0.15 231.6 150.3 5.01 0.433 2.838 water 0.30 231.6 809.1 6.70 -1.251 -4.104 ln(Io/Iz) 0.61 231.6 889.0 6.79 -1.345 -2.207 0.91 231.6 10.3 2.33 3.115 3.406 1.22 231.6 25.6 3.24 2.202 1.806 ICH LIR-9 7/25/2015 11:46 1 Air 64.7 64.7 0.751 47.17 52.83 0.03 64.7 93.8 4.54 air 0.15 64.7 132.5 4.89 -0.717 -4.702 water 0.30 64.7 62.9 4.14 0.028 0.093 ln(Io/Iz) 0.61 64.7 47.4 3.86 0.311 0.511 0.91 64.7 47.9 3.87 0.300 0.328 1.22 64.7 49.1 3.89 0.276 0.226 ICH LIR-9 7/25/2015 11:56 2 Air 154.4 154.4 0.756 46.94 53.06 0.03 154.4 169.8 5.13 air 0.15 154.4 111.0 4.71 0.330 2.164 water 0.30 154.4 123.6 4.82 0.223 0.731 ln(Io/Iz) 0.61 154.4 95.2 4.56 0.484 0.794 0.91 154.4 76.3 4.33 0.705 0.771 1.22 154.4 51.8 3.95 1.093 0.896 ICH LIR-10 7/25/2015 12:01 1 Air 338.1 338.1 -1.638 514.43 -414.43 X 0.03 338.1 366.1 5.90 air 0.15 338.1 325.0 5.78 0.039 0.258 water 0.30 338.1 313.1 5.75 0.077 0.252 ln(Io/Iz) 0.61 338.1 849.0 6.74 -0.921 -1.511 0.91 338.1 938.1 6.84 -1.021 -1.116 ICH LIR-10 7/25/2015 12:09 2 Air 622.0 622.0 -1.729 563.45 -463.45 X 0.03 622.0 367.1 5.91 air 0.15 622.0 273.1 5.61 0.823 5.402 water 0.30 622.0 268.1 5.59 0.842 2.762 ln(Io/Iz) 0.61 622.0 253.1 5.53 0.899 1.475 0.91 622.0 1,136.1 7.04 -0.602 -0.659 ICH LIR-11 7/25/2015 12:15 1 Air 1,434.1 1,434.1 -0.799 222.26 -122.26 X 0.03 1,434.1 1,149.0 7.05 air 0.15 1,434.1 775.0 6.65 0.615 4.038 water 0.30 1,434.1 234.1 5.46 1.813 5.947 ln(Io/Iz) 0.61 1,434.1 857.7 6.75 0.514 0.843 ICH LIR-11 7/25/2015 12:24 2 Air 973.2 973.2 -0.073 107.61 -7.61 X 0.03 973.2 1,385.1 7.23 air 0.15 973.2 845.6 6.74 0.141 0.922 water 0.30 973.2 686.7 6.53 0.349 1.144 ln(Io/Iz) 0.61 973.2 836.9 6.73 0.151 0.248

62

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-13 7/25/2015 12:32 1 Air 488.6 488.6 0.724 48.50 51.50 0.03 488.6 1,141.6 7.04 air 0.15 488.6 203.5 5.32 0.876 5.747 water 0.30 488.6 144.8 4.98 1.216 3.991 ln(Io/Iz) 0.61 488.6 139.6 4.94 1.253 2.055 ICH LIR-13 7/25/2015 12:40 2 Air 719.4 719.4 4.298 1.36 98.64 X 0.03 719.4 665.0 6.50 air 0.15 719.4 1,170.7 7.07 -0.487 -3.195 water 0.30 719.4 136.0 4.91 1.665 5.464 ln(Io/Iz) 0.61 719.4 121.6 4.80 1.777 2.916 ICH LIR-14 7/25/2015 12:45 1 Air 382.0 382.0 5.638 0.36 99.64 X 0.03 382.0 443.0 6.09 air 0.15 382.0 847.7 6.74 -0.797 -5.230 water 0.30 382.0 359.0 5.88 0.062 0.204 ln(Io/Iz) ICH LIR-14 7/25/2015 12:50 2 Air 382.0 382.0 5.638 0.36 99.64 X 0.03 382.0 443.0 6.09 air 0.15 382.0 847.7 6.74 -0.797 -5.230 water 0.30 382.0 359.0 5.88 0.062 0.204 ln(Io/Iz) ICH LIR-15 7/25/2015 12:53 1 Air 206.3 206.3 -0.232 126.11 -26.11 X 0.03 206.3 289.4 5.67 air 0.15 206.3 774.0 6.65 -1.322 -8.676 water 0.30 206.3 1,259.2 7.14 -1.809 -5.935 ln(Io/Iz) 0.61 206.3 941.9 6.85 -1.519 -2.491 ICH LIR-15 7/25/2015 13:01 2 Air 271.0 271.0 2.651 7.06 92.94 X 0.03 271.0 340.8 5.83 air 0.15 271.0 1,296.6 7.17 -1.565 -10.272 water 0.30 271.0 1,138.6 7.04 -1.435 -4.709 ln(Io/Iz) 0.61 271.0 407.6 6.01 -0.408 -0.670 ICH LIR-1 7/31/2015 9:31 1 Air 75.8 75.8 0.124 88.30 11.70 0.03 75.8 97.4 4.58 air 0.15 75.8 65.7 4.19 0.142 0.934 water 0.30 75.8 80.9 4.39 -0.065 -0.213 ln(Io/Iz) 0.61 75.8 84.8 4.44 -0.113 -0.185 0.91 75.8 68.2 4.22 0.106 0.116 1.22 75.8 62.7 4.14 0.190 0.156 ICH LIR-1 7/31/2015 9:31 2 Air 140.5 140.5 0.572 56.45 43.55 0.03 140.5 148.9 5.00 air 0.15 140.5 130.9 4.87 0.071 0.463 water 0.30 140.5 123.8 4.82 0.126 0.414 ln(Io/Iz) 0.61 140.5 91.7 4.52 0.427 0.700 0.91 140.5 86.9 4.47 0.480 0.525 1.22 140.5 71.2 4.27 0.680 0.558 ICH LIR-2 7/31/2015 9:48 1 Air 287.1 287.1 -0.084 108.81 -8.81 X 0.03 287.1 945.9 6.85 air 0.15 287.1 561.9 6.33 -0.671 -4.406 water 0.30 287.1 203.6 5.32 0.344 1.128 ln(Io/Iz) 0.61 287.1 387.5 5.96 -0.300 -0.492 0.91 287.1 420.0 6.04 -0.380 -0.416 ICH LIR-2 7/31/2015 9:48 2 Air 968.6 968.6 0.108 89.76 10.24 0.03 968.6 1,195.9 7.09 air 0.15 968.6 705.6 6.56 0.317 2.079 water 0.30 968.6 483.3 6.18 0.695 2.281 ln(Io/Iz) 0.61 968.6 575.8 6.36 0.520 0.853 0.91 968.6 574.9 6.35 0.522 0.570

63

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-3 7/31/2015 10:09 1 Air 126.0 126.0 0.456 63.39 36.61 0.03 126.0 98.1 4.59 air 0.15 126.0 79.6 4.38 0.460 3.016 water 0.30 126.0 85.1 4.44 0.393 1.288 ln(Io/Iz) 0.61 126.0 75.5 4.32 0.512 0.841 0.91 126.0 57.3 4.05 0.787 0.861 ICH LIR-4 7/31/2015 10:18 1 Air 159.7 159.7 -0.131 113.97 -13.97 X 0.03 159.7 131.8 4.88 air 0.15 159.7 112.7 4.72 0.349 2.287 water 0.30 159.7 117.6 4.77 0.307 1.006 ln(Io/Iz) 0.61 159.7 120.2 4.79 0.284 0.467 ICH LIR-5 7/31/2015 10:28 1 Air 58.0 58.0 0.610 54.35 45.65 0.03 58.0 65.2 4.18 air 0.15 58.0 47.4 3.86 0.203 1.332 water 0.30 58.0 43.7 3.78 0.285 0.933 ln(Io/Iz) 0.61 58.0 36.5 3.60 0.463 0.760 0.91 58.0 29.8 3.39 0.667 0.730 ICH LIR-6 7/31/2015 10:38 1 Air 164.3 164.3 -1.702 548.50 -448.50 X 0.03 164.3 166.2 5.11 air 0.15 164.3 154.0 5.04 0.065 0.424 water 0.30 164.3 178.8 5.19 -0.084 -0.277 ln(Io/Iz) 0.61 164.3 405.7 6.01 -0.904 -1.483 0.91 164.3 508.7 6.23 -1.130 -1.236 ICH LIR-7 7/31/2015 10:48 1 Air 164.2 164.2 -0.098 110.32 -10.32 X 0.03 164.2 166.0 5.11 air 0.15 164.2 74.6 4.31 0.789 5.180 water 0.30 164.2 64.9 4.17 0.928 3.045 ln(Io/Iz) 0.61 164.2 73.8 4.30 0.800 1.312 0.91 164.2 76.1 4.33 0.769 0.841 ICH LIR-8 7/31/2015 10:57 1 Air 200.3 200.3 0.117 88.94 11.06 0.03 200.3 169.2 5.13 air 0.15 200.3 170.9 5.14 0.159 1.044 water 0.30 200.3 213.0 5.36 -0.061 -0.202 ln(Io/Iz) 0.61 200.3 214.6 5.37 -0.069 -0.113 0.91 200.3 161.3 5.08 0.217 0.237 ICH LIR-9 7/31/2015 11:06 1 Air 341.3 341.3 -0.691 199.50 -99.50 X 0.03 341.3 186.4 5.23 air 0.15 341.3 222.9 5.41 0.426 2.796 water 0.30 341.3 872.1 6.77 -0.938 -3.078 ln(Io/Iz) 0.61 341.3 848.6 6.74 -0.911 -1.494 0.91 341.3 506.1 6.23 -0.394 -0.431 ICH LIR-10 7/31/2015 11:16 1 Air 229.4 229.4 0.713 48.99 51.01 0.03 229.4 243.5 5.50 air 0.15 229.4 157.1 5.06 0.378 2.482 water 0.30 229.4 150.0 5.01 0.425 1.394 ln(Io/Iz) 0.61 229.4 117.8 4.77 0.667 1.094 0.91 229.4 92.9 4.53 0.904 0.989 ICH LIR-11 7/31/2015 11:44 1 Air 327.8 327.8 0.657 51.84 48.16 0.03 327.8 359.2 5.88 air 0.15 327.8 276.2 5.62 0.171 1.124 water 0.30 327.8 247.8 5.51 0.280 0.918 ln(Io/Iz) 0.61 327.8 204.2 5.32 0.473 0.776 ICH LIR-12 7/31/2015 11:52 1 Air 141.7 141.7 0.211 81.01 18.99 0.03 141.7 176.1 5.17 air 0.15 141.7 131.0 4.87 0.079 0.516 water 0.30 141.7 138.6 4.93 0.022 0.073 ln(Io/Iz) 0.61 141.7 121.1 4.80 0.157 0.258

64

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-13 7/31/2015 12:00 1 Air 157.4 157.4 0.637 52.89 47.11 0.03 157.4 208.4 5.34 air 0.15 157.4 166.5 5.12 -0.056 -0.369 water 0.30 157.4 146.9 4.99 0.069 0.226 ln(Io/Iz) 0.61 157.4 123.8 4.82 0.241 0.395 ICH LIR-14 7/31/2015 12:07 1 Air 174.9 174.9 0.728 48.30 51.70 0.03 174.9 183.7 5.21 air 0.15 174.9 210.0 5.35 -0.183 -1.200 water 0.30 174.9 245.6 5.50 -0.340 -1.114 ln(Io/Iz) 0.61 174.9 187.9 5.24 -0.072 -0.117 0.91 174.9 128.2 4.85 0.310 0.339 ICH LIR-15 7/31/2015 12:17 1 Air 1,364.5 1,364.5 0.879 41.52 58.48 0.03 1,364.5 1,297.5 7.17 air 0.15 1,364.5 1,347.0 7.21 0.013 0.085 water 0.30 1,364.5 1,178.1 7.07 0.147 0.482 ln(Io/Iz) ICH LIR-15 9/23/2015 11:20 1 Air 154.6 154.6 0.738 47.79 52.21 0.03 154.6 174.6 5.16 air 0.15 154.6 101.2 4.62 0.423 2.778 water 0.30 154.6 98.9 4.59 0.447 1.466 ln(Io/Iz) 0.46 154.6 95.9 4.56 0.478 1.045 0.61 154.6 85.8 4.45 0.589 0.966 0.76 154.6 68.4 4.22 0.816 1.071 0.91 154.6 58.8 4.07 0.967 1.058 ICH LIR-15 9/23/2015 11:20 2 Air 100.1 100.1 0.543 58.11 41.89 0.03 100.1 91.8 4.52 air 0.15 100.1 92.1 4.52 0.083 0.543 water 0.30 100.1 73.9 4.30 0.303 0.995 ln(Io/Iz) 0.46 100.1 58.2 4.06 0.542 1.186 0.61 100.1 61.1 4.11 0.494 0.810 0.76 100.1 59.1 4.08 0.527 0.691 0.91 100.1 58.5 4.07 0.538 0.588 ICH LIR-15 9/23/2015 12:54 1 Air 178.8 178.8 -0.632 188.17 -88.17 X 0.03 178.8 335.3 5.82 air 0.15 178.8 223.9 5.41 -0.225 -1.477 water 0.30 178.8 1,100.8 7.00 -1.818 -5.964 ln(Io/Iz) 0.46 178.8 944.0 6.85 -1.664 -3.640 0.61 178.8 799.8 6.68 -1.498 -2.458 0.76 178.8 421.2 6.04 -0.857 -1.125 0.91 178.8 808.5 6.70 -1.509 -1.650 ICH LIR-15 9/23/2015 12:54 2 Air 1,225.1 1,225.1 0.377 68.57 31.43 0.03 1,225.1 1,399.1 7.24 air 0.15 1,225.1 1,173.7 7.07 0.043 0.281 water 0.30 1,225.1 1,258.0 7.14 -0.027 -0.087 ln(Io/Iz) 0.46 1,225.1 1,001.7 6.91 0.201 0.440 0.61 1,225.1 1,022.2 6.93 0.181 0.297 0.76 1,225.1 1,003.1 6.91 0.200 0.262 0.91 1,225.1 895.4 6.80 0.314 0.343 ICH LIR-15 9/23/2015 13:58 1 Air 1,437.7 1,437.7 0.266 76.62 23.38 0.03 1,437.7 1,326.6 7.19 air 0.15 1,437.7 1,288.8 7.16 0.109 0.717 water 0.30 1,437.7 1,212.4 7.10 0.170 0.559 ln(Io/Iz) 0.46 1,437.7 1,194.1 7.09 0.186 0.406 0.61 1,437.7 1,123.4 7.02 0.247 0.405 0.76 1,437.7 1,093.0 7.00 0.274 0.360

