Silent Earthquakes Occurring in a Stable-Unstable Transition Zone and Implications for Earthquake Prediction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Moment Magnitude and the Energy Magnitude: Common Roots
The moment magnitude and the energy magnitude : common roots and differences Peter Bormann, Domenico Giacomo To cite this version: Peter Bormann, Domenico Giacomo. The moment magnitude and the energy magnitude : com- mon roots and differences. Journal of Seismology, Springer Verlag, 2010, 15 (2), pp.411-427. 10.1007/s10950-010-9219-2. hal-00646919 HAL Id: hal-00646919 https://hal.archives-ouvertes.fr/hal-00646919 Submitted on 1 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Click here to download Manuscript: JOSE_MS_Mw-Me_final_Nov2010.doc Click here to view linked References The moment magnitude Mw and the energy magnitude Me: common roots 1 and differences 2 3 by 4 Peter Bormann and Domenico Di Giacomo* 5 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 6 *Now at the International Seismological Centre, Pipers Lane, RG19 4NS Thatcham, UK 7 8 9 Abstract 10 11 Starting from the classical empirical magnitude-energy relationships, in this article the 12 derivation of the modern scales for moment magnitude M and energy magnitude M is 13 w e 14 outlined and critically discussed. The formulas for Mw and Me calculation are presented in a 15 way that reveals, besides the contributions of the physically defined measurement parameters 16 seismic moment M0 and radiated seismic energy ES, the role of the constants in the classical 17 Gutenberg-Richter magnitude-energy relationship. -
Constraints on the Moho in Japan and Kamchatka
Tectonophysics 609 (2013) 184–201 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article Constraints on the Moho in Japan and Kamchatka Takaya Iwasaki a, Vadim Levin b,⁎, Alex Nikulin b, Takashi Iidaka a a Earthquake Research Institute, University of Tokyo, Japan b Rutgers University, NJ, USA article info abstract Article history: This review collects and systematizes in one place a variety of results which offer constraints on the depth Received 1 July 2012 and the nature of the Moho beneath the Kamchatka peninsula and the islands of Japan. We also include stud- Received in revised form 12 November 2012 ies of the Izu–Bonin volcanic arc. All results have already been published separately in a variety of venues, and Accepted 22 November 2012 the primary goal of the present review is to describe them in the same language and in comparable terms. Available online 3 December 2012 For both regions we include studies using artificial and natural seismic sources, such as refraction and reflec- tion profiling, detection and interpretation of converted-mode body waves (receiver functions), surface wave Keywords: Kamchatka dispersion studies (in Kamchatka) and tomographic imaging (in Japan). The amount of work done in Japan is Japan significantly larger than in Kamchatka, and resulting constraints on the properties of the crust and the upper- Crustal structure most mantle are more detailed. Upper-mantle structure Japan and Kamchatka display a number of similarities in their crustal structure, most notably the average Moho crustal thickness in excess of 30 km (typical of continental regions), and the generally gradational nature of the crust–mantle transition where volcanic arcs are presently active. -
Large and Repeating Slow Slip Events in the Izu-Bonin Arc from Space
LARGE AND REPEATING SLOW SLIP EVENTS IN THE IZU-BONIN ARC FROM SPACE GEODETIC DATA (伊豆小笠原弧における巨大スロー地震および繰り返し スロー地震の宇宙測地学的研究) by Deasy Arisa Department of Natural History Sciences Graduate School of Science, Hokkaido University September, 2016 Abstract The Izu-Bonin arc lies along the convergent boundary where the Pacific Plate subducts beneath the Philippine Sea Plate. In the first half of my three-year doctoral course, I focused on the slow deformation on the Izu Islands, and later in the second half, I focused on the slow deformation on the Bonin Islands. The first half of the study, described in Chapter V, is published as a paper, "Transient crustal movement in the northern Izu–Bonin arc starting in 2004: A large slow slip event or a slow back-arc rifting event?". Horizontal velocities of continuous Global Navigation Satellite System (GNSS) stations on the Izu Islands move eastward by up to ~1 cm/year relative to the stable part of the Philippine Sea Plate suggesting active back-arc rifting behind the northern part of the arc. We confirmed the eastward movement of the Izu Islands explained by Nishimura (2011), and later discussed the sudden accelerated movement in the Izu Islands detected to have occurred in the middle of 2004. I mainly discussed this acceleration and make further analysis to find out the possible cause of this acceleration. Here I report that such transient eastward acceleration, starting in the middle of 2004, resulted in ~3 cm extra movements in three years. I compare three different mechanisms possibly responsible for this transient movement, i.e. (1) postseismic movement of the 2004 September earthquake sequence off the Kii Peninsula far to the west, (2) a temporary activation of the back-arc rifting to the west dynamically triggered by seismic waves from a nearby earthquake, and (3) a large slow slip event in the Izu-Bonin Trench to the east. -
