Plant Species Traits Are the Predominant Control on Litter Decomposition Rates Within Biomes Worldwide

Total Page:16

File Type:pdf, Size:1020Kb

Plant Species Traits Are the Predominant Control on Litter Decomposition Rates Within Biomes Worldwide Ecology Letters, (2008) 11: 1065–1071 doi: 10.1111/j.1461-0248.2008.01219.x LETTER Plant species traits are the predominant control on litter decomposition rates within biomes worldwide Abstract William K. Cornwell,1* Johannes Worldwide decomposition rates depend both on climate and the legacy of plant functional H. C. Cornelissen,1 Kathryn traits as litter quality. To quantify the degree to which functional differentiation among Amatangelo,2 Ellen Dorrepaal,1 species affects their litter decomposition rates, we brought together leaf trait and litter mass 3 4 Valerie T. Eviner, Oscar Godoy, loss data for 818 species from 66 decomposition experiments on six continents. We show Sarah E. Hobbie,5 Bart Hoorens,1 6,7 that: (i) the magnitude of species-driven differences is much larger than previously thought Hiroko Kurokawa, Natalia and greater than climate-driven variation; (ii) the decomposability of a speciesÕ litter is Pe´ rez-Harguindeguy,8 Helen M. consistently correlated with that speciesÕ ecological strategy within different ecosystems Quested,9 Louis S. Santiago,10 David A. Wardle,11,12 Ian J. globally, representing a new connection between whole plant carbon strategy and Wright,13 Rien Aerts,1 Steven D. biogeochemical cycling. This connection between plant strategies and decomposability is Allison,14 Peter van Bodegom,1 crucial for both understanding vegetation–soil feedbacks, and for improving forecasts of Victor Brovkin,15 Alex Chatain,16 the global carbon cycle. Terry V. Callaghan,17,18 Sandra Dı´az,7 Eric Garnier,19 Diego E. Keywords Gurvich,8 Elena Kazakou,19 Julia Carbon cycling, decomposition, leaf economic spectrum, leaf traits, meta-analysis. A. Klein,20 Jenny Read,16 Peter B. Reich,21 Nadejda A. Soudzilovskaia,1,22 M. Victoria Vaieretti8 and Mark Westoby13 Ecology Letters (2008) 11: 1065–1071 1Faculty of Earth and Life Sciences, Department of Systems 13Department of Biological Sciences, Macquarie University, Ecology, Institute of Ecological Science, Vrije Universiteit, Sydney, NSW 2109, Australia De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands 14Departments of Ecology and Evolutionary Biology and Earth 2Department of Biological Sciences, Stanford University, System Science, University of California, Irvine, 307 Steinhaus, Stanford, CA 94305, USA Irvine, CA 92697, USA 3Department of Plant Sciences, University of California, Davis, 15Potsdam Institute for Climate Impact Research, Climate CA 95616-8780 USA Systems Research Department, P.O. Box 601203, 14412 Pots- 4Facultad de Ciencias, Departamento de Ecologı´a, Universidad dam, Germany de Alcala´ , Alcala´ de Henares, Madrid, Spain 16School of Biological Science, Monash University, Clayton, Vic. 5Department of Ecology, Evolution and Behavior, University of 3800, Australia Minnesota, 1987 Upper Buford Circle, St Paul, MN 55108, USA 17Royal Swedish Academy of Sciences, Abisko Research Station, 6Landcare Research, PO Box 40, Lincoln 7640, New Zealand S-981-07, Abisko, Sweden 7Graduate School of Environment and Information Sciences, 18Department of Animal and Plant Sciences, Western Bank, Yokohama National University, Hodogaya, Yokohama Sheffield S10 2TN, UK 240-8501, Japan 19CNRS Centre dÕEcologie Fonctionnelle et Evolutive (UMR 8Instituto Multidisciplinario de Biologı´a Vegetal, F.C.E.F.yN., 5175), 1919 route de Mende, 34293 Montpellier Cedex 5, Universidad Nacional de Co´ rdoba – CONICET, CC 495, 5000 France Co´ rdoba, Argentina 20Department of Forest, Rangeland & Watershed Steward- 9Department of Botany, Stockholm University, S 106 91 ship, Colorado State University, Fort Collins, CO 80523-1499, Stockholm, Sweden USA 10Botany & Plant Sciences, University of California, 2150 21Department of Forest Resources, University of Minnesota, Batchelor Hall, Riverside, CA 92521, USA St Paul, MN 55108, USA 11Faculty of Forestry, Department of Forest Vegetation Ecology, 22Faculty of Biology, Department of Geobotany, Moscow State Swedish University of Agricultural Sciences, Umea˚ , Sweden University, Moscow, Russia 