65

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-15 9/23/2015 13:58 2 Air 904.5 904.5 0.335 71.54 28.46 0.03 904.5 1,393.5 7.24 air 0.15 904.5 1,321.4 7.19 -0.379 -2.487 water 0.30 904.5 1,248.8 7.13 -0.323 -1.058 ln(Io/Iz) 0.46 904.5 1,149.0 7.05 -0.239 -0.523 0.61 904.5 1,125.1 7.03 -0.218 -0.358 0.76 904.5 1,078.6 6.98 -0.176 -0.231 ICH LIR-1 1/11/2016 9:59 1 Air 683.7 683.7 0.680 50.66 49.34 0.03 683.7 338.5 5.82 air 0.15 683.7 340.7 5.83 0.697 4.570 water 0.30 683.7 242.3 5.49 1.037 3.403 ln(Io/Iz) 0.61 683.7 204.4 5.32 1.207 1.981 0.91 683.7 159.8 5.07 1.453 1.589 1.22 683.7 159.3 5.07 1.457 1.195 ICH LIR-7 1/11/2016 10:54 1 Air 69.1 69.1 0.228 79.59 20.41 0.03 69.1 34.0 3.53 air 0.15 69.1 28.3 3.34 0.892 5.855 water 0.30 69.1 22.6 3.12 1.118 3.667 ln(Io/Iz) 0.61 69.1 20.2 3.01 1.230 2.018 0.91 69.1 19.1 2.95 1.284 1.404 1.22 69.1 21.8 3.08 1.155 0.948 ICH LIR-15 1/11/2016 12:00 1 Air 1,232.3 1,232.3 0.208 81.26 18.74 0.03 1,232.3 575.4 6.36 air 0.15 1,232.3 564.8 6.34 0.780 5.119 water 0.30 1,232.3 549.7 6.31 0.807 2.649 ln(Io/Iz) 0.61 1,232.3 504.3 6.22 0.893 1.466 0.91 1,232.3 485.6 6.19 0.931 1.018 ICH LIR-1 1/22/2016 14:20 1 Air 509.8 509.8 0.634 53.04 46.96 0.03 715.1 502.3 6.22 air 0.15 145.1 112.5 4.72 0.254 1.668 water 0.30 114.9 75.7 4.33 0.418 1.371 ln(Io/Iz) 0.61 116.5 56.1 4.03 0.730 1.198 0.91 124.1 52.8 3.97 0.854 0.934 1.22 135.6 53.9 3.99 0.924 0.758 ICH LIR-1 1/22/2016 14:20 2 Air 1,267.2 1,267.2 0.632 53.16 46.84 0.03 1,062.3 700.2 6.55 air 0.15 452.0 185.0 5.22 0.893 5.862 water 0.30 467.6 196.0 5.28 0.870 2.853 ln(Io/Iz) 0.61 497.9 127.7 4.85 1.361 2.232 0.91 576.7 153.5 5.03 1.324 1.448 1.22 1,469.3 317.7 5.76 1.531 1.256 ICH LIR-7 1/22/2016 15:04 1 Air 156.6 156.6 0.337 71.38 28.62 0.03 159.0 179.3 5.19 air 0.15 224.1 177.6 5.18 0.233 1.526 water 0.30 217.4 163.7 5.10 0.284 0.931 ln(Io/Iz) 0.61 185.4 112.3 4.72 0.501 0.822 0.91 177.4 112.2 4.72 0.458 0.501 ICH LIR-7 1/22/2016 15:04 2 Air 167.4 167.4 0.295 74.43 25.57 0.03 231.6 204.6 5.32 air 0.15 228.6 152.9 5.03 0.402 2.639 water 0.30 231.7 137.4 4.92 0.523 1.715 ln(Io/Iz) 0.61 236.2 136.1 4.91 0.551 0.904 0.91 226.2 117.2 4.76 0.658 0.719

66

Lower Ichetucknee Baseline Assessment

k (diffuse attenuation Birgean Depth coefficient = Percent Percentile (m) corr slope, m-1) Transmittance Absorption Site Stn Date Time Rep z Air (lo) Water (Iz) ln(Iz) ln(Io/Iz) k (m-1) k (m-1) (1m) (1m) Flag ICH LIR-15 1/22/2016 15:57 1 Air 598.7 598.7 0.393 67.50 32.50 0.03 598.3 468.0 6.15 air 0.15 631.3 397.1 5.98 0.464 3.042 water 0.30 622.7 373.2 5.92 0.512 1.679 ln(Io/Iz) 0.61 611.6 328.1 5.79 0.623 1.022 0.91 598.6 279.0 5.63 0.763 0.835 ICH LIR-15 1/22/2016 15:57 2 Air 680.8 680.8 0.272 76.21 23.79 0.03 681.2 476.5 6.17 air 0.15 261.7 150.8 5.02 0.551 3.617 water 0.30 153.4 87.0 4.47 0.568 1.863 ln(Io/Iz) 0.61 136.6 69.7 4.24 0.673 1.104 0.91 628.5 297.6 5.70 0.748 0.818

67

Lower Ichetucknee Baseline Assessment

Appendix B Stream Discharge Measurements

68

Lower Ichetucknee Baseline Assessment

Station: ICH River Stn No.: LIR-4 Start Time: 9:45 Staff (ft) Start: Field Team: FSI Date: 7/22/2015 End Time: 11:15 Staff (ft) End: Access: Wading

Distance from Segment Total Velocity Segment Initial Point Width Depth (ft/s) Area Discharge (ft.) (ft.) (ft.) 0.2 x depth 0.6 x depth 0.8 x depth (ft2) (ft3/s) (m3/d) (MGD) Start 17.0 0.5 0.00 0.00 0.00 0.00 0 0.00 18.0 1.5 2.0 0.76 3.00 2.28 5,578 1.47 20.0 2.0 2.3 2.34 4.60 10.76 26,335 6.96 22.0 2.0 2.1 2.89 4.20 12.14 29,697 7.85 24.0 2.0 2.8 2.96 2.64 2.14 5.50 14.27 34,919 9.22 26.0 2.0 2.6 3.16 2.86 2.80 5.20 15.18 37,149 9.81 28.0 2.0 2.7 2.87 3.02 2.43 5.40 15.31 37,455 9.89 30.0 2.0 2.7 2.81 2.65 2.62 5.40 14.49 35,440 9.36 32.0 2.0 2.7 3.49 3.52 3.05 5.40 18.33 44,853 11.85 34.0 2.0 2.4 3.30 4.80 15.84 38,754 10.24 36.0 2.0 2.6 2.52 2.73 0.35 5.20 10.83 26,494 7.00 38.0 2.0 2.8 3.65 3.21 2.25 5.60 17.25 42,199 11.15 40.0 2.0 3.0 3.53 3.41 2.77 6.00 19.68 48,149 12.72 42.0 2.0 3.0 3.59 3.15 2.84 5.90 18.78 45,939 12.14 44.0 2.0 2.8 3.42 3.15 2.35 5.60 16.90 41,342 10.92 46.0 2.0 3.0 3.49 2.81 1.74 6.00 16.28 39,818 10.52 48.0 2.0 2.7 3.25 3.22 2.54 5.40 16.51 40,394 10.67 50.0 2.0 2.7 3.29 2.91 2.20 5.40 15.27 37,356 9.87 52.0 2.0 2.5 2.81 5.00 14.05 34,374 9.08 54.0 2.0 2.2 3.01 4.40 13.24 32,402 8.56 56.0 2.0 2.1 2.63 4.20 11.05 27,025 7.14 58.0 2.0 2.0 2.19 4.00 8.76 21,432 5.66 60.0 2.0 1.3 1.79 2.60 4.65 11,386 3.01 62.0 2.0 0.8 1.84 1.50 2.76 6,753 1.78 64.0 2.0 0.4 0.37 0.70 0.26 634 0.17 End 66.0 1.0 0.00 0.00 0.00 0.00 0 0.00 49.0 2.2 3.23 2.63 2.31 111.00 304.86 745,875 197.04

Distance (ft) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 0.00 25.00 0.50 20.00 1.00 1.50 15.00

2.00 10.00 Depth(ft)

2.50 Discharge (cfs) 5.00 3.00 3.50 Depth Discharge 0.00

69

Lower Ichetucknee Baseline Assessment

Station: ICH River Stn No.: LIR-15 Start Time: 12:18 Staff (ft) Start: Field Team: FSI Date: 7/22/2015 End Time: 13:10 Staff (ft) End: Access: Wading

Distance from Segment Total Segment Initial Point Width Depth Velocity (ft/s) Area Discharge (ft.) (ft.) (ft.) 0.2 x depth 0.6 x depth 0.8 x depth (ft2) (ft3/s) (m3/d) (MGD) Start 18.0 2.0 0.00 0.00 0.00 0.00 0 0.00 22.0 2.0 1.3 0.23 2.60 0.60 1,463 0.39 22.0 2.0 0.7 0.05 1.30 0.07 159 0.04 26.0 4.0 2.0 0.98 8.00 7.84 19,181 5.07 30.0 4.0 1.2 -0.15 4.60 -0.69 -1,688 -0.45 34.0 4.0 1.9 1.64 7.60 12.46 30,494 8.06 38.0 4.0 1.7 0.75 6.80 5.10 12,478 3.30 42.0 4.0 2.0 1.90 7.80 14.82 36,258 9.58 46.0 4.0 2.4 1.85 9.40 17.39 42,546 11.24 50.0 4.0 2.3 1.98 9.20 18.22 44,567 11.77 54.0 4.0 2.5 1.87 9.80 18.33 44,836 11.84 58.0 4.0 2.5 2.08 9.80 20.38 49,871 13.17 62.0 4.0 2.5 1.75 10.00 17.50 42,815 11.31 66.0 4.0 2.4 2.27 9.60 21.79 53,316 14.08 70.0 3.5 2.6 2.39 2.17 1.58 9.10 18.91 46,253 12.22 73.0 4.0 2.7 2.32 1.97 1.22 10.80 20.20 49,411 13.05 78.0 4.5 2.6 2.40 1.45 1.98 11.70 21.29 52,097 13.76 82.0 4.0 2.5 2.17 10.00 21.70 53,091 14.03 86.0 4.0 2.4 2.21 9.60 21.22 51,907 13.71 90.0 4.0 2.2 2.24 8.80 19.71 48,227 12.74 94.0 4.0 2.0 2.10 8.00 16.80 41,102 10.86 98.0 4.0 1.8 1.89 7.20 13.61 33,293 8.80 102.0 4.0 1.5 1.05 6.00 6.30 15,413 4.07 106.0 4.0 1.3 -0.16 5.20 -0.83 -2,036 -0.54 110.0 2.5 0.5 0.31 1.25 0.39 948 0.25 End 111.0 0.5 0.00 0.00 0.00 0.00 0 0.00 93.0 1.8 2.37 1.44 1.59 184.15 313.09 766,003 202.36

Distance (ft) 0.0 20.0 40.0 60.0 80.0 100.0 120.0 0.00 25.00

0.50 20.00

1.00 15.00

1.50 10.00

Depth(ft) 2.00 5.00 Discharge (cfs) 2.50 0.00

3.00 Depth Discharge -5.00

70

Lower Ichetucknee Baseline Assessment

Station: ICH River Stn No.: LIR-4 Start Time: 9:13 Staff (ft) Start: Field Team: FSI Date: 7/29/2015 End Time: 12:30 Staff (ft) End: Access: Wading

Distance from Segment Total Segment Initial Point Width Depth Velocity (ft/s) Area Discharge (ft.) (ft.) (ft.) 0.2 x depth 0.6 x depth 0.8 x depth (ft2) (ft3/s) (m3/d) (MGD) Start 9.0 1.0 0.00 0.00 0.00 0.00 0 0.00 11.0 2.0 0.7 0.97 1.40 1.36 3,322 0.88 13.0 2.0 1.7 0.24 3.30 0.79 1,938 0.51 15.0 2.0 1.7 1.88 3.40 6.39 15,639 4.13 17.0 2.0 1.8 1.86 3.60 6.70 16,382 4.33 19.0 2.0 2.2 3.15 4.40 13.86 33,910 8.96 21.0 2.0 2.6 2.07 3.01 2.57 5.20 13.86 33,905 8.96 23.0 2.0 2.6 2.81 3.06 2.46 5.20 14.81 36,226 9.57 25.0 2.0 2.7 2.49 2.48 2.74 5.40 13.76 33,656 8.89 27.0 2.0 2.7 2.82 2.92 2.61 5.40 15.21 37,223 9.83 29.0 2.0 2.8 3.12 2.73 3.05 5.50 15.99 39,124 10.34 31.0 2.0 2.7 3.17 2.73 0.50 5.40 12.33 30,155 7.97 33.0 2.0 2.7 3.23 2.56 0.88 5.40 12.46 30,486 8.05 35.0 2.0 2.9 3.45 3.30 2.87 5.80 18.73 45,834 12.11 37.0 2.0 3.0 2.40 3.39 2.86 6.00 18.06 44,185 11.67 39.0 2.0 2.9 3.51 2.84 2.61 5.80 17.11 41,861 11.06 41.0 2.0 2.9 3.91 2.95 2.17 5.80 17.37 42,499 11.23 43.0 2.0 2.8 3.29 2.78 2.15 5.60 15.40 37,677 9.95 45.0 2.0 2.7 3.18 2.80 2.22 5.40 14.85 36,332 9.60 47.0 2.0 2.7 3.04 3.06 2.37 5.40 15.57 38,082 10.06 49.0 2.0 2.4 2.17 4.80 10.42 25,484 6.73 51.0 2.0 2.2 2.63 4.40 11.57 28,312 7.48 53.0 2.0 2.1 2.56 4.20 10.75 26,306 6.95 55.0 2.0 1.9 1.70 3.80 6.46 15,805 4.18 57.0 2.0 1.2 1.76 2.40 4.22 10,334 2.73 59.0 2.0 0.7 1.19 1.40 1.67 4,076 1.08 End 61.0 1.0 0.15 0.00 0.15 0.00 0 0.00 52.0 2.1 3.04 2.43 2.29 114.55 289.69 708,753 187.24

Distance (ft) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 0.00 20.00 0.50 1.00 15.00 1.50 10.00

2.00 Depth(ft)

2.50 5.00 Discharge (cfs) 3.00 3.50 Depth Discharge 0.00

71

Lower Ichetucknee Baseline Assessment

Station: ICH River Stn No.: LIR-15 Start Time: 12:00 Staff (ft) Start: Field Team: FSI Date: 7/29/2015 End Time: 12:30 Staff (ft) End: Access: Wading

Distance from Segment Total Segment Initial Point Width Depth Velocity (ft/s) Area Discharge (ft.) (ft.) (ft.) 0.2 x depth 0.6 x depth 0.8 x depth (ft2) (ft3/s) (m3/d) (MGD) Start 10.0 2.0 0.00 0.00 0.00 0.00 0 0.00 14.0 4.0 0.8 -0.80 3.20 -2.56 -6,263 -1.65 18.0 4.0 1.4 0.02 5.60 0.11 274 0.07 22.0 4.0 2.0 0.22 8.00 1.76 4,306 1.14 26.0 4.0 2.4 0.50 9.60 4.80 11,744 3.10 30.0 4.0 1.8 -0.15 7.20 -1.08 -2,642 -0.70 34.0 4.0 2.4 1.06 9.60 10.18 24,896 6.58 38.0 4.0 2.6 1.22 1.31 0.99 10.40 12.56 30,724 8.12 42.0 4.0 2.7 1.49 1.28 1.06 10.80 13.80 33,755 8.92 46.0 4.0 3.0 1.50 1.45 1.02 12.00 16.26 39,781 10.51 50.0 4.0 2.9 1.45 1.20 1.05 11.60 14.21 34,766 9.18 54.0 4.0 3.1 1.60 1.67 0.98 12.40 18.35 44,900 11.86 58.0 4.0 3.0 1.78 1.35 1.25 12.00 17.19 42,057 11.11 62.0 4.0 3.1 1.72 1.42 0.88 12.40 16.86 41,259 10.90 66.0 4.0 3.1 1.87 1.67 1.25 12.40 20.03 48,995 12.94 70.0 4.0 3.2 1.94 1.44 1.12 12.80 19.01 46,505 12.29 74.0 4.0 3.5 1.90 1.16 0.72 14.00 17.29 42,301 11.18 78.0 4.0 3.0 1.84 1.48 1.39 12.00 18.57 45,433 12.00 82.0 4.0 3.2 1.54 1.30 1.05 12.80 16.61 40,633 10.73 86.0 4.0 3.1 1.68 1.72 1.20 12.40 19.59 47,933 12.66 90.0 4.0 3.1 1.87 1.28 1.02 12.40 16.90 41,335 10.92 94.0 4.0 2.9 1.75 1.21 1.06 11.60 15.17 37,107 9.80 98.0 4.0 2.6 1.53 1.15 0.84 10.40 12.14 29,706 7.85 102.0 4.0 2.1 0.25 8.40 2.10 5,138 1.36 106.0 4.0 1.3 0.35 5.20 1.82 4,453 1.18 110.0 4.0 0.7 -0.12 2.80 -0.34 -822 -0.22 End 114.0 2.0 0.00 0.00 0.00 0.00 0 0.00 104.0 2.3 1.67 0.94 1.06 252.00 281.32 688,273 181.83

