An Analysis of Sentence Segmentation Features For

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of Sentence Segmentation Features For An Analysis of Sentence Segmentation Features for Broadcast News, Broadcast Conversations, and Meetings 12 1 Sebastien Cuendet1 Elizabeth Shriberg Benoit Favre [email protected] [email protected] [email protected] 1 James Fung1 Dilek Hakkani-Tur [email protected] [email protected] 2 1 ICSI SRI International 1947 Center Street 333 Ravenswood Ave Berkeley, CA 94704, USA Menlo Park, CA 94025, USA t sp eaking stylesbroadcast news BN broadcast ABSTRACT dieren conversations BC and facetoface multiparty meetings Information retrieval techniques for sp eech are based on MRDA We fo cus on the task of automatic sentence seg those develop ed for text and thus exp ect structured data as mentation or nding b oundaries of sentence units in the An essential task is to add sentence b oundary infor input otherwise unannotated devoid of punctuation capitaliza mation to the otherwise unannotated stream of words out tion or formatting stream of words output by a sp eech systems We analyze put by automatic sp eech recognition recognizer sentence segmentation p erformance as a function of feature Sentence segmentation is of particular imp ortance for sp eech ual versus automatic for news typ es and transcription man understanding applications b ecause techniques aimed at se sp eech meetings and a new corpus of broadcast conversa mantic pro cessing of sp eech inputsuch as machine trans tions Results show that overall features for broadcast lation question answering information extractionare typ news transfer well to meetings and broadcast conversations ically develop ed for textbased applications They thus as pitch and energy features p erform similarly across cor sume the presence of overt sentence b oundaries in their in p ora whereas other features duration pause turnbased put In addition many sp eech pro cessing tasks and lexical show dierences the eect of sp eech recogni show improved p erformance when sentence b oundaries are tion errors is remarkably stable over features typ es and cor provided F or instance sp eech summarization p erformance p ora with the exception of lexical features for meetings and improves when sentence b oundary information is provided broadcast conversations a new typ e of data for sp eech as observed in Similarly named entity extraction and technology b ehave more like news sp eech than like meetings partofsp eech tagging in sp eech is improved using sentence for this task Implications for mo deling of dierent sp eaking b oundary cues in and the use of sentence b oundaries for styles in sp eech segmentation are discussed machine translation is shown to b e b enecial for machine in Sentence b oundary annotation is also General Terms translation imp ortant for aiding human readability of the output of au Proso dic Mo deling Sentence Segmentation tomatic sp eech recognition systems and could b e used for determining semantically and proso dically coherent b ound for playback of sp eech to users in tasks involving audio Keywords aries search Sp oken Language Pro cessing Sentence Segmentation Broad While sentence segmentation of broadcast news and to cast Conversations Sp ontaneous Sp eech Proso dy Word Bound some extent of meetings has b een studied in previous work ary Classication Bo osting little is known ab out broadcast conversations Indeed data for this task has only recently b ecome available for work sp eech technology Studying the prop erties of broadcast 1. INTRODUCTION in conversations and comparing them with those of meetings We investigate the role of identicallydened lexical and and broadcast news is of interest b oth theoretically and also proso dic features when applied to the same task across three practically esp ecially b ecause there is currently less data available for broadcast conversations than for the other two typ es studied here For example if two sp eaking styles share haracteristics one can p erform adaptation from one to an Permission to make digital or hard copies of all or part of this work for c to improve the p erformance of the sentence segmen personal or classroom use is granted without fee provided that copies are other as proved previously for meetings by using conversa not made or distributed for profit or commercial