12Landcare Research, Post Office Box 69, Lincoln, New Zealand *Correspondence: E-mail: [email protected] Ó 2008 Blackwell Publishing Ltd/CNRS 1066 W. K. Cornwell et al. Letter Litter decomposition in terrestrial ecosystems has a pro- environment, holding climate, soil environment, decom- found effect on global carbon cycles (Prentice et al. 2001; poser community, and incubation period constant within Canadell et al. 2007) through litter carbon respiration as well each study. In total, the database contains 1196 records of as litter accumulated as potential fuel for wildfires (Sitch species-by-site combinations from 66 sites on six continents et al. 2003; Friedlingstein et al. 2006). Forecasts of strong including 818 species from 165 plant families. The sampled climate warming and other global environmental changes diversity largely parallels the mix of diversity among higher for the remainder of this century (IPCC 2007) have put plant taxa: the data set includes 580 eudicot species, 118 feedbacks to climate through changes in litter turnover and monocots, 22 species from the Magnoliid lineage, 39 thereby carbon stocks high on the international research Gymnosperms, 37 Pteridophytes (ferns and fern allies), agenda. The multiple drivers of decomposition include the and 20 Bryophytes. The broad coverage of our data set and effects of environment, at both regional and micro-site meta-analytic methods allowed us to isolate species-specific scales, the substrate quality of litter, and composition of the decomposability within each study, and to search for decomposer community (Cornelissen 1996; Aerts 1997; decomposition relationships with continuous traits, plant Parton et al. 2007). Climate sets broadly similar conditions functional types, and phylogenetic groups that are consistent for long-term litter decomposition within biomes (Berg et al. across studies. 1993; Moore et al. 1999; Raich et al. 2006; Parton et al. 2007). In contrast, interspecific differences in green leaf traits and METHODS the subsequent quality of litter produced following leaf senescence are associated with the diversity of plant Species-specific decomposition records and the traits of resource-acquisition strategies in a given biome (Aerts green leaves and undecomposed leaf litter were collected 1996; Reich et al. 1997; Aerts & Chapin 2000; Grime from published and unpublished sources based on exper- 2001; Diaz et al. 2004; Wright et al. 2004). imental multi-species incubations (see Appendix S1). In Green leaf traits are modulated only modestly by climate most cases, the data were contributed directly by the lead (Wright et al. 2005), and over 40% of global variation for author of the original experiment, allowing the original particular leaf traits can be found within individual sites researcher to classify species functional traits and to include (Wright et al. 2004). The pronounced within-site variation unpublished values for particular traits. In experimental among species can be due to finer-scale environmental studies (e.g. when decomposition included fertilization of heterogeneity in space (e.g. soil fertility and hydrology) and the decomposition environment) only the control groups time (e.g. disturbance) and ⁄ or tradeoffs among other were used. Species decomposition records were collected as physiological traits that produce roughly similar fitness percent mass loss for each successive harvest, and decom- levels among coexisting species with alternate physiological position constants (k) were calculated for each species- strategies (Grime 2006; Marks & Lechowicz 2006; Ackerly experiment combination (Chapin et al. 2002). The number & Cornwell 2007). of harvests (1–10), the length of the decomposition period Many of the physiological and protective features of before each harvest (< 30 days to > 1700 days), the fertility green leaves persist through senescence, in part because the of the decomposition site, and the experimental methods resorption of nutrients by the plant is incomplete, leading to (e.g. position of litterbags during decomposition) varied a strong correlation between green leaf tissue chemistry and from study to study as appropriate for the questions asked the chemical composition of discarded leaf litter (Aerts in the