Distance (ft) 0.0 20.0 40.0 60.0 80.0 100.0 120.0 0.00 25.00 0.50 20.00 1.00 15.00 1.50 2.00 10.00 2.50 Depth(ft) 5.00 3.00 Discharge (cfs) 0.00 3.50 4.00 Depth Discharge -5.00

72

Lower Ichetucknee Baseline Assessment

Station: ICH River Stn No.: LIR-4 Start Time: 11:05 Staff (ft) Start: Field Team: RC, TML Date: 1/13/2015 End Time: 11:40 Staff (ft) End: Access: Wading

Distance from Segment Total Segment Initial Point Width Depth Velocity (ft/s) Area Discharge (ft.) (ft.) (ft.) 0.2 x depth 0.6 x depth 0.8 x depth (ft2) (ft3/s) (m3/d) (MGD) Start 8.0 1.0 0.00 0.00 0.00 0.00 0 0.00 10.0 2.5 0.9 0.03 2.25 0.07 165 0.04 13.0 3.0 1.7 0.44 5.10 2.24 5,490 1.45 16.0 3.0 2.2 0.75 6.45 4.84 11,835 3.13 19.0 3.0 2.4 1.51 7.05 10.65 26,045 6.88 22.0 3.0 2.5 1.46 7.35 10.73 26,254 6.94 25.0 3.0 2.5 1.33 1.35 1.63 7.50 10.61 25,964 6.86 28.0 3.0 2.7 2.15 1.81 1.49 7.95 14.43 35,302 9.33 31.0 3.0 2.8 2.16 0.66 0.11 8.25 7.40 18,115 4.79 34.0 3.0 2.8 2.01 2.09 1.81 8.40 16.80 41,102 10.86 37.0 3.0 3.1 1.96 1.93 2.04 9.15 17.98 43,989 11.62 40.0 3.0 3.3 2.08 2.38 1.98 9.90 21.83 53,408 14.11 43.0 3.0 3.2 2.35 2.36 1.80 9.60 21.29 52,083 13.76 46.0 3.0 3.3 2.56 2.44 2.18 9.90 23.81 58,252 15.39 49.0 3.0 3.3 2.53 2.35 2.13 9.90 23.17 56,677 14.97 52.0 3.0 3.3 2.68 1.70 0.21 9.90 15.57 38,088 10.06 55.0 3.0 3.1 2.27 2.30 1.57 9.30 19.62 48,009 12.68 58.0 3.0 3.0 2.34 1.94 0.99 9.00 16.22 39,690 10.49 61.0 3.0 2.5 2.09 2.19 1.84 7.50 15.58 38,121 10.07 64.0 3.0 1.9 2.08 5.79 12.04 29,465 7.78 67.0 3.0 1.5 1.90 4.50 8.55 20,918 5.53 70.0 3.0 0.9 1.25 2.70 3.38 8,257 2.18 73.0 2.5 0.4 0.03 0.95 0.03 70 0.02 End 75.0 1.0 0.00 0.00 0.00 0.00 0 0.00 67.0 2.2 2.19 1.59 1.52 158.39 276.84 677,299 178.93

Distance (ft) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 0.00 25.00 0.50 20.00 1.00 1.50 15.00

2.00 10.00 Depth(ft)

2.50 Discharge (cfs) 5.00 3.00 3.50 Depth Discharge 0.00

73

Lower Ichetucknee Baseline Assessment

Station: ICH River Stn No.: LIR-4 Start Time: 11:05 Staff (ft) Start: Field Team: RC, TML Date: 1/21/2016 End Time: 11:38 Staff (ft) End: Access: Wading

Distance from Segment Total Segment Initial Point Width Depth Velocity (ft/s) Area Discharge (ft.) (ft.) (ft.) 0.2 x depth 0.6 x depth 0.8 x depth (ft2) (ft3/s) (m3/d) (MGD) Start 8.0 1.0 0.00 0.00 0.00 0.00 0 0.00 10.0 4.0 1.3 -0.10 5.00 -0.50 -1,223 -0.32 16.0 4.5 1.9 0.04 8.55 0.34 837 0.22 19.0 3.0 2.5 1.93 7.35 14.19 34,706 9.17 22.0 3.0 2.9 2.51 2.52 2.24 8.70 21.29 52,096 13.76 25.0 3.0 2.8 2.67 2.70 2.70 8.40 22.62 55,334 14.62 28.0 3.0 3.1 2.61 2.56 2.13 9.15 22.55 55,182 14.58 31.0 3.0 3.1 2.95 2.68 1.49 9.15 22.42 54,846 14.49 34.0 3.0 3.5 2.89 2.42 1.46 10.50 24.12 59,021 15.59 37.0 3.0 3.4 2.92 2.90 2.15 10.05 27.31 66,818 17.65 40.0 3.0 3.3 3.05 2.91 2.27 9.90 27.57 67,456 17.82 43.0 3.0 3.2 2.81 2.70 1.50 9.60 23.30 57,015 15.06 46.0 3.0 3.0 2.80 2.39 2.47 8.85 22.24 54,401 14.37 49.0 3.0 2.8 2.26 2.13 1.62 8.25 16.79 41,075 10.85 52.0 3.0 2.4 2.21 7.20 15.91 38,930 10.28 55.0 3.0 2.0 2.08 5.85 12.17 29,770 7.86 58.0 3.0 1.3 1.65 3.75 6.19 15,138 4.00 61.0 3.0 0.4 0.53 1.14 0.60 1,478 0.39 End 64.0 1.5 0.00 0.00 0.00 0.00 0 0.00 56.0 2.2 2.75 2.01 2.00 131.39 279.12 682,879 180.40

Distance (ft) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 0.00 30.00 0.50 25.00 1.00 20.00 1.50 15.00 2.00 10.00

2.50 Depth(ft)

3.00 5.00 Discharge (cfs) 3.50 0.00 4.00 Depth Discharge -5.00

74

Lower Ichetucknee Baseline Assessment

Station: ICH River Stn No.: LIR-12 Start Time: 13:45 Staff (ft) Start: Field Team: RC, TML Date: 1/21/2016 End Time: 14:33 Staff (ft) End: Access: Wading

Distance from Segment Total Segment Initial Point Width Depth Velocity (ft/s) Area Discharge (ft.) (ft.) (ft.) 0.2 x depth 0.6 x depth 0.8 x depth (ft2) (ft3/s) (m3/d) (MGD) Start 9.0 1.5 0.00 0.00 0.00 0.00 0 0.00 12.0 3.0 3.6 0.20 0.01 0.00 10.80 0.59 1,453 0.38 15.0 3.0 3.6 0.38 0.40 0.06 10.80 3.35 8,191 2.16 18.0 3.0 3.9 0.31 0.29 0.06 11.70 2.78 6,798 1.80 21.0 3.0 4.0 0.63 0.42 0.05 12.00 4.56 11,156 2.95 24.0 3.0 4.0 0.62 0.51 0.13 12.00 5.31 12,991 3.43 27.0 3.0 4.4 0.77 0.83 0.82 13.20 10.73 26,240 6.93 30.0 3.0 4.7 1.01 0.91 1.12 14.10 13.92 34,066 9.00 33.0 3.0 4.5 1.34 1.07 0.73 13.50 14.21 34,763 9.18 36.0 3.0 4.6 1.20 1.13 0.96 13.80 15.25 37,308 9.86 39.0 3.0 4.8 1.05 1.07 1.06 14.40 15.30 37,433 9.89 42.0 3.0 4.9 1.26 1.10 0.85 14.70 15.84 38,752 10.24 45.0 3.0 5.1 1.35 1.12 0.57 15.30 15.91 38,930 10.28 48.0 3.0 4.9 1.22 1.18 1.15 14.70 17.38 42,528 11.23 51.0 3.0 4.8 1.43 1.21 1.09 14.40 17.78 43,510 11.49 54.0 3.0 4.7 1.50 1.28 0.93 14.10 17.59 43,035 11.37 57.0 3.0 4.7 1.50 1.10 0.92 14.10 16.29 39,844 10.53 60.0 3.0 4.5 1.32 1.17 0.86 13.50 15.26 37,323 9.86 63.0 3.0 4.3 1.22 1.23 0.95 12.90 14.93 36,532 9.65 66.0 3.0 4.2 1.20 1.24 0.96 12.60 14.62 35,759 9.45 69.0 3.0 4.0 1.12 1.07 0.84 12.00 12.30 30,093 7.95 72.0 3.0 3.8 1.00 0.98 0.83 11.40 10.80 26,427 6.98 75.0 3.0 3.9 0.86 0.70 0.76 11.70 8.83 21,612 5.71 78.0 3.0 3.8 0.74 0.52 0.47 11.40 6.41 15,689 4.14 81.0 3.0 3.7 0.83 0.64 0.49 11.10 7.22 17,652 4.66 84.0 3.0 3.8 0.39 0.12 0.05 11.40 1.94 4,741 1.25 87.0 3.0 2.8 -0.08 -0.12 -0.09 8.40 -0.86 -2,107 -0.56 90.0 2.0 2.2 -0.11 4.40 -0.48 -1,184 -0.31 End 91.0 0.5 0.00 0.00 0.00 0.00 0 0.00 82.0 3.9 0.94 0.78 0.64 334.40 277.75 679,533 179.52

Distance (ft) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00 20.00

1.00 15.00 2.00 10.00 3.00 5.00

Depth(ft) 4.00 Discharge (cfs) 5.00 0.00

6.00 Depth Discharge -5.00

75

Lower Ichetucknee Baseline Assessment

Appendix C Depth Cross Section Measurements

76

Lower Ichetucknee Baseline Assessment

0

1

2

3 LIR-1 LIR-2

Depth(ft) 4 LIR-3 LIR-4 5 LIR-5

6

7 0 10 20 30 40 50 60 70 80 90 Distance (ft) 0

1

2

3 LIR-7 4 LIR-8

Depth(ft) LIR-9 5 LIR-9 6 LIR-10

7 LIR-6 not measured; LIR-9 measured 7/20 &7/27 8 0 20 40 60 80 100 120 Distance (ft) 0

0.5

1

1.5

2 LIR-11 2.5 LIR-12

Depth(ft) 3 LIR-13 LIR-14 3.5 LIR-15 4

4.5

5 0 20 40 60 80 100 120 140 Distance (ft)

77

Lower Ichetucknee Baseline Assessment

Appendix D Water Quality Results

78

Lower Ichetucknee Baseline Assessment

PARAMETER GROUP PARAMETER UNITS DATE LIR-UP LIR-MID LIR-DOWN DISSOLVED OXYGEN DO % 7/20/2015 53.8 --- 88.0 7/31/2015 49.9 54.2 71.6 1/11/2016 69.2 --- 85.2 1/22/2016 77.6 84.5 88.6 DO mg/L 7/20/2015 4.75 --- 7.63 7/31/2015 4.38 4.75 6.27 1/11/2016 6.32 --- 7.81 1/22/2016 6.92 7.53 7.89 NITROGEN NH4-N mg/L 7/20/2015 0.01 U 0.01 U 0.01 U 7/31/2015 0.02 0.14 0.03 1/11/2016 0.01 U 0.01 U 0.01 U 1/22/2016 0.01 0.01 I 0.01 U NOx-N mg/L 7/20/2015 0.59 0.56 0.55 7/31/2015 0.57 0.56 0.55 1/11/2016 0.58 0.57 0.56 1/22/2016 0.58 0.56 0.54 OrgN mg/L 7/20/2015 0.04 0.04 0.04 7/31/2015 0.06 -0.04 0.02 1/11/2016 0.21 0.23 0.18 1/22/2016 0.13 0.18 0.39 TKN mg/L 7/20/2015 0.05 U 0.05 U 0.05 U 7/31/2015 0.08 I 0.10 0.05 U 1/11/2016 0.22 0.24 0.19 1/22/2016 0.14 0.19 0.40 TN mg/L 7/20/2015 0.64 0.61 0.60 7/31/2015 0.65 0.66 0.60 1/11/2016 0.80 0.81 0.75 1/22/2016 0.72 0.75 0.94 PHYSICAL pH SU 7/20/2015 6.98 --- 7.63 7/31/2015 7.92 7.75 7.61 1/11/2016 7.65 --- 8.08 1/22/2016 7.88 8.04 8.14 SpCond umhos/cm 7/20/2015 334 --- 331 7/31/2015 346 339 352 1/11/2016 336 --- 338 1/22/2016 326 327 329 Turb NTU 7/20/2015 0.3 U --- 0.7 1/11/2016 0.3 U --- 0.3 U 1/22/2016 0.3 U 0.3 U 0.3 U TEMPERATURE Wtr Temp C 7/20/2015 21.55 --- 23.35 7/31/2015 21.76 21.80 21.92 1/11/2016 19.47 --- 19.48 1/22/2016 20.92 20.92 20.48 U - Material was analyzed for, but not detected. I - The value reported is less than the practical quantitation limit and greater than or equal to the method detection limit.