advantage and that copies tation telephone sp eech bear this notice and the full citation on the first page. To copy otherwise, to tional goal of this study is to analyze how dierent sets of republish, to post on servers or to redistribute to lists, requires prior specific The including lexical features proso dic features and permission and/or a fee. features Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...5.00. MRDA TDT BC their combination p erform on the task of automatic sen Training set size tence segmentation for dierent sp eaking styles More sp ecif Test set size ically we ask the following questions Heldout set size Vo cabulary size Ho w do dierent feature typ es p erform for the dierent Mean sentence length sp eaking styles Table Data set statistics Values are given in What is the eect of sp eech recognition errors on p er num b er of words based on the output of the sp eech formance and how do es this eect dep end on the fea recognizer STT ture typ es or on the sp eaking style For this task are broadcast conversations more like broadcasts or more like conversations general tend to contain syntactically simpler sentences and signicant pronominalization News sp eech is typically read Results have implications not only for the task of sentence from a transcript and more closely resembles written text b oundary detection but more generally for proso dic mo del It contains for example app ositions center emb eddings and ing for natural language understanding across genres prop er noun comp ounds among other characteristics that The next section describ es the data set features and ap contribute to longer sentences Discourse phenomena also proach to sentence segmentation Section rep orts on ex obviously dier across corp ora with meetings containing p eriments with proso dic and lexical features and provides more turn exchanges incomplete sentences and higher rates further analysis and a discussion of usage of various feature of short backchannels such as y eah and uhhuh than typ es or groups and comparison across sp eaking styles A sp eech in news broadcasts and in the broadcast conversa summary and conclusions are provided in Section tions Sentence b oundary lo cations are based on reference tran for all three corp ora Sentences b oundaries are 2. METHOD scriptions annotated in BN transcripts directly For the meeting data are obtained by mapping dialog act b oundaries 2.1 Data and annotations b oundaries to sentence b oundaries The meetings data are lab eled ac To study the dierences b etween the meetings BN and cording to classes of dialog acts backchannels o orgrabb ers BC sp eech for the task of sentence segmentation we use the and o orholders questions statements and incompletes ICSI Meetings MRDA the TDT English Broadcast In order to b e able to compare the three corp ora all dia YQ Broadcast Conversations News and the GALE log act classes are mapp ed to the sentence b oundary class corp ora The BC Corpus frequently lacked sentence b oundary anno The ICSI Meeting Corpus is a collection of meetings tations but included line breaks and capitalization as well including simultaneous multichannel audio recordings word as dialog act tag annotations In order to use this data level orthographic transcriptions The meetings range in we implemented heuristic rules based on human analysis to length from to minutes but generally run just under pro duce punctuation annotations For BC data we similarly an hour each summing to hours We use a meeting mapp ed the typ es of dialog acts dened statements ques subset of this corpus that was also used in the previous re tions backchannels and incompletes to sentence b ound search with the same split into training heldout and aries Note that we have chosen to map incomplete sentence test sets TDT Corpus was collected by LDC and includes b oundaries to the b oundary class even though they are not multilingual raw material news wires and other electronic full b oundaries This is b ecause the rate of incompletes text web audio broadcast radio and television We use while not negligible was to o low to allow for adequate train a subset of TDT English broadcast radio and television ing of a third class in the BC data given the size of the cur data in this study The GALE YQ Broadcast Conversa rently available data We thus chose to group it with the tions Corpus