particular study. In this meta-analysis, we sought to 1996; Killingbeck 1996). The carbon and nutrient chemistry analyze repeated within-study patterns. and stoichiometry of the litter, and its physical features, can Species-based variation in decomposition rates were then have a strong effect on the abundance and activity of quantified both as the total range observed within each decomposers leading to different rates of decomposition study and also the range of the middle 90% of species within (Melillo et al. 1982; Taylor et al. 1989). We therefore each study (calculation following type 7 from Hyndman & hypothesized (i) that variation in leaf litter decomposition Fan 1996). Climate-driven variation was calculated using the rates within climate regions worldwide would be a function of same statistical methods from published studies (fig. 1a in the traits of living plant species; and (ii) that this species- Parton et al. 2007 and Berg et al. 1993). Standard meta- driven variation would equal direct climate-driven variation analysis techniques (METAWIN v2.0; Rosenberg et al. 2000) in leaf litter decomposition across biomes. were used to quantify the degree of congruence among We tested these hypotheses by synthesising data from results from studies
Recommended publications
  • Energy Economics in Ecosystems By: J
    Energy Economics in Ecosystems By: J. Michael Beman (School of Natural Sciences, University of California at Merced) © 2010 Nature Education Citation: Beman, J. (2010) Energy Economics in Ecosystems. Nature Education Knowledge 3(10):13 What powers life? In most ecosystems, sunlight is absorbed and converted into usable forms of energy via photosynthesis. These usable forms of energy are carbon­based. The laws of physics describe the interactions between energy and mass: the energy in a closed system is conserved, and matter can neither be created nor destroyed. Modern physics has shown that reality is more 2 complex at very large and very small scales (e.g., Einstein’s famous equation, E = mc demonstrated that mass can be converted to energy in the sun or nuclear reactors), but in the context of Earth’s ecosystems, energy is conserved and matter can neither be created nor destroyed. This seemingly simplistic statement has profound consequences when we study how ecosystems function. In particular, the energy present within an ecosystem is collected and shared by organisms in many different ways; this "sharing" takes place through ecological interactions, such as predator­prey dynamics and symbioses. When we move to the ecosystem level, however, we consider interactions among organisms, populations, communities, and their physical and chemical environment. These interactions have an important bearing on the structure of organisms, ecosystems, and, over geologic time, the planet itself. A primary example of this involves the energy currency in ecosystems, which is carbon. The amount and form of carbon present in different ecosystem pools — such as plants, animals, air, soil, and water — is controlled by organisms, and ultimately affects their ecological success.
    [Show full text]
  • Meta-Ecosystems: a Theoretical Framework for a Spatial Ecosystem Ecology
    Ecology Letters, (2003) 6: 673–679 doi: 10.1046/j.1461-0248.2003.00483.x IDEAS AND PERSPECTIVES Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology Abstract Michel Loreau1*, Nicolas This contribution proposes the meta-ecosystem concept as a natural extension of the Mouquet2,4 and Robert D. Holt3 metapopulation and metacommunity concepts. A meta-ecosystem is defined as a set of 1Laboratoire d’Ecologie, UMR ecosystems connected by spatial flows of energy, materials and organisms across 7625, Ecole Normale Supe´rieure, ecosystem boundaries. This concept provides a powerful theoretical tool to understand 46 rue d’Ulm, F–75230 Paris the emergent properties that arise from spatial coupling of local ecosystems, such as Cedex 05, France global source–sink constraints, diversity–productivity patterns, stabilization of ecosystem 2Department of Biological processes and indirect interactions at landscape or regional scales. The meta-ecosystem Science and School of perspective thereby has the potential to integrate the perspectives of community and Computational Science and Information Technology, Florida landscape ecology, to provide novel fundamental insights into the dynamics and State University, Tallahassee, FL functioning of ecosystems from local to global scales, and to increase our ability to 32306-1100, USA predict the consequences of land-use changes on biodiversity and the provision of 3Department of Zoology, ecosystem services to human societies. University of Florida, 111 Bartram Hall, Gainesville, FL Keywords 32611-8525,