79

Lower Ichetucknee Baseline Assessment

24.5

24

23.5

23 LIR-DN LIR-MID

22.5 Temp(C) LIR-UP 22

21.5

21 7/19/2015 7/21/2015 7/23/2015 7/25/2015 7/27/2015 7/29/2015 7/31/2015 8/2/2015

10 9 8 7 6 LIR-DN 5 LIR-MID

DO DO (mg/L) 4 LIR-UP 3 2 1 0 7/19/2015 7/21/2015 7/23/2015 7/25/2015 7/27/2015 7/29/2015 7/31/2015 8/2/2015

120

100

80 LIR-DN 60

LIR-MID DO DO (%) 40 LIR-UP

20

0 7/19/2015 7/21/2015 7/23/2015 7/25/2015 7/27/2015 7/29/2015 7/31/2015 8/2/2015

8.6

8.4

8.2

8 LIR-DN LIR-MID pH (SU) pH 7.8 LIR-UP 7.6

7.4

7.2 7/19/2015 7/21/2015 7/23/2015 7/25/2015 7/27/2015 7/29/2015 7/31/2015 8/2/2015

80

Lower Ichetucknee Baseline Assessment

365 360 355 350 345 LIR-DN 340 LIR-MID

SpC (uS/cm) 335 LIR-UP 330 325 320 7/19/2015 7/21/2015 7/23/2015 7/25/2015 7/27/2015 7/29/2015 7/31/2015 8/2/2015

20

15

10 LIR-DN LIR-MID 5

LIR-UP Turbidity(NTU)

0

-5 7/19/2015 7/21/2015 7/23/2015 7/25/2015 7/27/2015 7/29/2015 7/31/2015 8/2/2015

81

Lower Ichetucknee Baseline Assessment

22

21.5

21

20.5

20 LIR-DN

Temp(C) LIR-UP 19.5

19

18.5

18 1/9/2016 1/11/2016 1/13/2016 1/15/2016 1/17/2016 1/19/2016 1/21/2016 1/23/2016 1/25/2016

10 9 8 7 6 5 LIR-DN LIR-UP DO DO (mg/L) 4 3 2 1 0 1/9/2016 1/11/2016 1/13/2016 1/15/2016 1/17/2016 1/19/2016 1/21/2016 1/23/2016 1/25/2016

120

100

80

60 LIR-DN

DO DO (%) LIR-UP 40

20

0 1/9/2016 1/11/2016 1/13/2016 1/15/2016 1/17/2016 1/19/2016 1/21/2016 1/23/2016 1/25/2016

8.3

8.2

8.1

8 LIR-DN pH (SU) pH LIR-UP 7.9

7.8

7.7 1/9/2016 1/11/2016 1/13/2016 1/15/2016 1/17/2016 1/19/2016 1/21/2016 1/23/2016 1/25/2016

82

Lower Ichetucknee Baseline Assessment

350

345

340 LIR-DN

335 LIR-UP SpC (uS/cm)

330

325 1/9/2016 1/11/2016 1/13/2016 1/15/2016 1/17/2016 1/19/2016 1/21/2016 1/23/2016 1/25/2016

3 2.5 2 1.5 1 0.5 LIR-DN 0 LIR-UP

-0.5 Turbidity(NTU) -1 -1.5 -2 -2.5 1/9/2016 1/11/2016 1/13/2016 1/15/2016 1/17/2016 1/19/2016 1/21/2016 1/23/2016 1/25/2016

83

Lower Ichetucknee Baseline Assessment

Appendix E Aquatic Vegetation Summary

84

Lower Ichetucknee Baseline Assessment

85

Lower Ichetucknee Baseline Assessment

86

Lower Ichetucknee Baseline Assessment

87

Lower Ichetucknee Baseline Assessment

88

Lower Ichetucknee Baseline Assessment

89

Lower Ichetucknee Baseline Assessment

90

Lower Ichetucknee Baseline Assessment

91

Lower Ichetucknee Baseline Assessment

Appendix F Bird Survey Data

92

Lower Ichetucknee Baseline Assessment

Summer Surveys Winter Surveys

Species 7/21/15 7/21/15* 7/21/15 Max 1/16/16 1/17/16 1/21/16* Max Overall

Wood Duck 2 2 2

Wood Stork 1 1 1 1

Great Blue Heron 1 1 1

Great Egret 1 3 3 3 3 3 3

Snowy Egret 1 1 1 1

Cattle Egret 2 1 2 2

Little Blue Heron 1 1 1 1

Tri-colored Heron 1 1 1

Yellow-crowned Night-Heron 4 3 4 4

White Ibis 6 9 9 1 1 9

Turkey Vulture 2 2 2 5 4 5 5

Black Vulture 1 1 1

Mississippi Kite 2 5 5 5

Red-shouldered Hawk 3 3 3 5 5 5

Osprey 1 1 2 1 2 2

Mourning Dove 2 2 2 3 3 3

Yellow-billed Cuckoo 1 5 5 5

Barred Owl 1 1 3 3 3

Belted Knigfisher 1 1 1

Red-bellied Woodpecker 4 5 5 9 3 1 9 9

Yellow-bellied Sapsucker 6 1 6 6

Downy Woodpecker 3 4 4 6 6 6

Northern Flicker 4 3 4 4

Pileated Woodpecker 3 4 4 5 1 5 5

Eastern Phoebe 2 2 2

93

Lower Ichetucknee Baseline Assessment

Summer Surveys Winter Surveys

Species 7/21/15 7/21/15* 7/21/15 Max 1/16/16 1/17/16 1/21/16* Max Overall

Acadian Flycatcher 1 1 1 1

Great-crested Flycatcher 4 6 6 6

White-eyed Vireo 5 2 5 1 1 5

Yellow-throated Vireo 1 2 2 2

Red-eyed Vireo 2 2 2

Blue-headed Vireo 1 1 1

Blue Jay 1 2 2 3 1 3 3

American Crow 4 12 12 14 5 14 14

Fish Crow 3 2 3 3 1 3 3

Carolina Chickadee 1 12 12 1 4 1 4 12

Tufted Titmouse 8 9 9 9 1 9 9

Carolina Wren 8 16 16 12 4 12 16

House Wren 1 1 1

Ruby-crowned Kinglet 6 6 6

Blue-gray Gnatcatcher 1 1 1 7 7 7

Hermit Thrush 1 1 1

American Robin 1 1 1

Northern Mockingbird 1 1 1

Cedar Waxwing 7 7 7

Orange-crowned Warbler 2 2 2

Yellow-rumped Warbler 12 2 12 12

Yellow-throated Warbler 1 1 1

Pine Warbler 1 1 1

Palm Warbler 1 1 1

Black -and-white Warbler 1 3 3 3

94

Lower Ichetucknee Baseline Assessment

Summer Surveys Winter Surveys

Species 7/21/15 7/21/15* 7/21/15 Max 1/16/16 1/17/16 1/21/16* Max Overall

Louisiana Waterthrush 1 5 5 5

Northern Parula 2 4 4 4

Northern Cardinal 7 5 7 8 8 8

American Goldfinch 10 1 10 10

No. Species 27 4 31 33 36 14 8 40 54

* = Incidental bird observations while conducting fish and snail surveys

95

Lower Ichetucknee Baseline Assessment

Appendix G Snail Counts

96

Lower Ichetucknee Baseline Assessment

Site Station Date SampleArea_in2 SnailCount Density_#/in2 Density_#/m2 LIR LIR-2.5 7/22/2015 493 42 0.09 132 LIR LIR-2.5 7/22/2015 493 26 0.05 82 LIR LIR-4 7/22/2015 493 62 0.13 195 LIR LIR-4 7/22/2015 493 88 0.18 277 LIR LIR-5 7/22/2015 493 149 0.30 468 LIR LIR-5 7/22/2015 493 181 0.37 569 LIR LIR-6 7/22/2015 493 440 0.89 1383 LIR LIR-6 7/22/2015 493 534 1.08 1679 LIR LIR-6.5 7/22/2015 493 125 0.25 393 LIR LIR-6.5 7/22/2015 493 172 0.35 541 LIR LIR-7 7/22/2015 493 223 0.45 701 LIR LIR-7 7/22/2015 493 133 0.27 418 LIR LIR-8 7/22/2015 493 111 0.23 349 LIR LIR-8 7/22/2015 493 149 0.30 468 LIR LIR-9 7/22/2015 493 116 0.24 365 LIR LIR-9 7/22/2015 493 114 0.23 358 LIR LIR-10 7/22/2015 493 199 0.40 626 LIR LIR-10 7/22/2015 493 214 0.43 673 LIR LIR-10.5 7/22/2015 493 215 0.44 676 LIR LIR-10.5 7/22/2015 493 337 0.68 1059 LIR LIR-11 7/22/2015 493 96 0.19 302 LIR LIR-11 7/22/2015 493 64 0.13 201 LIR LIR-12 7/22/2015 493 233 0.47 732 LIR LIR-12 7/22/2015 493 167 0.34 525 LIR LIR-13 7/22/2015 493 51 0.10 160 LIR LIR-13 7/22/2015 493 90 0.18 283 LIR LIR-14 7/22/2015 493 41 0.08 129 LIR LIR-14 7/22/2015 493 18 0.04 57 LIR LIR-15 7/22/2015 493 79 0.16 248 LIR LIR-15 7/22/2015 493 123 0.25 387 LIR LIR-1 1/21/2016 280 83 0.30 459 LIR LIR-1 1/21/2016 400 169 0.42 655 LIR LIR-1 1/21/2016 120 25 0.21 323 LIR LIR-2 1/21/2016 360 183 0.51 788 LIR LIR-2 1/21/2016 400 200 0.50 775 LIR LIR-2 1/21/2016 360 140 0.39 603 LIR LIR-2 1/21/2016 280 131 0.47 725 LIR LIR-3 1/21/2016 300 38 0.13 196 LIR LIR-4 1/21/2016 380 235 0.62 959 LIR LIR-4 1/21/2016 360 169 0.47 728 LIR LIR-4 1/21/2016 320 90 0.28 436 LIR LIR-4 1/21/2016 360 138 0.38 594 LIR LIR-5 1/21/2016 320 102 0.32 494 LIR LIR-5 1/21/2016 360 226 0.63 973 LIR LIR-5 1/21/2016 400 65 0.16 252 LIR LIR-5 1/21/2016 400 309 0.77 1197

97

Lower Ichetucknee Baseline Assessment

Site Station Date SampleArea_in2 SnailCount Density_#/in2 Density_#/m2 LIR LIR-6 1/21/2016 400 109 0.27 422 LIR LIR-6 1/21/2016 320 20 0.06 97 LIR LIR-6 1/21/2016 360 12 0.03 52 LIR LIR-7 1/21/2016 300 124 0.41 641 LIR LIR-7 1/21/2016 400 159 0.40 616 LIR LIR-7 1/21/2016 400 322 0.81 1248 LIR LIR-7 1/21/2016 400 238 0.60 922 LIR LIR-8 1/21/2016 400 200 0.50 775 LIR LIR-8 1/21/2016 400 127 0.32 492 LIR LIR-8 1/21/2016 400 144 0.36 558 LIR LIR-8 1/21/2016 280 107 0.38 592 LIR LIR-8 1/21/2016 400 136 0.34 527 LIR LIR-9 1/21/2016 400 205 0.51 794 LIR LIR-9 1/21/2016 400 139 0.35 539 LIR LIR-9 1/21/2016 400 108 0.27 419 LIR LIR-9 1/21/2016 400 117 0.29 453 LIR LIR-10 1/21/2016 360 67 0.19 288 LIR LIR-10 1/21/2016 400 166 0.42 643 LIR LIR-10 1/21/2016 360 142 0.39 611 LIR LIR-10 1/21/2016 400 136 0.34 527 LIR LIR-11 1/21/2016 320 76 0.24 368 LIR LIR-11 1/21/2016 400 123 0.31 477 LIR LIR-11 1/21/2016 400 104 0.26 403 LIR LIR-11 1/21/2016 400 135 0.34 523 LIR LIR-12 1/21/2016 360 47 0.13 202 LIR LIR-12 1/21/2016 400 142 0.36 550 LIR LIR-12 1/21/2016 400 82 0.21 318 LIR LIR-12 1/21/2016 400 136 0.34 527 LIR LIR-13 1/21/2016 200 22 0.11 171 LIR LIR-13 1/21/2016 280 12 0.04 66 LIR LIR-13 1/21/2016 400 5 0.01 19 LIR LIR-14 1/21/2016 120 8 0.07 103 LIR LIR-14 1/21/2016 120 9 0.08 116 LIR LIR-14 1/21/2016 200 25 0.13 194 LIR LIR-15 1/21/2016 120 2 0.02 26 LIR LIR-15 1/21/2016 200 1 0.01 8

98

Lower Ichetucknee Baseline Assessment

Appendix H Fish Counts

99

Lower Ichetucknee Baseline Assessment

Location Date Family Scientific Name Common Name Count Density (#/ha) Biomass (kg/ha) Segment-1 7/21/2015 Belonidae Strongylura marina Atlantic Needlefish 2 11.9 0.534 Catostomidae Erimyzon sucetta Lake Chubsucker 18 107 11.2 Minytrema melanops Spotted sucker 39 231 21.6 Centrarchidae Lepomis sp. Sunfish sp. 48 285 3.71 Micropterus notius Suwannee Bass 1 5.93 0.910 Micropterus salmoides Largemouth Bass 65 385 30.5 Pomoxis nigromaculatus Black Crappie 5 29.6 1.29 Cyprinidae Notemigonus crysoleucas Golden Shiner 97 575 24.1 Notropis sp. Minnows 825 4,890 3.68 Percidae Etheostoma sp. Darter sp. 43 255 0.317 7/28/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 1 5.93 0.621 Minytrema melanops Spotted sucker 19 113 10.5 Centrarchidae Lepomis sp. Sunfish sp. 81 480 6.26 Micropterus salmoides Largemouth Bass 101 599 47.4 Pomoxis nigromaculatus Black Crappie 16 94.8 4.11 Cyprinidae Notemigonus crysoleucas Golden Shiner 76 451 18.9 Notropis sp. Minnows 800 4,742 3.56 Fundulidae Fundulus seminolis Seminole Killifish 1 5.93 0.015 Segment-2 7/21/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 15 39.5 4.14 Minytrema melanops Spotted sucker 30 79.1 7.40 Centrarchidae Lepomis sp. Sunfish sp. 440 1,160 15.1 Micropterus notius Suwannee Bass 3 7.91 1.21 Micropterus salmoides Largemouth Bass 106 279 22.1 Cyprinidae Notemigonus crysoleucas Golden Shiner 18 47.4 1.99 Notropis sp. Minnows 3,482 9,178 6.90 Percidae Etheostoma sp. Darter sp. 31 81.7 0.102 Acipenseriformes Acipenser oxyrinchus Sturgeon 1 2.64 0.010 7/28/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 10 26.4 2.76 Minytrema melanops Spotted sucker 11 29.0 2.71 Centrarchidae Lepomis sp. Sunfish sp. 170 448 5.84 Micropterus salmoides Largemouth Bass 130 343 27.1 Pomoxis nigromaculatus Black Crappie 4 10.5 0.457 Cyprinidae Notemigonus crysoleucas Golden Shiner 5 13.2 0.553 Notropis sp. Minnows 2,613 6,887 5.18 Fundulidae Fundulus seminolis Seminole Killifish 2 5.27 0.013 Ictaluridae Ictalurus natalis Catfish 1 2.64 0.313 Percidae Etheostoma sp. Darter sp. 2 5.27 0.007 Segment-3 7/21/2015 Belonidae Strongylura marina Atlantic Needlefish 4 11.4 0.513 Catostomidae Erimyzon sucetta Lake Chubsucker 3 8.54 0.894 Minytrema melanops Spotted sucker 53 151 14.1 Centrarchidae Lepomis sp. Sunfish sp. 197 561 7.31 Micropterus notius Suwannee Bass 4 11.4 1.75 Micropterus salmoides Largemouth Bass 103 293 23.2 Pomoxis nigromaculatus Black Crappie 1 2.85 0.123 Cyprinidae Notemigonus crysoleucas Golden Shiner 12 34.1 1.43 Notropis sp. Minnows 2,117 6,024 4.53 Percidae Etheostoma sp. Darter sp. 15 42.7 0.053 7/28/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 7 19.9 2.09 Minytrema melanops Spotted sucker 25 71.1 6.66 Centrarchidae Lepomis sp. Sunfish sp. 149 424 5.53 Micropterus salmoides Largemouth Bass 122 347 27.5 Cyprinidae Notemigonus crysoleucas Golden Shiner 10 28.5 1.19 Notropis sp. Minnows 1,950 5,549 4.17 Fundulidae Fundulus sp. Killifish sp. 2 5.69 0.014 Percidae Etheostoma sp. Darter sp. 10 28.5 0.035 1/14/2016 Catostomidae Erimyzon sucetta Lake Chubsucker 2 5.69 0.596 Minytrema melanops Spotted sucker 30 85.4 7.99 Centrarchidae Lepomis sp. Sunfish sp. 103 293 3.82 Micropterus salmoides Largemouth Bass 44 125 9.91 Cyprinidae Notemigonus crysoleucas Golden Shiner 1 2.85 0.119 Notropis sp. Minnows 55 157 0.118 Percidae Etheostoma sp. Darter sp. 4 11.4 0.014