also collected by LDC is a set of instudio b oundary class even though incompletes also share some talk shows with two or more participants including formal characteristics with nonb oundaries Namely material to oneonone interviews and debates with more participants the left of an incomplete resembles nonb oundaries whereas Three shows last for half an hour and the rest of the shows material to the right resembles b oundaries run an hour each for a total of ab out hours In the exp eriments to follow classication mo dels are on a set of data tuned on a heldout set and tested trained 2.2 Automatic speech recognition on an unseen test set within each genre The corp ora are Automatic sp eech recognition results for the ICSI Meet available with the words transcrib ed by humans reference ings data the TDT data and the BC data were obtained and with the words output by the sp eech recognizer STT using the stateoftheart SRI
Recommended publications
  • A Bayesian Framework for Word Segmentation: Exploring the Effects of Context
    Cognition 112 (2009) 21–54 Contents lists available at ScienceDirect Cognition journal homepage: www.elsevier.com/locate/COGNIT A Bayesian framework for word segmentation: Exploring the effects of context Sharon Goldwater a,*, Thomas L. Griffiths b, Mark Johnson c a School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, UK b Department of Psychology, University of California, Berkeley, CA, United States c Department of Cognitive and Linguistic Sciences, Brown University, United States article info abstract Article history: Since the experiments of Saffran et al. [Saffran, J., Aslin, R., & Newport, E. (1996). Statistical Received 30 May 2008 learning in 8-month-old infants. Science, 274, 1926–1928], there has been a great deal of Revised 11 March 2009 interest in the question of how statistical regularities in the speech stream might be used Accepted 13 March 2009 by infants to begin to identify individual words. In this work, we use computational mod- eling to explore the effects of different assumptions the learner might make regarding the nature of words – in particular, how these assumptions affect the kinds of words that are Keywords: segmented from a corpus of transcribed child-directed speech. We develop several models Computational modeling within a Bayesian ideal observer framework, and use them to examine the consequences of Bayesian Language acquisition assuming either that words are independent units, or units that help to predict other units. Word segmentation We show through empirical and theoretical results that the assumption of independence causes the learner to undersegment the corpus, with many two- and three-word sequences (e.g.
    [Show full text]
  • The Induction of Phonotactics for Speech Segmentation
    The Induction of Phonotactics for Speech Segmentation Converging evidence from computational and human learners Published by LOT phone: +31 30 253 6006 Trans 10 fax: +31 30 253 6406 3512 JK Utrecht e-mail: [email protected] The Netherlands http://www.lotschool.nl Cover illustration: Elbertus Majoor, Landschap-fantasie II (detail), 1958, gouache. ISBN: 978-94-6093-049-2 NUR 616 Copyright c 2011: Frans Adriaans. All rights reserved. The Induction of Phonotactics for Speech Segmentation Converging evidence from computational and human learners Het Induceren van Fonotactiek voor Spraaksegmentatie Convergerende evidentie uit computationele en menselijke leerders (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 25 februari 2011 des middags te 2.30 uur door Frans Willem Adriaans geboren op 14 maart 1981 te Ooststellingwerf Promotor: Prof. dr. R.W.J. Kager To my parents, Ank & Piet CONTENTS acknowledgements xi 1 introduction 1 1.1 The speech segmentation problem ................. 1 1.2 Segmentation cues and their acquisition .............. 3 1.2.1 Theroleofsegmentationcuesinspokenwordrecognition 4 1.2.2 The acquisition of segmentation cues by infants ..... 7 1.3 The induction of phonotactics for speech segmentation ..... 11 1.3.1 Bottom-up versus top-down ................ 11 1.3.2 Computational modeling of phonotactic learning .... 12 1.3.3 Two hypotheses regarding the acquisition of phonotac- tics by infants ......................... 16 1.4 Learning mechanisms in early language acquisition ....... 17 1.4.1 Statistical learning .....................