    [Show full text]
  • Biogeography: an Ecosystems Approach (Geography 338)
    WELCOME TO GEOGRAPHY/BOTANY 338: ENVIRONMENTAL BIOGEOGRAPHY Fall 2018 Schedule: Monday & Wednesday 2:30-3:45 pm, Humanities 1641 Credits: 3 Instructor: Professor Ken Keefover-Ring Email: [email protected] Office: Science Hall 115C Office Hours: Tuesday 3:00-4:00 pm & Wednesday 12:00-1:00 pm or by appointment Note: This course fulfills the Biological Science breadth requirement. COURSE DESCRIPTION: This course takes an ecosystems approach to understand how physical -- climate, geologic history, soils -- and biological -- physiology, evolution, extinction, dispersal, competition, predation -- factors interact to affect the past, present and future distribution of terrestrial biomes and all levels of biodiversity: ecosystems, species and genes. A particular focus will be placed on the role of disturbance and to recent human-driven climatic and land-cover changes and biological invasions on differences in historical and current distributions of global biodiversity. COURSE GOALS: • To learn patterns and mechanisms of local to global gene, species, ecosystem and biome distributions • To learn how past, current and future environmental change affect biogeography • To learn how humans affect geographic patterns of biodiversity • To learn how to apply concepts from biogeography to current environmental problems • To learn how to read and interpret the primary literature, that is, scientific articles in peer- reviewed journals. COURSE POLICY: I expect you to attend all lectures and come prepared to participate in discussion. I will take attendance. Please let me know if you need to miss three or more lectures. Please respect your fellow students, professor, and guest speakers and turn off the ringers on your cell phones and refrain from texting during class time.
    [Show full text]
  • A General Model of Litter Decomposition in the Northern Chihuahuan Desert
    Ecological Modelling, 56 (1991) 197-219 197 Elsevier Science Publishers B.V., Amsterdam A general model of litter decomposition in the northern Chihuahuan Desert Daryl L. Moorhead Ecology Program, Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA James F. Reynolds Systems Ecology Research Group, College of Sciences, San Diego State University, San Diego, CA 92182-0401, USA (Accepted 13 November 1990) ABSTRACT Moorhead, D.L. and Reynolds, J.F., 1991. A general model of litter decomposition in the northern Chihuahuan Desert. Ecol. Modelling, 56: 197-219. Numerous empirical studies have described the pathways of mass, C and N flows during decomposition, but there remains a paucity of data on underlying mechanisms in arid ecosystems. In the northern Chihuahuan Desert, termites remove large quantities of litter and act as carbon and nitrogen sinks, contributing to low soil fertility. In their absence, decomposition at the soil surface is primarily driven by abiotic weathering, but studies suggest buried litter decay occurs through microbiological activities. We develop a general, synthetic model to examine the interactions between buried litter, decomposer microorgan- isms, and C and N pools in this ecosystem. Our goal is to explore the mechanisms underlying observed patterns of decomposition in arid systems using a modeling approach that balances simplicity with enough detail to suggest the reasons for system behavior. To this end, we utilize elements of existing models, interfacing microbial physiology and population dynamics with empirical observations of C and N pool dynamics, litter mass loss and changing C:N ratios. Good agreement was achieved between simulated and observed patterns of mass loss and nitrogen concentrations once a time lag describing the microbial colonization of litter was included.