100

Lower Ichetucknee Baseline Assessment

Location Date Family Scientific Name Common Name Count Density (#/ha) Biomass (kg/ha) Segment-4 7/21/2015 Belonidae Strongylura marina Atlantic Needlefish 1 2.29 0.103 Catostomidae Erimyzon sucetta Lake Chubsucker 6 13.7 1.44 Minytrema melanops Spotted sucker 24 55.0 5.15 Centrarchidae Lepomis sp. Sunfish sp. 144 330 4.30 Pomoxis nigromaculatus Black Crappie 5 11.5 0.497 Cyprinidae Notemigonus crysoleucas Golden Shiner 6 13.7 0.577 Notropis sp. Minnows 995 2,280 1.71 Fundulidae Fundulus sp. Killifish sp. 1 2.29 0.006 Lepisosteidae Lepisosteus platyrhincus Florida Gar 1 2.29 2.39 Percidae Etheostoma sp. Darter sp. 13 29.8 0.037 7/28/2015 Achiridae Trinectes maculatus Hogchocker 1 2.29 0.020 Catostomidae Erimyzon sucetta Lake Chubsucker 10 22.9 2.40 Minytrema melanops Spotted sucker 61 140 13.1 Centrarchidae Lepomis sp. Sunfish sp. 268 614 8.01 Micropterus salmoides Largemouth Bass 199 456 36.1 Pomoxis nigromaculatus Black Crappie 15 34.4 1.49 Cyprinidae Notemigonus crysoleucas Golden Shiner 2 4.58 0.192 Notropis sp. Minnows 1,710 3,918 2.94 Percidae Etheostoma sp. Darter sp. 13 29.8 0.037 1/14/2016 Belonidae Strongylura marina Atlantic Needlefish 1 2.29 0.103 Catostomidae Minytrema melanops Spotted sucker 82 188 17.6 Centrarchidae Lepomis sp. Sunfish sp. 103 236 3.08 Micropterus notius Suwannee Bass 3 6.87 1.05 Micropterus salmoides Largemouth Bass 69 158 12.5 Cyprinidae Notemigonus crysoleucas Golden Shiner 5 11.5 0.481 Notropis sp. Minnows 70 160 0.121 Esocidae Esox sp. Pickeral 2 4.58 0.879 Percidae Etheostoma sp. Darter sp. 18 41.2 0.051 Segment-5 7/21/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 7 19.8 2.07 Minytrema melanops Spotted sucker 38 107 10.0 Centrarchidae Lepomis sp. Sunfish sp. 116 327 4.27 Micropterus salmoides Largemouth Bass 61 172 13.6 Cyprinidae Notemigonus crysoleucas Golden Shiner 62 175 7.34 Notropis sp. Minnows 680 1,920 1.44 Fundulidae Fundulus sp. Killifish sp. 2 5.65 0.014 Percidae Etheostoma sp. Darter sp. 9 25.4 0.032 7/28/2015 Catostomidae Minytrema melanops Spotted sucker 23 64.9 6.08 Centrarchidae Lepomis sp. Sunfish sp. 89 251 3.28 Micropterus salmoides Largemouth Bass 23 64.9 5.14 Pomoxis nigromaculatus Black Crappie 5 14.1 0.612 Cyprinidae Notemigonus crysoleucas Golden Shiner 31 87.5 3.67 Notropis sp. Minnows 1,200 3,388 2.55 Percidae Etheostoma sp. Darter sp. 13 36.7 0.046 1/14/2016 Belonidae Strongylura marina Atlantic Needlefish 1 2.82 0.127 Catostomidae Erimyzon sucetta Lake Chubsucker 5 14.1 1.48 Minytrema melanops Spotted sucker 36 102 9.52 Centrarchidae Lepomis sp. Sunfish sp. 115 325 4.23 Micropterus salmoides Largemouth Bass 59 167 13.2 Cyprinidae Notropis sp. Minnows 35 98.8 0.074 Percidae Etheostoma sp. Darter sp. 22 62.1 0.077

101

Lower Ichetucknee Baseline Assessment

Location Date Family Scientific Name Common Name Count Density (#/ha) Biomass (kg/ha) Segment-6 7/21/2015 Belonidae Strongylura marina Atlantic Needlefish 1 2.62 0.118 Catostomidae Erimyzon sucetta Lake Chubsucker 8 21.0 2.20 Minytrema melanops Spotted sucker 31 81.3 7.61 Centrarchidae Lepomis sp. Sunfish sp. 74 194 2.53 Micropterus salmoides Largemouth Bass 54 142 11.2 Pomoxis nigromaculatus Black Crappie 8 21.0 0.910 Cyprinidae Notemigonus crysoleucas Golden Shiner 11 28.9 1.21 Notropis sp. Minnows 1,080 2,833 2.13 Fundulidae Fundulus sp. Killifish sp. 1 2.62 0.006 Percidae Etheostoma sp. Darter sp. 29 76.1 0.095 7/28/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 2 5.25 0.549 Minytrema melanops Spotted sucker 91 239 22.4 Centrarchidae Lepomis sp. Sunfish sp. 162 425 5.54 Micropterus salmoides Largemouth Bass 47 123 9.76 Pomoxis nigromaculatus Black Crappie 2 5.25 0.228 Cyprinidae Notropis sp. Minnows 1,515 3,974 2.99 Esocidae Esox sp. Pickeral 1 2.62 0.503 Percidae Etheostoma sp. Darter sp. 13 34.1 0.042 1/14/2016 Catostomidae Minytrema melanops Spotted sucker 81 212 19.9 Centrarchidae Lepomis sp. Sunfish sp. 119 312 4.07 Micropterus notius Suwannee Bass 1 2.62 0.403 Micropterus salmoides Largemouth Bass 43 113 8.93 Cyprinidae Notropis sp. Minnows 185 485 0.365 Percidae Etheostoma sp. Darter sp. 2 5.25 0.007 Segment-7 7/21/2015 Belonidae Strongylura marina Atlantic Needlefish 2 3.81 0.171 Catostomidae Erimyzon sucetta Lake Chubsucker 4 7.61 0.797 Minytrema melanops Spotted sucker 86 164 15.3 Centrarchidae Lepomis sp. Sunfish sp. 229 436 5.68 Micropterus salmoides Largemouth Bass 120 228 18.1 Pomoxis nigromaculatus Black Crappie 8 15.2 0.660 Cyprinidae Notemigonus crysoleucas Golden Shiner 21 40.0 1.68 Notropis sp. Minnows 2,116 4,027 3.03 Esocidae Esox sp. Pickeral 2 3.81 0.730 Percidae Etheostoma sp. Darter sp. 39 74.2 0.092 7/28/2015 Achiridae Trinectes maculatus Hogchocker 1 1.90 0.017 Belonidae Strongylura marina Atlantic Needlefish 2 3.81 0.171 Catostomidae Erimyzon sucetta Lake Chubsucker 5 9.51 0.996 Minytrema melanops Spotted sucker 55 105 9.80 Centrarchidae Lepomis sp. Sunfish sp. 201 382 4.99 Micropterus notius Suwannee Bass 3 5.71 0.876 Micropterus salmoides Largemouth Bass 83 158 12.5 Pomoxis nigromaculatus Black Crappie 20 38.1 1.65 Cyprinidae Notemigonus crysoleucas Golden Shiner 73 139 5.83 Notropis sp. Minnows 1,960 3,730 2.80 Percidae Etheostoma sp. Darter sp. 10 19.0 0.024 1/14/2016 Belonidae Strongylura marina Atlantic Needlefish 2 3.81 0.171 Catostomidae Erimyzon sucetta Lake Chubsucker 3 5.71 0.598 Minytrema melanops Spotted sucker 82 156 14.6 Centrarchidae Lepomis sp. Sunfish sp. 180 343 4.47 Micropterus salmoides Largemouth Bass 98 186 14.8 Cyprinidae Notemigonus crysoleucas Golden Shiner 9 17.1 0.718 Notropis sp. Minnows 516 982 0.738 Percidae Etheostoma sp. Darter sp. 3 5.71 0.007

102

Lower Ichetucknee Baseline Assessment

Location Date Family Scientific Name Common Name Count Density (#/ha) Biomass (kg/ha) Segment-8 7/21/2015 Achiridae Trinectes maculatus Hogchocker 2 5.15 0.045 Catostomidae Erimyzon sucetta Lake Chubsucker 1 2.57 0.270 Minytrema melanops Spotted sucker 29 74.7 6.99 Centrarchidae Lepomis sp. Sunfish sp. 162 417 5.44 Micropterus salmoides Largemouth Bass 62 160 12.6 Pomoxis nigromaculatus Black Crappie 5 12.9 0.558 Cyprinidae Notemigonus crysoleucas Golden Shiner 12 30.9 1.30 Notropis sp. Minnows 1,415 3,643 2.74 Esocidae Esox sp. Pickeral 1 2.57 0.494 Fundulidae Fundulus sp. Killifish sp. 2 5.15 0.013 Percidae Etheostoma sp. Darter sp. 45 116 0.144 7/28/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 10 25.7 2.70 Minytrema melanops Spotted sucker 55 142 13.3 Centrarchidae Lepomis sp. Sunfish sp. 150 386 5.04 Micropterus notius Suwannee Bass 1 2.57 0.395 Micropterus salmoides Largemouth Bass 59 152 12.0 Cyprinidae Notemigonus crysoleucas Golden Shiner 10 25.7 1.08 Notropis sp. Minnows 552 1,421 1.07 Esocidae Esox sp. Pickeral 1 2.57 0.494 Percidae Etheostoma sp. Darter sp. 20 51.5 0.064 1/14/2016 Catostomidae Minytrema melanops Spotted sucker 43 111 10.4 Centrarchidae Lepomis sp. Sunfish sp. 83 214 2.79 Micropterus salmoides Largemouth Bass 80 206 16.3 Cyprinidae Notropis sp. Minnows 269 693 0.521 Mugilidae Mugil sp. Mullet 1 2.57 1.01 Percidae Etheostoma sp. Darter sp. 19 48.9 0.061 Segment-9 7/21/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 17 27.2 2.84 Minytrema melanops Spotted sucker 51 81.5 7.63 Centrarchidae Lepomis sp. Sunfish sp. 265 423 5.52 Micropterus salmoides Largemouth Bass 122 195 15.4 Pomoxis nigromaculatus Black Crappie 3 4.79 0.208 Cyprinidae Notemigonus crysoleucas Golden Shiner 38 60.7 2.55 Notropis sp. Minnows 2,925 4,673 3.51 Ictaluridae Ictalurus natalis Catfish 1 1.60 0.190 Percidae Etheostoma sp. Darter sp. 23 36.7 0.046 7/28/2015 Belonidae Strongylura marina Atlantic Needlefish 2 3.20 0.144 Catostomidae Erimyzon sucetta Lake Chubsucker 4 6.39 0.669 Minytrema melanops Spotted sucker 72 115 10.8 Centrarchidae Lepomis sp. Sunfish sp. 192 307 4.00 Micropterus salmoides Largemouth Bass 104 166 13.2 Pomoxis nigromaculatus Black Crappie 2 3.20 0.139 Cyprinidae Notemigonus crysoleucas Golden Shiner 6 9.59 0.402 Notropis sp. Minnows 1,941 3,101 2.33 Percidae Etheostoma sp. Darter sp. 30 47.9 0.060 1/14/2016 Belonidae Strongylura marina Atlantic Needlefish 4 6.39 0.288 Catostomidae Minytrema melanops Spotted sucker 102 163 15.3 Centrarchidae Lepomis sp. Sunfish sp. 179 286 3.73 Micropterus notius Suwannee Bass 2 3.20 0.490 Micropterus salmoides Largemouth Bass 71 113 8.98 Cyprinidae Notemigonus crysoleucas Golden Shiner 3 4.79 0.201 Notropis sp. Minnows 134 214 0.161 Percidae Etheostoma sp. Darter sp. 5 7.99 0.010

103

Lower Ichetucknee Baseline Assessment

Location Date Family Scientific Name Common Name Count Density (#/ha) Biomass (kg/ha) Segment-10 7/21/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 12 16.0 1.68 Minytrema melanops Spotted sucker 33 44.0 4.12 Centrarchidae Lepomis sp. Sunfish sp. 206 275 3.58 Micropterus salmoides Largemouth Bass 121 161 12.8 Cyprinidae Notemigonus crysoleucas Golden Shiner 13 17.3 0.727 Notropis sp. Minnows 1,401 1,869 1.40 Fundulidae Fundulus sp. Killifish sp. 7 9.34 0.023 Percidae Etheostoma sp. Darter sp. 14 18.7 0.023 7/28/2015 Belonidae Strongylura marina Atlantic Needlefish 1 1.33 0.060 Catostomidae Erimyzon sucetta Lake Chubsucker 1 1.33 0.140 Minytrema melanops Spotted sucker 46 61.4 5.74 Centrarchidae Lepomis sp. Sunfish sp. 150 200 2.61 Micropterus salmoides Largemouth Bass 93 124 9.82 Cyprinidae Notemigonus crysoleucas Golden Shiner 1 1.33 0.056 Notropis sp. Minnows 1,187 1,583 1.19 Fundulidae Fundulus sp. Killifish sp. 8 10.7 0.026 Percidae Etheostoma sp. Darter sp. 41 54.7 0.068 1/14/2016 Catostomidae Minytrema melanops Spotted sucker 88 117 11.0 Centrarchidae Lepomis sp. Sunfish sp. 196 261 3.41 Micropterus notius Suwannee Bass 1 1.33 0.0006 Micropterus salmoides Largemouth Bass 73 97.4 7.71 Cyprinidae Notemigonus crysoleucas Golden Shiner 9 12.0 0.504 Notropis sp. Minnows 92 123 0.092 Fundulidae Fundulus seminolis Seminole Killifish 4 5.34 0.013 Mugilidae Mugil sp. Mullet 6 8.00 3.14 Percidae Etheostoma sp. Darter sp. 17 22.7 0.028 Segment-11 7/21/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 7 11.0 1.16 Minytrema melanops Spotted sucker 32 50.5 4.73 Centrarchidae Lepomis sp. Sunfish sp. 92 145 1.89 Micropterus salmoides Largemouth Bass 62 97.9 7.75 Cyprinidae Notemigonus crysoleucas Golden Shiner 31 48.9 2.05 Notropis sp. Minnows 1,575 2,486 1.87 Percidae Etheostoma sp. Darter sp. 28 44.2 0.055 7/28/2015 Catostomidae Minytrema melanops Spotted sucker 79 125 11.7 Centrarchidae Lepomis sp. Sunfish sp. 95 150 1.96 Micropterus salmoides Largemouth Bass 98 155 12.2 Pomoxis nigromaculatus Black Crappie 2 3.16 0.137 Cyprinidae Notropis sp. Minnows 1,367 2,158 1.62 Percidae Etheostoma sp. Darter sp. 57 90.0 0.112 1/14/2016 Achiridae Trinectes maculatus Hogchocker 1 1.58 0.014 Catostomidae Minytrema melanops Spotted sucker 101 159 14.9 Centrarchidae Lepomis sp. Sunfish sp. 143 226 2.94 Micropterus notius Suwannee Bass 2 3.16 0.484 Micropterus salmoides Largemouth Bass 65 103 8.12 Cyprinidae Notropis sp. Minnows 200 316 0.237 Percidae Etheostoma sp. Darter sp. 37 58.4 0.073