    [Show full text]
  • Automatic Speech Segmentation
    Alaa Ehab Sakran et al, International Journal of Computer Science and Mobile Computing, Vol.6 Issue.4, April- 2017, pg. 308-315 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IMPACT FACTOR: 6.017 IJCSMC, Vol. 6, Issue. 4, April 2017, pg.308 – 315 A Review: Automatic Speech Segmentation Alaa Ehab Sakran 1, Sherif Mahdy Abdou 23, Salah Eldeen Hamid 4, Mohsen Rashwan 25 1 PhD. Program in Computer Science, Sudan University of Science and Technology, Khartoum, Sudan 2 Research & Development International (RDI®), Giza, Egypt 3 Department of IT, Faculty of Computers and Information, Cairo University, Giza, Egypt 4 Department of Engineering and Applied Sciences, Umm Al-Qura University, Mecca, Saudi Arabia 5 Department of Electronics and Communication Engineering, Cairo University, Giza, Egypt [email protected], [email protected], {sabdou, mrashwan} @rdi-eg.com I. INTRODUCTION Automated segmentation of speech signals has been under research for over 30 years. Many speech processing systems require segmentation of Speech waveform into principal acoustic units. Segmentation is a process of breaking down a speech signal into smaller units. Segmentation is the very primary step in any voiced activated systems like speech recognition systems and training of speech synthesis systems. Speech segmentation is performed utilizing Wavelet, Fuzzy methods, Artificial Neural Networks and Hidden Markov Model. [1] [2] In this research a review of basics of speech segmentation problem and state-of-the art solutions will be investigated. In next section main characteristics of speech signal will be discussed.
    [Show full text]
  • A Semi-Markov Model for Speech Segmentation with an Utterance-Break Prior
    A semi-Markov model for speech segmentation with an utterance-break prior Mark Sinclair1, Peter Bell1, Alexandra Birch2, Fergus McInnes1 1Centre for Speech Technology Research, 2Statistical Machine Translation Group School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK fmark.sinclair, a.birch, peter.bell, [email protected] Abstract Previous work on detecting segmentation of sentence like Speech segmentation is the problem of finding the end points of units has looked at using features such as prosody [10], lan- a speech utterance for passing to an automatic speech recogni- guage model scores [11] [12], translation model scores [13] and tion (ASR) system. The quality of this segmentation can have syntactic constituents [14]. [15] presents a review of some of a large impact on the accuracy of the ASR system; in this pa- this work and also motivates tuning the segmentation of speech per we demonstrate that it can have an even larger impact on to the task at hand as we do in this paper. Our approach of mod- downstream natural language processing tasks – in this case, elling global sentence length distribution is orthogonal to much machine translation. We develop a novel semi-Markov model of this previous work, and combining these information sources which allows the segmentation of audio streams into speech ut- would be beneficial. There has been some previous work which terances which are optimised for the desired distribution of sen- attempts to exploit some of these cues [16]. However, in the tence lengths for the target domain. We compare this with exist- present paper, we have limited our focus to the use of statis- ing state-of-the-art methods and show that it is able to achieve tics of utterance durations and present a novel way of exploit- not only improved ASR performance, but also to yield signifi- ing this to select a globally optimal sequence from acoustically cant benefits to a speech translation task.
    [Show full text]
  • Seminar, Tue 4:15Pm
    On an exceptionally hot evening early in July a young man came out of the garret in which he lodged in S. Place and walked slowly, as though in hesitation, towards K. bridge. He had successfully avoided meeting his landlady on the staircase. His garret was under the roof of a high, five-storied house and was more like a cupboard than a room. The landlady who provided him with garret, dinners, and attendance, lived on the floor below, and every time he went out he was obliged to pass her kitchen, the door of which invariably stood open. And each time he passed, the young man had a sick, frightened feeling, which made him scowl and feel ashamed. He was hopelessly in debt to his landlady, and was afraid of meeting her. This was not because he was cowardly and abject, quite the contrary; but for some time past he had been in an overstrained irritable condition, verging on hypochondria. He had become so completely absorbed in himself, and isolated from his fellows that he dreaded meeting, not only his landlady, but anyone at all. He was crushed by poverty, but the anxieties of his position had ofNatural late ceased to weigh upon him.language He had given up attending to matters of practical importance; he had lost all desire to do so. Nothing that any landlady could do had a real terror for him. But to be stopped on the stairs, to be forced to listen to her trivial, irrelevant gossip, to pestering demands for payment, threats and complaints, and to rack his brains for excuses, to prevaricate, to lie—no, rather than that, he would creep down the stairs like a cat andprocessing slip out unseen.