    [Show full text]
  • AP Bio Summer Assignment 2018 Mrs. Oswald Welcome to AP Biology! I Look Forward to a Great Year. Due to the Large Volume Of
    AP Bio Summer Assignment 2018 Mrs. Oswald Welcome to AP Biology! I look forward to a great year. Due to the large volume of content we have to cover, your summer assignment will be to read the Ecology Unit--Chapters 52-56 in Campbell Biology, 11th Edition --and complete the following. Support each of the following main ideas in 4-6 sentences . Use many of the provided chapter terms in your answer, but do not feel that you need to use them all. Please highlight the terms that you choose to use in your responses. Your answers should be typed in Google docs using Times New Roman, 12-pt font, double- spaced, and will be Google-checked for original wording upon submission. Please share them with me at [email protected] by the first day of school. You should have approximately 8-10 pages of typed summary by the end of the summer. Please see the example and video references at the end of this document. We will start the school year with a short ecology review followed by an ecology assessment before beginning a new unit. Chapter 52: An Introduction to Ecology and the Biosphere ● Main Ideas ○ Earth’s climate varies by latitude and season and is changing rapidly. ○ The structure and distribution of terrestrial biomes are controlled by climate and disturbance. ○ Aquatic biomes are diverse and dynamic systems that cover most of Earth. ○ Interactions between organisms and the environment limit the distribution of species. ● Chapter Terms o climate, microclimate, macroclimate, tropics, abiotic, biotic, biome, climograph, ecotone, canopy,
    [Show full text]
  • Hook Line and Thinker Instructor Guide:DNR.Qxd
    VOCABULARY: Ecosystem, ecology, trophic, Survivor primary producer, consumer, biomass, oligotrophic, limiting factor, mesotrophic, In this chapter, three lesson plans eutrophic, eutrophication, “Rule of 10” or “Ten review the bare necessities of life for Percent Law” fish. STANDARDS: Science: F 8.8, 12.9, 12.10. Fish Food Environmental Education: B 8.1, 8.4, 8.8, 8.10, 12.1, 12.2, 12.3, 12.4, 12.6. OBJECTIVES: Students will be able to: BACKGROUND: Ecosystems are intricate • describe the dynamics of a simple food chain communities of interdependent plants and with three trophic levels animals. Abiotic (non-living) elements provide • explain that energy is lost as it travels up a support to the biotic (living) elements and food chain include things like water, rocks, climate, and oxygen. Disturbance or limits to any part of an • identify three classes of lakes, their relative ecosystem creates ripple effects on other parts. nutrient abundance, and their ability to support life The interconnectivity of ecosystems is often demonstrated by using food chains. In a food METHOD: Students will complete a set of math chain, the organisms at each trophic level problems in You do the Math in their booklets depend on an abundance of organisms at the to show how energy is lost in a food chain. trophic level beneath them. The population of a Students will play a population dynamics game particular organism, however, is not determined and answer questions about their results. solely by an abundance of food. The rates at which an organism grows, feeds, and reproduces MATERIALS: are also important in understanding populations.
    [Show full text]
  • The Ecosystem Concept
    The Ecosystem Concept • Objectives – Ecological Hierarchy – Ecosystem Concept – Ecosystem Goods & Services – First: take-home points, things you learned, etc. from reading assignment 1 The Ecosystem Concept • Ecology 2 The Ecosystem Concept • Ecological Hierarchy Communities Landscapes Biosphere Ecosystems Organisms (Individuals) Populations 3 The Ecosystem Concept • Ecological Hierarchy Landscapes (Individuals) 4 The Ecosystem Concept • Individual (Organismal) Ecology Acacia koa individual • Organismal Ecology: Study of the life history of an individual (i.e., species) & its response to its environment • Species: all individuals that can potentially breed with one another and produce viable offspring 5 The Ecosystem Concept • Population Ecology Acacia koa population • Population ecology: Study of the abundance, distribution, & dynamics of a group of individuals of the same species • Population: group of potentially interbreeding & interacting individuals of the same species living in the same place & time 6 The Ecosystem Concept • Community Ecology Acacia koa- ”dominated” community • Community ecology: Description & quantification of natural assemblages of different species/populations • Community: Collection of organisms/populations interacting directly and indirectly in the same place & time 7 The Ecosystem Concept • Ecosystem Ecology Tropical Rainforest Ecosystem • Ecosystem ecology: Study of interactions among organisms and their physical environment as an integrated system • Ecosystem: Bounded ecological system consisting of all
    [Show full text]
  • Using Genetic Tools to Understand the Population Ecology of Stream Fishes James Henry Roberts III Dissertation Submitted To