104

Lower Ichetucknee Baseline Assessment

Location Date Family Scientific Name Common Name Count Density (#/ha) Biomass (kg/ha) Segment-12 7/21/2015 Catostomidae Minytrema melanops Spotted sucker 15 32.3 3.03 Centrarchidae Lepomis sp. Sunfish sp. 97 209 2.73 Micropterus salmoides Largemouth Bass 47 101 8.02 Cyprinidae Notemigonus crysoleucas Golden Shiner 7 15.1 0.633 Notropis sp. Minnows 228 491 0.369 Poeciliidae Poecilia latipinna Sailfin Molly 2 4.31 0.003 Percidae Etheostoma sp. Darter sp. 27 58.2 0.072 7/28/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 3 6.47 0.677 Minytrema melanops Spotted sucker 7 15.1 1.41 Centrarchidae Lepomis sp. Sunfish sp. 106 228 2.98 Micropterus notius Suwannee Bass 1 2.16 0.331 Micropterus salmoides Largemouth Bass 37 79.7 6.31 Pomoxis nigromaculatus Black Crappie 1 2.16 0.093 Cyprinidae Notemigonus crysoleucas Golden Shiner 4 8.62 0.362 Notropis sp. Minnows 405 873 0.656 Percidae Etheostoma sp. Darter sp. 42 90.5 0.113 1/14/2016 Catostomidae Minytrema melanops Spotted sucker 20 43.1 4.04 Centrarchidae Lepomis sp. Sunfish sp. 106 228 2.98 Micropterus salmoides Largemouth Bass 51 110 8.70 Cyprinidae Notropis sp. Minnows 20 43.1 0.032 Percidae Etheostoma sp. Darter sp. 3 6.47 0.008 Segment-13 7/21/2015 Catostomidae Minytrema melanops Spotted sucker 19 34.9 3.27 Centrarchidae Lepomis sp. Sunfish sp. 85 156 2.04 Micropterus salmoides Largemouth Bass 59 108 8.58 Cyprinidae Notemigonus crysoleucas Golden Shiner 36 66.2 2.78 Notropis sp. Minnows 250 460 0.345 Percidae Etheostoma sp. Darter sp. 11 20.2 0.025 7/28/2015 Belonidae Strongylura marina Atlantic Needlefish 3 5.51 0.248 Catostomidae Erimyzon sucetta Lake Chubsucker 2 3.68 0.385 Minytrema melanops Spotted sucker 22 40.4 3.79 Centrarchidae Lepomis sp. Sunfish sp. 117 215 2.80 Micropterus notius Suwannee Bass 2 3.68 0.564 Micropterus salmoides Largemouth Bass 77 142 11.2 Cyprinidae Notemigonus crysoleucas Golden Shiner 92 169 7.09 Notropis sp. Minnows 885 1,627 1.22 Percidae Etheostoma sp. Darter sp. 28 51.5 0.064 1/14/2016 Catostomidae Minytrema melanops Spotted sucker 49 90.1 8.43 Centrarchidae Lepomis sp. Sunfish sp. 106 195 2.54 Micropterus notius Suwannee Bass 3 5.51 0.846 Micropterus salmoides Largemouth Bass 46 84.6 6.69 Mugilidae Mugil sp. Mullet 9 16.5 6.49 Percidae Etheostoma sp. Darter sp. 17 31.3 15.4 Segment-14 7/21/2015 Catostomidae Erimyzon sucetta Lake Chubsucker 1 1.25 0.131 Minytrema melanops Spotted sucker 25 31.4 2.94 Centrarchidae Lepomis sp. Sunfish sp. 103 129 1.68 Micropterus salmoides Largemouth Bass 52 65.2 5.16 Cyprinidae Notemigonus crysoleucas Golden Shiner 2 2.51 0.105 Notropis sp. Minnows 605 759 0.570 Percidae Etheostoma sp. Darter sp. 20 25.1 0.031 7/28/2015 Catostomidae Minytrema melanops Spotted sucker 73 91.6 8.57 Centrarchidae Lepomis sp. Sunfish sp. 130 163 2.13 Micropterus notius Suwannee Bass 1 1.25 0.192 Micropterus salmoides Largemouth Bass 108 135 10.7 Cyprinidae Notropis sp. Minnows 455 571 0.429 Percidae Etheostoma sp. Darter sp. 23 28.8 0.036 1/14/2016 Catostomidae Minytrema melanops Spotted sucker 74 92.8 8.69 Centrarchidae Lepomis sp. Sunfish sp. 76 95.3 1.24 Micropterus notius Suwannee Bass 2 2.51 0.385 Micropterus salmoides Largemouth Bass 13 16.3 1.29 Cyprinidae Notropis sp. Minnows 80 100 0.075 Mugilidae Mugil sp. Mullet 1 1.25 0.492 Percidae Etheostoma sp. Darter sp. 17 21.3 0.027

105

Lower Ichetucknee Baseline Assessment

Location Date Family Scientific Name Common Name Count Density (#/ha) Biomass (kg/ha) Segment-1&2 1/14/2016 Catostomidae Erimyzon sucetta Lake Chubsucker 13 23.7 2.48 Minytrema melanops Spotted sucker 33 60.2 5.64 Centrarchidae Lepomis sp. Sunfish sp. 213 389 5.07 Micropterus notius Suwannee Bass 1 1.82 0.280 Micropterus salmoides Largemouth Bass 136 248 19.6 Cyprinidae Notemigonus crysoleucas Golden Shiner 9 16.4 0.689 Notropis sp. Minnows 466 850 0.639 Esocidae Esox sp. Pickeral 1 1.82 0.350 Percidae Etheostoma sp. Darter sp. 5 9.12 0.011

106

Lower Ichetucknee Baseline Assessment

Appendix I Turtle Survey Data – July 19, 2015

107

Lower Ichetucknee Baseline Assessment

Station Species Gender Age Notes/Comments

#3 Loggerhead Musk Unknown Unknown

#3-4 Loggerhead Musk Unknown Juvenile

#6-7 Loggerhead Musk F Adult

#6-7 Cooter F Adult

#6-7 Loggerhead Musk F Adult

#7-8 Loggerhead Musk M Adult 4-6 years old

#7-8 Loggerhead Musk Unknown Juvenile

#7-8 Cooter F Adult

#8-9 Cooter M Adult

#9-10 Yellow-bellied slider F Adult

#10-11 Yellow-bellied slider F Adult

#10-11 Cooter Unknown Juvenile

#10-11 Loggerhead Musk M Unknown

#10-11 Loggerhead Musk Unknown Adult

#10-11 Loggerhead Musk Unknown Adult

#10-11 Loggerhead Musk Unknown Juvenile

#10-11 Yellow-bellied slider F Adult

#10-11 Yellow-bellied slider F Unknown

#10-11 Hybrid Red-eared Slider F Adult

#10-11 Unknown Unknown Adult

#10-11 Hybrid Red-eared Slider F Adult

#11-12 Red-bellied slider F Adult Corbicula found at this station

#12-13 Yellow-bellied slider F Adult

#12-13 Hybrid Red-eared Slider F Unknown

#14-15 Loggerhead Musk Unknown Juvenile

108

Lower Ichetucknee Baseline Assessment

Appendix J Human Use Surveys - July 2015

109

Lower Ichetucknee Baseline Assessment

Rainbow River Human Use Activity Summary – July 2015 Average (Person-Hrs) Average (# People) Average (# People/ha) Wednesday Saturday Wednesday Saturday Wednesday Saturday 7/22/2015 7/25/2015 7/22/2015 7/25/2015 Total 7/22/2015 7/25/2015 Total Activity Hodor Pointe Hodor Pointe Hodor Pointe Hodor Pointe Hodor Pointe Hodor Pointe Hodor Pointe Hodor Pointe Wading 14.0 7.3 51.5 62.5 2.8 1.5 10.3 11.9 6.6 6.7 3.06 1.07 11.26 8.76 7.16 4.91 Bathing 1.3 3.8 8.3 4.8 0.3 0.8 1.7 0.9 1.0 0.8 0.27 0.55 1.80 0.67 1.04 0.61 Swimming 2.0 1.0 1.8 1.5 0.4 0.2 0.4 0.3 0.4 0.2 0.44 0.15 0.38 0.21 0.41 0.18 Snorkeling 1.0 2.8 2.0 1.8 0.2 0.6 0.4 0.3 0.3 0.4 0.22 0.40 0.44 0.25 0.33 0.32 Tubing 3.3 4.8 22.0 28.3 0.7 1.0 4.4 5.4 2.5 3.2 0.71 0.70 4.81 3.96 2.76 2.33 Canoeing/Kayaking 0.3 8.3 0.0 2.8 0.1 1.7 0.0 0.5 0.0 1.1 0.05 1.21 0.00 0.39 0.03 0.80 In-Water Power Boating 0.0 0.0 0.8 106.8 0.0 0.0 0.2 20.3 0.1 10.2 0.00 0.00 0.16 14.95 0.08 7.48 Fishing 0.5 0.5 1.5 0.0 0.1 0.1 0.3 0.0 0.2 0.1 0.11 0.07 0.33 0.00 0.22 0.04 Other 5.0 3.8 2.8 1.0 1.0 0.8 0.6 0.2 0.8 0.5 1.09 0.55 0.60 0.14 0.85 0.35 Total 27.3 32.0 90.5 209.3 5.5 6.4 18.1 39.9 11.8 23.1 5.96 4.71 19.79 29.31 12.87 17.01 Sitting 11.0 6.3 62.0 12.8 2.2 1.3 12.4 2.4 7.3 1.8 2.41 0.92 13.56 1.79 7.98 1.35 Walking 8.3 14.5 107.0 38.3 1.7 2.9 21.4 7.3 11.5 5.1 1.80 2.13 23.40 5.36 12.60 3.75 Sunbathing 0.0 0.0 0.5 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.00 0.00 0.11 0.00 0.05 0.00 Nature Study 1.8 2.0 0.0 0.0 0.4 0.4 0.0 0.0 0.2 0.2 0.38 0.29 0.00 0.00 0.19 0.15 BBQing 0.0 0.0 3.3 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.00 0.00 0.71 0.00 0.36 0.00

Out-of-Water Other 5.5 1.5 11.8 0.8 1.1 0.3 2.4 0.1 1.7 0.2 1.20 0.22 2.57 0.11 1.89 0.16 Total 26.5 24.3 184.5 51.8 5.3 4.9 36.9 9.9 21.1 7.4 5.79 3.57 40.35 7.25 23.07 5.41

Note(s): Hours of Observations: 5.0 5.0 5.0 5.3 Hodor Park Survey Area (ac): 2.3 Pointe Park Survey Area (ac): 3.4

110

Lower Ichetucknee Baseline Assessment

Lower Ichetucknee River Human Use Observations – January 2016 Number Date Location of People Activity 1/11/2016 LIR-1 - LIR-15 0 1/13/2016 LIR-4 0 1/13/2016 LIR-15 2 Drinking and walking in Pointe Park 1/14/2016 LIR-12 1 Pressure washing deck 1/21/2016 LIR-12 1 Boating in water 1/22/2016 LIR-13 1 Sitting on dock

Human Use Activity Summary

Site Hodor Park - Lower Ichetucknee River Date 7/22/2015 Survey Period 10:15 15:15

Numbers of People In Water Activity Out of Water Activity Canoeing/K Power Sunbathi Nature Time Wading Bathing Swimming Snorkeling Tubing ayaking Boating Fishing Other Total Sitting Walking ng Study BBQing Other Total 10:15 4 4 8 2 2 10:30 4 4 0 10:45 2 2 2 2 11:00 2 2 2 2 11:15 1 1 3 3 11:30 0 5 5 11:45 0 3 2 5 12:00 1 1 3 1 1 5 12:15 6 1 7 2 4 2 8 12:30 7 7 5 2 7 12:45 2 2 4 6 1 1 8 13:00 6 4 1 1 12 6 2 2 10 13:15 2 1 5 2 10 8 8 13:30 4 1 5 1 1 2 13:45 2 1 3 2 1 3 14:00 6 1 7 3 3 14:15 7 2 5 14 5 1 6 14:30 3 3 2 3 1 6 14:45 5 1 6 2 3 5 15:00 4 1 1 6 6 3 9 15:15 5 2 7 4 1 2 7 Total 56 5 8 4 13 1 0 2 20 109 44 33 0 7 0 22 106 Person-Hrs 14.00 1.25 2.00 1.00 3.25 0.25 0.00 0.50 5.00 27.25 11.00 8.25 0.00 1.75 0.00 5.50 26.50 Percentage 51.4% 4.6% 7.3% 3.7% 11.9% 0.9% 0.0% 1.8% 18.3% 100.0% 41.5% 31.1% 0.0% 6.6% 0.0% 20.8% 100.0% Note(s): "Wading" is waist deep, "Bathing" is chest deep.

Average Time Interval (hrs): 0.25

25 In Water Activity Out of Water Activity

20

15

10

5 NumberofPeople 0

In the Water Counts Out of the Water Counts 15 12 10 10 8 6 5 4

2 NumberofPeople 0 NumberofPeople 0

Wading Bathing Swimming Snorkeling Tubing Canoeing/Kayaking Power Boating Fishing Other Sitting Walking Sunbathing Nature Study BBQing Other

111

Lower Ichetucknee Baseline Assessment

Human Use Activity Summary

Site Pointe Park - Lower Ichetucknee River Date 7/22/2015 Survey Period 10:15 15:15

Numbers of People In Water Activity Out of Water Activity Canoeing/K Power Sunbathi Nature Time Wading Bathing Swimming Snorkeling Tubing ayaking Boating Fishing Other Total Sitting Walking ng Study BBQing Other Total 10:15 0 0 10:30 0 0 10:45 2 2 0 11:00 2 2 0 11:15 1 1 2 10 10 11:30 2 1 3 2 2 4 11:45 2 2 2 4 6 12:00 2 2 4 4 12:15 2 2 2 2 12:30 1 4 4 9 0 12:45 2 2 1 1 13:00 1 1 1 2 5 5 1 6 13:15 1 4 3 8 1 4 5 13:30 3 1 6 3 3 16 1 1 13:45 2 1 3 6 4 6 10 14:00 1 2 2 4 9 1 4 5 14:15 8 5 3 2 18 1 2 3 14:30 4 2 4 2 12 6 7 13 14:45 3 2 1 2 2 10 5 10 15 15:00 1 1 6 8 2 2 15:15 1 1 8 10 1 9 10 Total 29 15 4 11 19 33 0 2 15 128 25 58 0 8 0 6 97 Person-Hrs 7.25 3.75 1.00 2.75 4.75 8.25 0.00 0.50 3.75 32.00 6.25 14.50 0.00 2.00 0.00 1.50 24.25 Percentage 22.7% 11.7% 3.1% 8.6% 14.8% 25.8% 0.0% 1.6% 11.7% 100.0% 25.8% 59.8% 0.0% 8.2% 0.0% 6.2% 100.0% Note(s): "Wading" is waist deep, "Bathing" is chest deep.