    [Show full text]
  • The Polysemy of the Words That Children Learn Over Time Arxiv
    The Polysemy of the Words that Children Learn over Time Bernardino Casas [email protected] 1 Neus Català [email protected] 2 Ramon Ferrer-i-Cancho [email protected] 1 Antoni Hernández-Fernández [email protected] 1,3 Jaume Baixeries [email protected] 1 1. Complexity & Quantitative Linguistics Lab, Departament de Ciències de la Computació, Laboratory for Relational Algorithmics, Complexity and Learning (LARCA), Universitat Politècnica de Catalunya, Barcelona, Catalonia. 2. Complexity & Quantitative Linguistics Lab, Departament de Ciències de la Computació, Center for Language and Speech Technologies and Applications (TALP Research Center), Universitat Politècnica de Catalunya, Barcelona, Catalonia. 3. Institut de Ciències de l0Educació, Universitat Politècnica de Catalunya, Barcelona, Catalonia. arXiv:1611.08807v2 [cs.CL] 26 Mar 2019 1 Abstract Here we study polysemy as a potential learning bias in vocabulary learning in children. Words of low polysemy could be preferred as they reduce the disambiguation effort for the listener. However, such preference could be a side-effect of another bias: the preference of chil- dren for nouns in combination with the lower polysemy of nouns with respect to other part-of-speech categories. Our results show that mean polysemy in children increases over time in two phases, i.e. a fast growth till the 31st month followed by a slower tendency towards adult speech. In contrast, this evolution is not found in adults interacting with children. This suggests that children have a preference for non-polysemous words in their early stages of vocabulary acquisition. Interestingly, the evolutionary pat- tern described above weakens when controlling for syntactic category (noun, verb, adjective or adverb) but it does not disappear completely, suggesting that it could result from a combination of a standalone bias for low polysemy and a preference for nouns.
    [Show full text]
  • AUTOMATIC LINGUISTIC SEGMENTATION of CONVERSATIONAL SPEECH Andreas Stolcke Elizabeth Shriberg
    AUTOMATIC LINGUISTIC SEGMENTATION OF CONVERSATIONAL SPEECH Andreas Stolcke Elizabeth Shriberg Speech Technology and Research Laboratory SRI International, Menlo Park, CA 94025 [email protected] [email protected] ABSTRACT could use the knowledge incorporated in an automatic segmenter to help end-point a user’s speech input. A speech indexing and re- As speech recognition moves toward more unconstrained domains trieval system (such as for transcribed broadcast audio) could pro- such as conversational speech, we encounter a need to be able to cess its data in more meaningful units if the locations of linguistic segment (or resegment) waveforms and recognizer output into lin- segment boundaries were known. guistically meaningful units, such a sentences. Toward this end, we present a simple automatic segmenter of transcripts based on Our main motivation for the work reported here comes from speech N-gram language modeling. We also study the relevance of sev- language modeling. Experiments at the 1995 Johns Hopkins Lan- eral word-level features for segmentation performance. Using only guage Modeling Workshop showed that the quality of a language word-level information, we achieve 85% recall and 70% precision model (LM) can be improved if both training and test data are seg- on linguistic boundary detection. mented linguistically, rather than acoustically [8]. We showed in [10] and [9] that proper modeling of filled pauses requires knowl- 1. INTRODUCTION edge of linguistic segment boundaries. We found for example that Today’s large-vocabulary speech recognizers typically prefer to pro- segment-internal filled pauses condition the following words quite cess a few tens of seconds of speech at a time, to keep the time and differently from segment-initial filled pauses.