Relation of Slow Slip Events to Subsequent Earthquake Rupture
Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture Timothy H. Dixona,1, Yan Jiangb, Rocco Malservisia, Robert McCaffreyc, Nicholas Vossa, Marino Prottid, and Victor Gonzalezd aSchool of Geosciences, University of South Florida, Tampa, FL 33620; bPacific Geoscience Centre, Geological Survey of Canada, BC, Canada V8L 4B2; cDepartment of Geology, Portland State University, Portland, OR 97201; and dObservatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional, Heredia 3000, Costa Rica Edited* by David T. Sandwell, Scripps Institution of Oceanography, La Jolla, CA, and approved October 24, 2014 (received for review June 30, 2014) The 5 September 2012 Mw 7.6 earthquake on the Costa Rica sub- Geologic and Seismic Background duction plate boundary followed a 62-y interseismic period. High- The Nicoya Peninsula forms the western edge of the Caribbean precision GPS recorded numerous slow slip events (SSEs) in the plate, where the Cocos plate subducts beneath the Caribbean decade leading up to the earthquake, both up-dip and down-dip plate along the Middle American Trench at about 8 cm/y (3). The of seismic rupture. Deeper SSEs were larger than shallower ones region has a well-defined earthquake cycle, with large (M > 7) and, if characteristic of the interseismic period, release most lock- earthquakes in 1853, 1900, 1950 (M 7.7), and most recently 5 ing down-dip of the earthquake, limiting down-dip rupture and September 2012 (Mw 7.6). Smaller (M ∼ 7) events in 1978 and earthquake magnitude. Shallower SSEs were smaller, accounting 1990 have also occurred nearby (4). Large tsunamis have not for some but not all interseismic locking. -
Fully-Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone
Noname manuscript No. (will be inserted by the editor) Fully-coupled simulations of megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone Gabriel C. Lotto · Tamara N. Jeppson · Eric M. Dunham Abstract Subduction zone earthquakes can pro- strate that horizontal seafloor displacement is a duce significant seafloor deformation and devas- major contributor to tsunami generation in all sub- tating tsunamis. Real subduction zones display re- duction zones studied. We document how the non- markable diversity in fault geometry and struc- hydrostatic response of the ocean at short wave- ture, and accordingly exhibit a variety of styles lengths smooths the initial tsunami source relative of earthquake rupture and tsunamigenic behavior. to commonly used approach for setting tsunami We perform fully-coupled earthquake and tsunami initial conditions. Finally, we determine self-consistent simulations for three subduction zones: the Japan tsunami initial conditions by isolating tsunami waves Trench, the Nankai Trough, and the Cascadia Sub- from seismic and acoustic waves at a final sim- duction Zone. We use data from seismic surveys, ulation time and backpropagating them to their drilling expeditions, and laboratory experiments initial state using an adjoint method. We find no to construct detailed 2D models of the subduc- evidence to support claims that horizontal momen- tion zones with realistic geometry, structure, fric- tum transfer from the solid Earth to the ocean is tion, and prestress. Greater prestress and rate-and- important in tsunami generation. state friction parameters that are more velocity- weakening generally lead to enhanced slip, seafloor Keywords tsunami; megathrust earthquake; deformation, and tsunami amplitude. -
Rapid Identification of Tsunamigenic Earthquakes Using GNSS