Average Time Interval (hrs): 0.25

30 In Water Activity Out of Water Activity 25 20 15 10

5 NumberofPeople 0

In the Water Counts Out of the Water Counts 20 20 15 15 10 10

5 5 NumberofPeople 0 NumberofPeople 0

Wading Bathing Swimming Snorkeling Tubing Canoeing/Kayaking Power Boating Fishing Other Sitting Walking Sunbathing Nature Study BBQing Other

112

Lower Ichetucknee Baseline Assessment

Human Use Activity Summary

Site Hodor Park - Lower Ichetucknee River Date 7/25/2016 Survey Period 10:30 15:30

Numbers of People In Water Activity Out of Water Activity Canoeing/K Power Sunbathi Nature Time Wading Bathing Swimming Snorkeling Tubing ayaking Boating Fishing Other Total Sitting Walking ng Study BBQing Other Total 10:30 4 2 6 4 3 7 10:45 4 4 8 7 3 10 11:00 6 1 7 2 6 8 11:15 5 4 9 3 12 15 11:30 1 3 4 4 15 19 11:45 10 2 1 13 7 38 45 12:00 5 4 2 11 8 22 2 32 12:15 6 2 2 2 3 2 17 12 10 2 2 26 12:30 15 14 2 31 11 25 2 38 12:45 4 1 2 1 12 20 14 38 3 55 13:00 6 4 2 12 28 17 2 1 48 13:15 20 2 22 19 25 1 1 46 13:30 2 4 17 23 15 19 1 35 13:45 11 1 2 3 17 13 22 1 36 14:00 9 1 2 12 9 28 8 45 14:15 8 1 12 2 1 24 14 28 10 52 14:30 14 2 1 1 5 2 25 15 20 6 41 14:45 23 4 1 1 29 16 14 1 5 36 15:00 22 22 17 28 1 5 51 15:15 17 11 28 13 33 4 50 15:30 14 6 2 22 17 22 4 43 Total 206 33 7 8 88 0 3 6 11 362 248 428 2 0 13 47 738 Person-Hrs 51.50 8.25 1.75 2.00 22.00 0.00 0.75 1.50 2.75 90.50 62.00 107.00 0.50 0.00 3.25 11.75 184.50 Percentage 56.9% 9.1% 1.9% 2.2% 24.3% 0.0% 0.8% 1.7% 3.0% 100.0% 33.6% 58.0% 0.3% 0.0% 1.8% 6.4% 100.0% Note(s): "Wading" is waist deep, "Bathing" is chest deep.

Average Time Interval (hrs): 0.25

100 In Water Activity Out of Water Activity

80

60

40

20 NumberofPeople 0

In the Water Counts Out of the Water Counts 40 60 50 30 40 20 30 20 10

10 NumberofPeople 0 NumberofPeople 0

Wading Bathing Swimming Snorkeling Tubing Canoeing/Kayaking Power Boating Fishing Other Sitting Walking Sunbathing Nature Study BBQing Other

113

Lower Ichetucknee Baseline Assessment

Human Use Activity Summary

Site Pointe Park - Lower Ichetucknee River Date 7/25/2015 Survey Period 10:30 15:45

Numbers of People In Water Activity Out of Water Activity Canoeing/K Power Sunbathi Nature Time Wading Bathing Swimming Snorkeling Tubing ayaking Boating Fishing Other Total Sitting Walking ng Study BBQing Other Total 10:30 2 2 1 1 10:45 3 3 1 1 2 11:00 3 1 6 2 12 0 11:15 5 2 7 14 14 11:30 1 2 6 9 3 3 11:45 1 3 1 1 18 2 26 1 1 12:00 11 9 4 1 25 2 4 6 12:15 5 2 13 20 5 10 15 12:30 10 8 1 27 46 3 1 4 12:45 12 2 2 29 45 4 16 20 13:00 15 12 4 24 55 2 3 5 13:15 23 1 8 31 63 2 17 19 13:30 31 3 3 2 8 23 70 6 7 13 13:45 36 2 15 26 79 7 12 19 14:00 25 3 2 1 2 2 34 69 3 3 6 14:15 12 3 1 44 60 3 13 16 14:30 5 1 9 27 42 21 21 14:45 7 2 7 26 42 1 1 15:00 8 5 1 23 37 1 1 2 15:15 17 2 8 20 47 5 8 13 15:30 18 1 7 24 1 51 4 7 3 14 15:45 5 1 21 27 1 11 12 Total 250 19 6 7 113 11 427 0 4 837 51 153 0 0 0 3 207 Person-Hrs 62.50 4.75 1.50 1.75 28.25 2.75 106.75 0.00 1.00 209.25 12.75 38.25 0.00 0.00 0.00 0.75 51.75 Percentage 29.9% 2.3% 0.7% 0.8% 13.5% 1.3% 51.0% 0.0% 0.5% 100.0% 24.6% 73.9% 0.0% 0.0% 0.0% 1.4% 100.0% Note(s): "Wading" is waist deep, "Bathing" is chest deep.

Average Time Interval (hrs): 0.25

120 In Water Activity Out of Water Activity 100 80 60 40

20 NumberofPeople 0

In the Water Counts Out of the Water Counts 100 25 80 20 60 15 40 10

20 5 NumberofPeople 0 NumberofPeople 0

Wading Bathing Swimming Snorkeling Tubing Canoeing/Kayaking Power Boating Fishing Other Sitting Walking Sunbathing Nature Study BBQing Other

114

Lower Ichetucknee Baseline Assessment

Appendix K Ecosystem Metabolism Summary

115

Lower Ichetucknee Baseline Assessment

10.00 1600

9.00 1400 8.00 1200 7.00 6.00 1000 5.00 800

4.00 600

3.00 PAR (umol/s/m2)

Dissolved Dissolved Oxygen (mg/L) 400 2.00 1.00 200 0.00 0 7/19/15 7/21/15 7/23/15 7/25/15 7/27/15 7/29/15 7/31/15 8/2/15

Upstream DO Downstream DO PAR

300

250

200

150

100 DO Flux DO Flux (kg/hr) 50

0

-50 7/19/15 7/21/15 7/23/15 7/25/15 7/27/15 7/29/15 7/31/15 8/2/15

Upstream Downstream Accrual Diffusion

1.40 1.20 1.00 0.80 0.60

0.40

Change (g/m2/hr) -

of 0.20 - 0.00

DO Rate -0.20 -0.40 -0.60 7/19/15 7/21/15 7/23/15 7/25/15 7/27/15 7/29/15 7/31/15 8/2/15

Corrected Uncorrected Acrual Diffusion

116

Lower Ichetucknee Baseline Assessment

10

1

0.1

y = -0.1381x2 + 0.7671x R² = 0.7884

0.01 Daytime (g GPP O2/m2/hr)

0.001

0.0001 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 PAR (mol/m2/hr)

GPP (g O2/m2/d) NPP (g O2/m2/d) CR (g O2/m2/d) PAR Efficiency P/R Ratio 12 1.4

10 1.2

8 1

6 0.8 P/R Ratio 4 0.6

2 0.4 Metabolism O2/m2/d) (g / PAR Efficiency (%)

0 0.2

-2 0 7/19/15 7/21/15 7/23/15 7/25/15 7/27/15 7/29/15 7/31/15 8/2/15 Date

117

Lower Ichetucknee Baseline Assessment

1,800 1,600 1,400 1,200 1,000

800 PAR PAR (umol/s/m2) 600 400 200 0 7/19/15 7/21/15 7/23/15 7/25/15 7/27/15 7/29/15 7/31/15 8/2/15

PAR raw PAR (w/ shading)

1,400

1,200

1,000

800

PAR PAR (umol/s/m2) 600

400

200

0 0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00

PAR raw PAR (w/ shading)

118

Lower Ichetucknee Baseline Assessment

Upstream Downstream Upstream Downstream 24.5 8.60

24.0 8.40

23.5 8.20

23.0 8.00

22.5 (SU) pH 7.80

Water TemperatureWater(C) 22.0 7.60

21.5 7.40

21.0 7.20 7/19/15 7/21/15 7/23/15 7/25/15 7/27/15 7/29/15 7/31/15 8/2/15 7/19/15 7/21/15 7/23/15 7/25/15 7/27/15 7/29/15 7/31/15 8/2/15

Upstream Downstream Attenuation Plant Level Air 365 0.49 1,600

1,400 360 1)

0.489 - 1,200 355 0.488 1,000 350 0.487 800 345 600

0.486 PAR (umol/m2/s)

Sp. Conductance (uS/cm) Sp. Conductance 340 400

0.485 (m Coefficient Attenuation Diffuse 335 200

330 0.484 0 7/15/15 7/20/15 7/25/15 7/30/15 8/4/15 7/19/15 7/21/15 7/23/15 7/25/15 7/27/15 7/29/15 7/31/15 8/2/15

Flow Depth Rainfall 682,000 1.4 Parameter Units Avg Min Max N DO - up mg/L 5.72 3.87 9.29 527 680,000 1.2 down 6.52 4.68 9.51 522 678,000 Wtr Temp - up C 22.4 21.6 24.3 527 1 down 22.4 21.4 24.2 522 676,000 pH - up SU 8.04 7.45 8.45 527 0.8 down 7.65 7.40 8.05 522 674,000 SpCond - up uS/cm 344 335 347 527 672,000 down 349 340 359 522 0.6 3

Flow (m3/d) Flow Flow - up m /d 671,061 665,469 680,148 14 670,000 Depth m 0.97 0.96 0.97 14 0.4 Rainfall Total in 4.0 668,000 PAR - air umol/m2/s 381 0.0 1,564 288 0.2 Rainfall (m) (in) / Depth 666,000 plant 198 0.0 1049 241 DO rate chng g/m2/hr 664,000 0 corr 0.037 -0.490 0.899 241 7/15/15 7/20/15 7/25/15 7/30/15 8/4/15 uncorr 0.328 -0.358 1.143 241

119

Lower Ichetucknee Baseline Assessment

10.00 1000 9.00 900 8.00 800 7.00 700 6.00 600 5.00 500 4.00 400

3.00 300 PAR (umol/s/m2) Dissolved Dissolved Oxygen (mg/L) 2.00 200 1.00 100 0.00 0 1/11/16 1/13/16 1/15/16 1/17/16 1/19/16 1/21/16 1/23/16

Upstream DO Downstream DO PAR

300

250

200

150

DO Flux DO Flux (kg/hr) 100

50

0 1/11/16 1/13/16 1/15/16 1/17/16 1/19/16 1/21/16 1/23/16

Upstream Downstream Accrual Diffusion

1.00

0.80

0.60

0.40

0.20

Change (g/m2/hr)

- of - 0.00

-0.20 DO Rate -0.40

-0.60 1/11/16 1/12/16 1/13/16 1/14/16 1/15/16 1/16/16 1/17/16 1/18/16 1/19/16 1/20/16 1/21/16 1/22/16

Corrected Uncorrected Acrual Diffusion

120

Lower Ichetucknee Baseline Assessment

1

0.1

y = -0.1942x2 + 0.7358x R² = 0.7126

0.01 Daytime (g GPP O2/m2/hr)

0.001

0.0001 0.0 0.5 1.0 1.5 2.0 2.5 3.0 PAR (mol/m2/hr)

GPP (g O2/m2/d) NPP (g O2/m2/d) CR (g O2/m2/d) PAR Efficiency P/R Ratio 8 1.4

1.2 6

1 4

0.8

2 P/R Ratio 0.6

0

0.4 Metabolism O2/m2/d) (g / PAR Efficiency (%)

-2 0.2

-4 0 1/11/16 1/12/16 1/13/16 1/14/16 1/15/16 1/16/16 1/17/16 1/18/16 1/19/16 1/20/16 1/21/16 1/22/16 Date

121

Lower Ichetucknee Baseline Assessment

1,200

1,000

800

600 PAR PAR (umol/s/m2) 400

200

0 1/11/16 1/12/16 1/13/16 1/14/16 1/15/16 1/16/16 1/17/16 1/18/16 1/19/16 1/20/16 1/21/16 1/22/16

PAR raw PAR (w/ shading)

1,000 900 800 700 600 500

PAR PAR (umol/s/m2) 400 300 200 100 0 0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00

PAR raw PAR (w/ shading)

122

Lower Ichetucknee Baseline Assessment

Upstream Downstream Upstream Downstream 22.0 8.30

21.5 8.20 21.0 8.10 20.5

20.0 8.00 pH (SU) pH 19.5

7.90 Water TemperatureWater(C) 19.0 7.80 18.5

18.0 7.70 1/9/16 1/11/16 1/13/16 1/15/16 1/17/16 1/19/16 1/21/16 1/23/16 1/25/16 1/9/16 1/11/161/13/161/15/161/17/161/19/161/21/161/23/161/25/16

Upstream Downstream Attenuation Plant Level Air 350 0.43 1,000

900 1)

0.42 - 345 800

700 0.41 340 600

0.4 500

335 400

0.39 PAR (umol/m2/s)

300 Sp. Conductance (uS/cm) Sp. Conductance

330 200

0.38 (m Coefficient Attenuation Diffuse 100

325 0.37 0 1/6/16 1/11/16 1/16/16 1/21/16 1/26/16 1/11/16 1/13/16 1/15/16 1/17/16 1/19/16 1/21/16 1/23/16

Flow Depth Rainfall 696,000 1.2 Parameter Units Avg Min Max N 694,000 DO - up mg/L 6.20 4.78 8.60 537 1 down 6.88 5.36 8.96 536 692,000 Wtr Temp - up C 20.2 19.0 21.7 537 690,000 down 20.1 18.7 21.5 536 0.8 pH - up SU 7.94 7.79 8.25 537 688,000 down 7.92 7.75 8.18 536 SpCond - up uS/cm 336 326 338 537 686,000 0.6 down 342 334 346 536 684,000 3

Flow (m3/d) Flow Flow - up m /d 684,342 677,702 694,828 14 0.4 Depth m 0.96 0.96 0.97 14 682,000 Rainfall Total in 0.9 680,000 PAR - air umol/m2/s 209 0.0 1,120 336

0.2 Rainfall (m) (in) / Depth 678,000 plant 130 0.0 731 217 DO rate chng g/m2/hr 676,000 0 corr -0.009 -0.349 0.626 217 1/6/16 1/11/16 1/16/16 1/21/16 1/26/16 uncorr 0.283 -0.166 0.842 217