    [Show full text]
  • Segmentation and Morphology
    Segmentation and morphology John A. Goldsmith1 Departments of Linguistics and Computer Science, The University of Chicago [email protected] A draft chapter for the Blackwell Computational Linguistics and Natural Lan- guage Processing Handbook, edited by Alex Clark, Chris Fox and Shalom Lappin. This draft formatted on 2nd May 2009. Page: 1 job: goldsmith macro: handbook.cls date/time: 2-May-2009/17:28 Page: 2 job: goldsmith macro: handbook.cls date/time: 2-May-2009/17:28 Contents Segmentation and morphology John A. Goldsmith ............................................... 1 1 Introduction................................................. 4 1.1 Generalremarks......................................... 4 1.2 Morphology............................................. 6 1.3 Staticanddynamicmetaphors ............................ 9 2 Unsupervisedlearningofwords ................................ 11 2.1 Thetwoproblemsofwordsegmentation.................... 11 2.2 Trawlingforchunks...................................... 14 2.3 Word Boundary detectors . 21 2.4 Successesandfailuresinwordsegmentation................. 22 3 Unsupervisedlearningofmorphology............................ 23 3.1 ZelligHarris ............................................ 23 3.2 Usingdescriptionlength.................................. 24 3.3 Workinthefield ........................................ 27 4 Implementingcomputationalmorphologies....................... 29 4.1 Finitestatetransducers................................... 30 4.2 Morphophonology.......................................
    [Show full text]
  • Unsupervised Segmentation of Audio Speech Using the Voting Experts Algorithm Matthew Im Ller Adam Miller Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2009 Unsupervised Segmentation of Audio Speech Using the Voting Experts Algorithm Matthew iM ller Adam Miller Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Computer Sciences Commons Recommended Citation Miller, Matthew Miller Adam, "Unsupervised Segmentation of Audio Speech Using the Voting Experts Algorithm" (2009). Graduate Theses and Dissertations. 10725. https://lib.dr.iastate.edu/etd/10725 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Unsupervised segmentation of audio speech using the Voting Experts algorithm by Matthew Adam Miller A thesis submitted to the graduate faculty in partial ful¯llment of the requirements for the degree of MASTER OF SCIENCE Major: Computer Science Program of Study Committee: Alexander Stoytchev, Major Professor Giora Slutzki Pavan Aduri Iowa State University Ames, Iowa 2009 Copyright °c Matthew Adam Miller, 2009. All rights reserved. ii DEDICATION To Cat. iii TABLE OF CONTENTS LIST OF TABLES . vi LIST OF FIGURES . viii ACKNOWLEDGEMENTS . xi ABSTRACT . xii CHAPTER 1. INTRODUCTION . 1 1.1 Research Questions . 4 CHAPTER 2. REVIEW OF LITERATURE . 6 2.1 Psychology of Speech Segmentation . 7 2.1.1 Statistical Learning . 8 2.1.2 Isolated Words . 10 2.1.3 Allophonic Variation . 11 2.1.4 Metrical Cues .
    [Show full text]
  • The Universal Dependencies Treebank of Spoken Slovenian
    The Universal Dependencies Treebank of Spoken Slovenian Kaja Dobrovoljc1, Joakim Nivre2 1Institute for Applied Slovene Studies Trojina, Ljubljana, Slovenia 1Department of Slovenian Studies, Faculty of Arts, University of Ljubljana 2Department of Linguistics and Philology, Uppsala University [email protected], joakim.nivre@lingfil.uu.se Abstract This paper presents the construction of an open-source dependency treebank of spoken Slovenian, the first syntactically annotated collection of spontaneous speech in Slovenian. The treebank has been manually annotated using the Universal Dependencies annotation scheme, a one-layer syntactic annotation scheme with a high degree of cross-modality, cross-framework and cross-language interoper- ability. In this original application of the scheme to spoken language transcripts, we address a wide spectrum of syntactic particularities in speech, either by extending the scope of application of existing universal labels or by proposing new speech-specific extensions. The initial analysis of the resulting treebank and its comparison with the written Slovenian UD treebank confirms significant syntactic differences between the two language modalities, with spoken data consisting of shorter and more elliptic sentences, less and simpler nominal phrases, and more relations marking disfluencies, interaction, deixis and modality. Keywords: dependency treebank, spontaneous speech, Universal Dependencies 1. Introduction actually out-performs state-of-the-art pipeline approaches (Rasooli and Tetreault, 2013; Honnibal and Johnson, 2014). It is nowadays a well-established fact that data-driven pars- Such heterogeneity of spoken language annotation schemes ing systems used in different speech-processing applica- inevitably leads to a restricted usage of existing spoken tions benefit from learning on annotated spoken data, rather language treebanks in linguistic research and parsing sys- than using models built on written language observation.