    Using genetic tools to understand the population ecology of stream fishes James Henry Roberts III Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Fish and Wildlife Conservation Paul L. Angermeier, Co-chairman Eric M. Hallerman, Co-chairman C. Andrew Dolloff J. Paul Grobler Marcella J. Kelly April 27th, 2012 Blacksburg, Virginia Keywords: darter, dispersal, endangered species, genetic diversity, landscape ecology, isolation- by-distance, metapopulation dynamics, persistence, population structure, stream fish Copyright 2012, James Roberts Using genetic tools to understand the population ecology of stream fishes James Henry Roberts III ABSTRACT Stream fishes are highly diverse, yet highly imperiled by human alterations of stream environments. Many species are poorly characterized with regard to the size and structure of populations and patterns of dispersal between populations, which complicates assessment of how human activities, both harmful and beneficial, will affect persistence. I used genetic tools to further this understanding in three case-study fish species of the southeastern United States: Roanoke logperch (Percina rex) of the greater Roanoke River basin and redline (Etheostoma rufilineatum) and greenside darters (E. blennioides) of the upper Tennessee River basin. I found that endangered P. rex persists in seven isolated populations. Within populations, individuals exhibit extensive dispersal and gene flow, which maintains connectivity throughout entire watersheds. Most populations exhibit small contemporary effective population sizes and occupy few stream channels, and thereby face an elevated risk of extinction. Genetic estimates of divergence indicate that fragmentation was recent, coincident with the construction of major dams throughout the species’ range.
    [Show full text]
  • The Scope of Ecology
    1372 Chapter 44 | Ecology and the Biosphere 44.1 | The Scope of Ecology By the end of this section, you will be able to do the following: • Define ecology and the four basic levels of ecological research • Describe examples of the ways in which ecology requires the integration of different scientific disciplines • Distinguish between abiotic and biotic components of the environment • Recognize the relationship between abiotic and biotic components of the environment Ecology is the study of the interactions of living organisms with their environment. One core goal of ecology is to understand the distribution and abundance of living things in the physical environment. Attainment of this goal requires the integration of scientific disciplines inside and outside of biology, such as mathematics, statistics, biochemistry, molecular biology, physiology, evolution, biodiversity, geology, and climatology. Climate change can alter where organisms live, which can sometimes directly affect human health. Watch the PBS video “Feeling the Effects of Climate Change” (http://openstaxcollege.org/l/climate_health) in which researchers discover a pathogenic organism living far outside of its normal range. Levels of Ecological Study When a discipline such as biology is studied, it is often helpful to subdivide it into smaller, related areas. For instance, cell biologists interested in cell signaling need to understand the chemistry of the signal molecules (which are usually proteins) as well as the result of cell signaling. Ecologists interested in the factors
    [Show full text]
  • Managing Biotic Interactions for Ecological Intensification of Agroecosystems. Sabrina Gaba, François Bretagnolle, Thierry Rigaud, Laurent Philippot
    Managing biotic interactions for ecological intensification of agroecosystems. Sabrina Gaba, François Bretagnolle, Thierry Rigaud, Laurent Philippot To cite this version: Sabrina Gaba, François Bretagnolle, Thierry Rigaud, Laurent Philippot. Managing biotic interactions for ecological intensification of agroecosystems.. Frontiers in Ecology and Evolution, Frontiers Media S.A, 2014, 2, pp.29. 10.3389/fevo.2014.00029. hal-01018648 HAL Id: hal-01018648 https://hal.archives-ouvertes.fr/hal-01018648 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW ARTICLE published: 30 June 2014 ECOLOGY AND EVOLUTION doi: 10.3389/fevo.2014.00029 Managing biotic interactions for ecological intensification of agroecosystems Sabrina Gaba 1*, François Bretagnolle 2,3, Thierry Rigaud 2 and Laurent Philippot 1 1 Institut National de la Recherche Agronomique, UMR1347 Agroécologie, Dijon, France 2 Laboratoire Biogéosciences, Equipe Ecologie Evolutive, UMR CNRS 6282, Université de Bourgogne, Dijon, France 3 UMR 5175 Centre d’Écologie Fonctionnelle et Évolutive-CNRS, Montpellier, France Edited by: Agriculture faces the challenge of increasing food production while simultaneously Gary D. Bending, University of reducing the use of inputs and delivering other ecosystem services. Ecological Warwick, UK intensification of agriculture is a paradigm shift, which has recently been proposed to Reviewed by: meet such challenges through the manipulation of biotic interactions.