www.nature.com/scientificreports OPEN Rapid identifcation of tsunamigenic earthquakes using GNSS ionospheric sounding Fabio Manta1,2,4*, Giovanni Occhipinti 3,4, Lujia Feng 1 & Emma M. Hill 1,2 The largest tsunamis are generated by seafoor uplift resulting from rupture of ofshore subduction- zone megathrusts. The rupture of the shallowest part of a megathrust often produces unexpected outsize tsunami relative to their seismic magnitude. These are so called ‘tsunami earthquakes’, which are difcult to identify rapidly using the current tsunami warning systems, even though, they produce some of the deadliest tsunami. We here introduce a new method to evaluate the tsunami risk by measuring ionospheric total electron content (TEC). We examine two Mw 7.8 earthquakes (one is a tsunami earthquake and the other is not) generated in 2010 by the Sunda megathrust, ofshore Sumatra, to demonstrate for the frst time that observations of ionospheric sounding from Global Navigation Satellite System (GNSS) can be used to evaluate the tsunamigenic potential of earthquakes as early as 8 min after the mainshock. ‘Tsunami earthquakes’, as originally defned by Kanamori 1, are events generating tsunami with larger amplitude than expected from their seismic magnitude. Most tsunami earthquakes are generated by high levels of slip on the shallow megathrust, which results in large seafoor uplifs and hence very dangerous tsunami. Te shallow location of the slip—close to the subduction trench—means that the ruptures generating tsunami earthquakes are at signifcant distance from land-based monitoring networks, limiting our ability to quickly and accurately assess their magnitude and source parameters. Conventional approaches using various seismological methods2–4 or rapid inversion of GNSS (Global Navigation Satellite System) estimates of ground motion5 regularly encounter difculties in accurately estimating the uplif of the seafoor and consequently fail in predicting the tsunamigenic nature of tsunami earthquakes. -
Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction Lallemand
Progress in Earth and Planetary Science Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Lallemand Lallemand Progress in Earth and Planetary Science (2016) 3:15 DOI 10.1186/s40645-016-0085-6 Lallemand Progress in Earth and Planetary Science (2016) 3:15 Progress in Earth and DOI 10.1186/s40645-016-0085-6 Planetary Science REVIEW Open Access Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Serge Lallemand1,2 Abstract We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60–55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ∼54–48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called “fore-arc basalts” (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ∼52–50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. -
Temporal Evolution of Fault Coupling Associated with the Occurrence of Slow Slip Events in Central Japan
Temporal evolution of fault coupling associated with the occurrence of slow slip events in central Japan Lucile Bruhat∗y1 and Junichi Fukuda2 1Laboratoire de G´eologiede l'ENS { CNRS : UMR8538 { France 2Earthquake Research Institute { Japan Abstract Although interseismic coupling has often been considered to be stationary in time, there is increasing evidence that fault locking can vary both spatially and temporally during the interseismic period. The detection of transient slip behavior in the proximity of locked regions, such as slow slip events or decadal-scale uncoupling events, suggest in fact that the notion of a characteristic interseismic coupling distribution might not be appropriate. This study focuses on interseismic deformation rates in the southeastern part of the Kant¯o area in Japan. This region lies at junction of two subduction zones, leading to a particularly complicated tectonic setting. On the Eastern side, the Pacific plate subducts under the Okhotsk Plate at the Japan Trench, while the Sagami Trough to the south evidences the subduction of the Philippine Sea Plate under the Okhotsk Plate. The Philippine Sea Plate interface has hosted M8 megathrust earthquakes in the vicinity of Tokyo metropolitan area, such as the 1923 Great Kant¯oearthquake. Studies of interseismic deformation rates [Sagiya, (2004); Nishimura et al. (2007)] have shown that these megathrust events are consistent with the presence of a strongly locked asperity on the western extent of the Philippine Sea Plate interface at depths above 15-20km. Meanwhile, offshore the B¯os¯oPeninsula, i.e. on the eastern side of the interface, recurrent slow slip events have been detected in 1996, 2002, 2007, 2011, 2013-2014, and 2018. -
Tsunami Deposits and Earthquake Recurrence Along the Nankai
Tsunami deposits and earthquake recurrence along the Nankai, Suruga and Sagami Troughs OSAMU FUJIWARA1 and JUNKO KOMATSUBARA1 1: Active Fault Research Center, AIST, C7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan ([email protected]) INTRODUCTION Histories of great (M~8) subduction-zone earthquakes inferred from tsunami deposits span 3000 years for the Nankai and Suruga Troughs and nearly 10,000 years for the Sagami Trough. The inferred histories contain variable recurrence intervals. The shortest recurrence intervals, 100-200 years for the Nankai Trough and 150-300 years for the Sagami Trough, are similar to those known from written earthquake and tsunami records in the last 1300 years. Longer intervals inferred from the tsunami deposits probably reflect variability in rupture mode, incompleteness of geologic records, and insufficient research. 