    [Show full text]
  • Sentence Boundary Detection Based on Parallel Lexical and Acoustic Models
    INTERSPEECH 2016 September 8–12, 2016, San Francisco, USA Sentence Boundary Detection Based on Parallel Lexical and Acoustic Models Xiaoyin Che, Sheng Luo, Haojin Yang, Christoph Meinel Hasso Plattner Institute, University of Potsdam Prof.-Dr.-Helmert-Str. 2-3, 14482, Potsdam, Germany fxiaoyin.che, sheng.luo, haojin.yang, [email protected] Abstract models on ASR-available TED Talks and run experiments about In this paper we propose a solution that detects sentence bound- our 2-stage joint decision scheme with different combination of ary from speech transcript. First we train a pure lexical model models. In the end comes the conclusion. with deep neural network, which takes word vectors as the only input feature. Then a simple acoustic model is also prepared. 2. Multi-Modal Structure Analysis Because the models work independently, they can be trained with different data. In next step, the posterior probabilities of The structures of multi-modal solutions can be different and both lexical and acoustic models will be involved in a heuristic have been discussed before [12]. Some researchers propose a 2-stage joint decision scheme to classify the sentence boundary single hybrid model, which takes all possible features, no matter positions. This approach ensures that the models can be up- lexical or acoustic, together as the model input [13, 14, 15, 16], dated or switched freely in actual use. Evaluation on TED Talks as shown in Figure 1-a. Some others apply a structure of shows that the proposed lexical model can achieve good results: sequential models, in which the output of model A is fed 75.5% accuracy on error-involved ASR transcripts and 82.4% into model B, as shown in Figure 1-b, where model A ac- on error-free manual references.
    [Show full text]
  • Speech Segmentation and Its Impact on Spoken Document Processing
    SIGNAL PROCESSING MAGAZINE – MANUSCRIPT 1 Speech Segmentation and its Impact on Spoken Document Processing M. Ostendorf, B. Favre, R. Grishman, D. Hakkani-Tur, M. Harper, D. Hillard, J. Hirschberg, H. Ji, J. G. Kahn, Y. Liu, S. Maskey, E. Matusov, H. Ney, A. Rosenberg, E. Shriberg, W. Wang and C. Wooters Abstract Progress in both speech and language processing has spurred efforts to support applications that rely on spoken—rather than written—language input. A key challenge in moving from text-based documents to such “spoken documents” is that spoken language lacks explicit punctuation and formatting, which can be crucial for good performance. This paper describes different levels of speech segmentation, approaches to automatically recovering segment boundary locations, and experimental results demonstrating impact on several language processing tasks. The results also show a need for optimizing segmentation for the end task rather than independently. I. INTRODUCTION Dramatic improvements in automatic speech recognition (ASR) technology make it now possible explore how language processing techniques designed for text can be applied to spoken language. Ever increasing collections of information are available as speech recordings, including news broadcasts, meetings, debates, lectures, hearings, oral histories, and webcasts, among other types of human-directed (vs. computer-directed) communications. Given the vast amount of audio data, and the time involved in human listening, clearly some automatic means for data processing is necessary. ASR can automatically Manuscript received October 2007; revised December 2007. This work was supported by DARPA, contract No. HR0011- 06-C-0023. Distribution is unlimited. The views herein are those of the authors and do not reflect the views of the funding agency.
    [Show full text]