    [Show full text]
  • ISSUES : DATA SET Investigating Leaf Litter Decomposition and Invertebrate Communities in Streams
    - 1 - TIEE Teaching Issues and Experiments in Ecology - Volume 13, February 2018 ISSUES : DATA SET Investigating Leaf Litter Decomposition and Invertebrate Communities in Streams Alida F. Janmaat University of the Fraser Valley, Abbotsford, British Columbia, Canada; [email protected] Survey flag marking sample site in stream. (Photo by T. Snukuts) THE ECOLOGICAL QUESTION: How do abiotic and biotic factors impact invertebrate species diversity, invertebrate community structure and leaf litter decomposition in streams? ECOLOGICAL CONTENT: Species tolerance curves, diversity indices, litter decomposition rates, invasive species, and freshwater ecology WHAT STUDENTS DO: This dataset exercise has been developed from a classroom-based undergraduate research project on stream ecology that has been conducted in a second-year introductory ecology course. In this exercise, students first collect background information on what factors affect benthic macroinvertebrate communities or leaf litter decomposition in streams. Based on their acquired knowledge, students then develop literature-based hypotheses independently, or as a group. Students then examine the supplied dataset, plot figures and analyze data relating to their TIEE, Volume 13 © 2018 – Alida F. Janmaat and the Ecological Society of America. Teaching Issues and Experiments in Ecology (TIEE) is a project of the Committee on Diversity and Education of the Ecological Society of America (http://tiee.esa.org). - 2 - TIEE Teaching Issues and Experiments in Ecology - Volume 13, February 2018 hypotheses. Students hand-in a scaffolded set of assignments that reflect different portions of a scientific paper. This format allows instructors to provide formative feedback from the students’ initial reading of the literature to their final analyses. Alternatively, instructors may select to have students plot figures of specific relationships to highlight certain ecological concepts that pertain to community or ecosystem ecology.
    [Show full text]
  • Stream Carbon and Nitrogen Supplements During Leaf Litter Decomposition: Contrasting Patterns for Two Foundation Species
    Oecologia DOI 10.1007/s00442-014-3063-y ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species Ada Pastor · Zacchaeus G. Compson · Paul Dijkstra · Joan L. Riera · Eugènia Martí · Francesc Sabater · Bruce A. Hungate · Jane C. Marks Received: 25 February 2014 / Accepted: 21 August 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract Leaf litter decomposition plays a major role opposed to the litter, did not differ between litter types, but in nutrient dynamics in forested streams. The chemical increased throughout decomposition; gross immobilization composition of litter affects its processing by microorgan- of N from the streamwater was higher for P. fremontii com- isms, which obtain nutrients from litter and from the water pared to P. angustifolia, probably as a consequence of the column. The balance of these fluxes is not well known, higher microbial biomass on P. fremontii. In contrast, gross because they occur simultaneously and thus are difficult immobilization of C from the streamwater was higher for P. to quantify separately. Here, we examined C and N flow angustifolia, suggesting that dissolved organic C in stream- from streamwater and leaf litter to microbial biofilms dur- water was used as an additional energy source by microbial ing decomposition. We used isotopically enriched leaves assemblages growing on slow-decomposing litter. These (13C and 15N) from two riparian foundation tree species: results indicate that biofilms on decomposing litter have fast-decomposing Populus fremontii and slow-decompos- specific element requirements driven by litter characteris- ing Populus angustifolia, which differed in their concen- tics, which might have implications for whole-stream nutri- tration of recalcitrant compounds.
    [Show full text]