123

Lower Ichetucknee Baseline Assessment

Appendix L Nutrient Assimilation Detail

124

Lower Ichetucknee Baseline Assessment

Lower Ichetucknee River Estimated Nutrient Mass Removals Inflow (LIR-1) Outflow (LIR-15) Segment - Up Segment - Down Removal Conc Flow Mass Mass Conc Flow Mass Mass Conc Mass Paramete Unit Mont (mg/L (kg/d (kg/ha/d (mg/L (kg/d (kg/ha/d (mg/L (kg/d (kg/ha/d r s h ) (m3/d) ) ) ) (m3/d) ) ) ) (%) ) ) (%) 671,06 671,06 - - NH4-N mg/L Jul-15 0.013 1 8.4 1.2 0.018 1 11.7 1.7 -0.005 40.0 -3.4 -0.49 40.0 684,34 684,34 Jan-16 0.008 2 5.1 0.8 0.005 2 3.4 0.5 0.003 33.3 1.7 0.25 33.3 677,70 677,70 - - POR 0.010 2 6.8 1.0 0.011 2 7.6 1.1 -0.001 12.2 -0.8 -0.12 12.2 671,06 671,06 NOx-N mg/L Jul-15 0.58 1 389.2 57.2 0.55 1 369.1 54.3 0.030 5.2 20.1 2.96 5.2 684,34 684,34 Jan-16 0.58 2 396.9 58.4 0.55 2 376.4 55.4 0.030 5.2 20.5 3.02 5.2 677,70 677,70 POR 0.58 2 393.1 57.8 0.55 2 372.7 54.8 0.030 5.2 20.3 2.99 5.2 671,06 671,06 Org N mg/L Jul-15 0.05 1 33.6 4.9 0.03 1 20.1 3.0 0.020 40.0 13.4 1.97 40.0 684,34 684,34 - - Jan-16 0.17 2 116.3 17.1 0.29 2 195.0 28.7 -0.115 67.6 -78.7 -11.57 67.6 677,70 677,70 - - POR 0.11 2 74.9 11.0 0.16 2 107.6 15.8 -0.048 43.6 -32.6 -4.80 43.6 671,06 671,06 TKN mg/L Jul-15 0.05 1 35.2 5.2 0.03 1 16.8 2.5 0.028 52.4 18.5 2.71 52.4 684,34 684,34 - - Jan-16 0.18 2 123.2 18.1 0.30 2 201.9 29.7 -0.115 63.9 -78.7 -11.57 63.9 677,70 677,70 - - POR 0.12 2 79.2 11.6 0.16 2 109.3 16.1 -0.044 38.0 -30.1 -4.43 38.0 671,06 671,06 TN mg/L Jul-15 0.65 1 432.8 63.7 0.60 1 402.6 59.2 0.045 7.0 30.2 4.44 7.0 684,34 684,34 - - Jan-16 0.76 2 520.1 76.5 0.85 2 578.3 85.0 -0.085 11.2 -58.2 -8.55 11.2 677,70 677,70 POR 0.70 2 476.5 70.1 0.72 2 490.5 72.1 -0.021 -2.9 -14.0 -2.06 -2.9

125

Lower Ichetucknee Baseline Assessment

Segment Area (ha): 6.80

126

Lower Ichetucknee Baseline Assessment

Appendix M Particulate Export Detail

127

Lower Ichetucknee Baseline Assessment

Laboratory Analysis Total Sample

Ash- Time Total Ash- Free of Flow Net Water Volume Sample Vol. Dry Ash Free Dry Dry Dry Organic Dry Organic Dry Organic Start Upstream Tow Rate Area Velocity Filtered Volume Dried Wt. Wt. % Dry Wt. Wt. Matter Matter Matter Matter Matter Matter Station Date Time Area (m2) (s) (m3/s) (m2) (m/s) (m3) (mL) (mL) (g) (g) Ash Wt. (g) (g) (g) (g/m3) (g/m3) (g/d) (g/d) (g/m2/d) (g/m2/d) LIR-4 (1) 7/22/15 10:00 185,039 246 8.63 0.1886 0.41 19.09 140 57 0.46 0.20 43.29 0.2620 1.135 0.6435 0.05945 0.03371 44,339 25,145 0.240 0.136 LIR-4 (2) 10:15 185,039 264 8.63 0.1886 0.41 20.48 140 62 0.61 0.27 43.84 0.3420 1.375 0.7723 0.06713 0.03770 50,070 28,118 0.271 0.152 LIR-4 (3) 10:30 185,039 215 8.63 0.1886 0.41 16.68 110 49 0.41 0.18 43.31 0.2330 0.923 0.5231 0.05531 0.03135 41,250 23,385 0.223 0.126 LIR-15 (1)* 7/22/15 12:30 239,677 180 8.87 0.1886 0.51 17.17 205 60 0.58 0.35 60.34 0.2300 1.982 0.7858 0.11539 0.04576 88,385 35,049 0.369 0.146 LIR-15 (2) 13:16 239,677 120 8.87 0.1886 0.49 11.10 170 60 1.49 0.72 48.39 0.7690 4.222 2.1788 0.38017 0.19621 291,211 150,296 1.215 0.627 LIR-15 (3) 13:28 239,677 60 8.87 0.1886 0.50 5.62 125 59 1.33 0.66 49.48 0.6740 2.826 1.4280 0.50278 0.25403 385,129 194,585 1.607 0.812 LIR-4 (1) 7/29/15 9:15 185,039 120 8.20 0.1886 0.37 8.28 75 56 0.36 0.17 47.35 0.1890 0.481 0.2531 0.05809 0.03058 41,172 21,675 0.223 0.117 LIR-4 (2) 9:30 185,039 120 8.20 0.1886 0.33 7.52 80 67 0.33 0.15 44.58 0.1840 0.396 0.2197 0.05273 0.02922 37,372 20,712 0.202 0.112 LIR-4 (3) 9:45 185,039 120 8.20 0.1886 0.36 8.14 85 72 0.35 0.16 44.67 0.1920 0.410 0.2267 0.05033 0.02785 35,674 19,739 0.193 0.107 LIR-15 (1) 7/29/15 10:35 239,677 120 7.97 0.1886 0.31 7.04 100 54 0.56 0.26 46.80 0.2990 1.041 0.5537 0.14793 0.07870 101,818 54,170 0.425 0.226 LIR-15 (2) 10:47 239,677 90 7.97 0.1886 0.39 6.62 97 56 0.92 0.45 49.29 0.4670 1.595 0.8089 0.24093 0.12217 165,826 84,083 0.692 0.351 LIR-15 (3) 10:55 239,677 60 7.97 0.1886 0.41 4.69 100 56 0.37 0.18 49.19 0.1880 0.661 0.3357 0.14087 0.07158 96,958 49,265 0.405 0.206 * part of sample lost during processing; not used in analyses Laboratory Analysis Total Sample

Time Total Ash- Ash- of Flow Net Water Volume Sample Vol. Dry Ash Free Dry Free Dry Organic Dry Organic Dry Organic Start Upstream Tow Rate Area Velocity Filtered Volume Dried Wt. Wt. % Dry Wt. Wt. Dry Matter Matter Matter Matter Matter Matter Station Date Time Area (m2) (s) (m3/s) (m2) (m/s) (m3) (mL) (mL) (g) (g) Ash (g) (g) Wt. (g) (g/m3) (g/m3) (g/d) (g/d) (g/m2/d) (g/m2/d) LIR-4 (1) 1/13/16 11:53 185,039 240 7.84 0.1886 0.29 13.10 95 61 1.31 0.64 49.05 0.6670 2.039 1.0388 0.15556 0.07927 105,363 53,688 0.569 0.290 LIR-4 (2) 12:07 185,039 180 7.84 0.1886 0.31 10.55 97 60 0.88 0.41 47.31 0.4610 1.415 0.7453 0.13405 0.07062 90,792 47,834 0.491 0.259 LIR-4 (3) 12:18 185,039 180 7.84 0.1886 0.29 9.83 95 63 0.79 0.36 45.95 0.4270 1.191 0.6439 0.12120 0.06551 82,093 44,372 0.444 0.240 LIR-15 (1) 1/13/16 13:00 239,677 180 7.93 0.1886 0.29 9.73 77 65 0.19 0.06 32.45 0.1270 0.223 0.1504 0.02290 0.01547 15,688 10,597 0.065 0.044 LIR-15 (2) 13:10 239,677 180 7.93 0.1886 0.29 9.73 88 62 0.11 0.05 42.73 0.0630 0.156 0.0894 0.01605 0.00919 10,998 6,299 0.046 0.026 LIR-15 (3) 13:18 239,677 240 7.93 0.1886 0.29 12.97 75 64 0.21 0.09 42.18 0.1220 0.247 0.1430 0.01907 0.01103 13,063 7,553 0.055 0.032 LIR-4 (1) 1/21/16 11:50 185,039 180 7.90 0.1886 0.26 8.90 93 61 0.94 0.41 43.64 0.5320 1.439 0.8111 0.16175 0.09116 110,460 62,251 0.597 0.336 LIR-4 (2) 12:03 185,039 180 7.90 0.1886 0.31 10.45 95 62 1.22 0.52 42.45 0.7010 1.866 1.0741 0.17860 0.10279 121,966 70,195 0.659 0.379 LIR-4 (3) 12:16 185,039 180 7.90 0.1886 0.28 9.41 100 64 1.49 0.67 44.74 0.8250 2.333 1.2891 0.24778 0.13692 169,207 93,500 0.914 0.505 LIR-15 (1) 1/21/16 14:48 239,677 300 7.87 0.1886 0.20 11.04 99 55 0.12 0.04 37.93 0.0720 0.209 0.1296 0.01892 0.01174 12,857 7,980 0.054 0.033 LIR-15 (2) 14:58 239,677 300 7.87 0.1886 0.20 11.04 65 58 0.10 0.05 46.08 0.0550 0.114 0.0616 0.01036 0.00559 7,039 3,795 0.029 0.016 LIR-15 (3)* 15:07 239,677 300 7.87 0.1886 0.20 11.04 60 60 0.17 0.07 42.86 0.0960 0.168 0.0960 0.01522 0.00870 10,345 5,911 0.043 0.025 * questionable data (ash sample), sample flagged; not used in analyses

128

Lower Ichetucknee Baseline Assessment

Appendix N Ichetucknee Springs 2016 Report Cardl

129

Lower Ichetucknee Baseline Assessment ICHETUCKNEE SPRINGS AND RIVER

600 Stats Discharge (cfs) Average 349 Minimum 195 500 Maximum 509 Std Dev 64.8 N 84 POR 1929 - 2016 400 POR Average

300

200 Discharge Discharge (cfs)

Annual Average 100 Period of Record Average 50 5 Yr Moving Average ICHETUCKNEE RIVER @ US 27 0 75 1925 1935 1945 1955 1965 1975 1985 1995 2005 2015 2025 90 95 Year 100

Average Grade A: > 407 cfs Spring (2012-2016) B: 357 - 406 cfs A Discharge C: 329 - 356 cfs B D: 300 - 328 cfs C @ US 27 306 cfs D D F: < 299 cfs F

130

Lower Ichetucknee Baseline Assessment ICHETUCKNEE SPRINGS AND RIVER

Comparison Springs - Historic Data 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

0.0 Percent Percent Transmittance (@meter) 1

A: > 70 % Grade Average (2016) 60 Water Clarity @ B: 60 - 69 % 70 C: 50 - 59 % 50 Lower 61% 40 Ichetucknee B- Light Transmittance D: 40 - 49 % @ 1 meter depth F: < 40 %

131

Lower Ichetucknee Baseline Assessment ICHETUCKNEE SPRINGS AND RIVER

8.0 Percentile NOx-N (mg/L) 7.0 0 0.004 6.0 5 0.015 10 0.090

5.0 25 0.220 N (mg/L) N

- 50 0.526 4.0 75 1.24 3.0 90 2.34 Blue Hole Spring 95 2.87 2.0 100 7.60 Ich Head Spring

Average Average NOx 1.0

0.0 50 Florida Springs 75 90 1.0 95 100 0.9 Ichetucknee Head Spring - Long Term Trend 0.8 0.7 0.6

0.5 N (mg/L) N - 0.4

NOx 0.3 Ich Head Spring 0.2 Blue Hole 0.1 0.0 Jan-66 Jun-71 Dec-76 Jun-82 Nov-87 May-93 Nov-98 May-04 Oct-09 Apr-15

A: < 0.15 mg/L 0.15 Grade Average (2016) 0.35 Nitrate B: 0.15 - 0.35 mg/L 0.6 Concentration C: 0.36 - 0.60 mg/L 0.9 @ Spring Boil 0.79 mg/L D: 0.61 - 0.90 mg/L D F: > 0.90 mg/L

132

Lower Ichetucknee Baseline Assessment ICHETUCKNEE SPRINGS AND RIVER

10,000

1,000

100

10 FishBiomass (kg/ha)

1 Twin Spring Gum Slough Ginnie Spring Lower Ichetucknee Dogwood Spring

Grade Average (2016) A: > 300 Fish Biomass B: 200 - 299 @ Lower 30 C: 100 - 199 Ichetucknee F D: 50 - 99 Biomass kg/ha F: < 50

133

Lower Ichetucknee Baseline Assessment ICHETUCKNEE SPRINGS AND RIVER

FDEP transect data 80 ICHETUCKNEE RIVER

70

60

50

40

30

20

10

0 1991 Average Average SAV Percent Cover Diversity / 1992 1993 Year 1994 1995 SAG VAL MYR CHA LUD HYD HYM ZIZ RHY OTH Diversity 1996 1997 1998 1999 Grade Average (2015) A: > 60 % 2000 Submerged B: 50 - 60 % 2001 2002 Aquatic C: 40 - 49 % 2003 D: 30 - 39 % 2004 Vegetation * B 53.7 % 2005 F: < 30 % 2006

SAG = Sagittaria kurziana CHA = Chara (prob.)zeylonica HYM = Hymenocallis rotata OTH = Others * 0.5(Percent Cover) + 0.5(Diversity) VAL = Valisineria americana LUD = Ludwigia repens ZIZ = Zizania aquatica MYR = Myriophyllum heterophyllum HYD = Hydrocotyle (prob.) verticillata RHY = Rhynchospora sp. or Carex sp.

134

Lower Ichetucknee Baseline Assessment ICHETUCKNEE SPRINGS AND RIVER

14 Percentile Efficiency (%) 12 0 0.15 5 0.55 10 0.72 10 25 2.07 50 3.19 75 5.31 8 90 7.63 95 8.81 100 12.13 6

4 Photosynthetic Photosynthetic Efficiency (%) 100 2

0

HS (2008) HS (2009) SR (2009) RS (2011) SR (2005) SR (1980) SR (2013) SR (1955) SR

GS (2010) GS (2011) GS (2011) GS (2011) GS

MS (2009) MS

LIR (2016) LIR (2015) LIR

JBS (2009) JBS

IS-2 (2009) IS-2 (2009) IS-1 (2009) IS-3 (2008) IS-3 (2013) IS-2 (2012) IS-3 (2012) IS-2 (2013) IS-2

PDL (2009) PDL

RSR (2016) RSR (2009) SGS (2015) RSR

MBS (2009) MBS

HS-1 (2008) HS-1 (2008) HS-2 (2009) RS-1 (2009) SR-2 (2009) RS-2 (2009) SR-1 (2009) WAK (2011) SR-2 (2011) SR-1

MS-1 (2009) MS-1 (2005) RS-P (2009) MS-2

WR-1 (2005) WR-1 (2005) WR-2 (2009) WWS

WS-P (2005) WS-P

JBS-2 (2009) JBS-2 (2009) JBS-1

PDL-2 (2009) PDL-2 (2009) PDL-1 (2008) VDL-1 (2005) JCR-2

Ginnie (2013) Ginnie (2012) Ginnie (2007) VBS-1 (2007) VBS-2 (2013) Ginnie

RSR-1 (2005) RSR-1 (2005) RSR-2

GS-E2 (2010) GS-E2 (2010) GS-E1

GS-Up (2011) GS-Up (2011) GS-Up (2010) GS-Up (2011) GS-Up (2010) GS-Dn (2010) GS-C2 (2010) GS-C1 (2011) GS-Dn (2011) GS-Dn (2011) GS-Dn

WAK-1 (2009) WAK-1 (2009) WAK-2

WWS-1 (2009) WWS-1 (2009) WWS-2

SR-SS6 (2011) SR-SS6 (2011) SR-SS7 (2011) SR-SS5 (2011) SR-SS4

ASCR-2 (2005) ASCR-2

SR-SS45 (2011) SR-SS45 (2011) SR-SS57 Dogwood (2012) Dogwood

Photosynthetic Grade Average (2015-2016) A: > 7.0 Efficiency @ B: 5.0 - 6.99 C: 3.0 - 4.99 Lower 3.93 % D: 1.0 - 2.99 WR-2 (2005) C IS-3 (2009) Ichetucknee F: <1.0 GS-Dn (2011) ASCR-2 (2005) 135