130E 140E GEOLOGICAL SETTING The Nankai, Suruga and Sagami Troughs comprising the northeastern subduction margin of the Philippine Sea plate are 40N seismically active areas in the world. The Philippine Sea plate converges with overriding plates at a rate of 49-42 mm/year along the Nankai Trough and 27 mm/year around the Sagami Trough (Seno et al., 1993, 1994). Several source areas (segments) 35N Japan are located along these troughs, each of which are 100 - 150 km long along the trough axis and potentially excites M8-class Trench earthquake accompanied by large tsunami and coastal uplift or subsidence. Earthquakes and tsunamis occurred from these areas have repeatedly damaged the Pacific coast of Japan, including Tokyo Nankai Trough and Osaka metropolitan areas. Trench Trench Izu-Ogasawara Izu-Ogasawara Fig. -
Seismotectonic Modeling of the Repeating M 7-Class Disastrous Odawara Earthquake in the Izu Collision Zone, Central Japan
Earth Planets Space, 56, 843–858, 2004 Seismotectonic modeling of the repeating M 7-class disastrous Odawara earthquake in the Izu collision zone, central Japan Katsuhiko Ishibashi Research Center for Urban Safety and Security/Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501, Japan (Received February 16, 2004; Revised July 15, 2004; Accepted July 21, 2004) Odawara City in central Japan, in the northernmost margin of the Philippine Sea (PHS) plate, suffered from severe earthquake disasters five times during the last 400 years with a mean repeat time of 73 years; in 1633, 1703, 1782, 1853 and 1923. In this region, non-volcanic Izu outer arc (IOA), the easternmost part of the PHS plate, has been subducted beneath Honshu (Japanese main island), and volcanic Izu inner arc (IIA) on the west of IOA has made multiple collision against Honshu. I hypothesize ‘West-Sagami-Bay Fracture’ (WSBF) beneath Odawara, a north-south striking tear fault within the PHS plate that has separated the descending IOA crust from the buoyant IIA crust, through examinations of multiple collision process and the PHS plate configuration. WSBF is considered a blind causative fault of the 1633, 1782 and 1853 M 7 Odawara earthquakes, and is inferred to have ruptured also during the 1703 and 1923 great Kanto earthquakes simultaneously with the interplate main fault. A presumable asperity on WSBF just beneath Odawara seems to control the temporal regularity of earthquake occurrence. Though WSBF has not yet been detected directly, it is considered an essential tectonic element in this region, which might be a fracture zone with a few or several kilometer thickness actually. -
A Test for the Mediterranean Tsunami Warning System Mohammad Heidarzadeh1* , Ocal Necmioglu2 , Takeo Ishibe3 and Ahmet C
Heidarzadeh et al. Geosci. Lett. (2017) 4:31 https://doi.org/10.1186/s40562-017-0097-0 RESEARCH LETTER Open Access Bodrum–Kos (Turkey–Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning system Mohammad Heidarzadeh1* , Ocal Necmioglu2 , Takeo Ishibe3 and Ahmet C. Yalciner4 Abstract Various Tsunami Service Providers (TSPs) within the Mediterranean Basin supply tsunami warnings including CAT-INGV (Italy), KOERI-RETMC (Turkey), and NOA/HL-NTWC (Greece). The 20 July 2017 Bodrum–Kos (Turkey–Greece) earth- quake (Mw 6.6) and tsunami provided an opportunity to assess the response from these TSPs. Although the Bodrum– Kos tsunami was moderate (e.g., runup of 1.9 m) with little damage to properties, it was the frst noticeable tsunami in the Mediterranean Basin since the 21 May 2003 western Mediterranean tsunami. Tsunami waveform analysis revealed that the trough-to-crest height was 34.1 cm at the near-feld tide gauge station of Bodrum (Turkey). Tsunami period band was 2–30 min with peak periods at 7–13 min. We proposed a source fault model for this tsunami with the length and width of 25 and 15 km and uniform slip of 0.4 m. Tsunami simulations using both nodal planes produced almost same results in terms of agreement between tsunami observations and simulations. Diferent TSPs provided tsunami warnings at 10 min (CAT-INGV), 19 min (KOERI-RETMC), and 18 min (NOA/HL-NTWC) after the earthquake origin time. Apart from CAT-INGV, whose initial Mw estimation difered 0.2 units with respect to the fnal value, the response from the other two TSPs came relatively late compared to the desired warning time of ~ 10 min, given the difculties for timely and accurate calculation of earthquake magnitude and tsunami impact assessment. -
Groundwater and Borehole Strain Monitoring for the Prediction
P06 Groundwater and borehole strain monitoring for the prediction research of the Tonankai and Nankai earthquakes Norio Matsumoto ([email protected]) , Naoji Koizumi, Makoto Takahashi, Yuichi Kitagawa, Satoshi Itaba, Ryu Ohtani and Tsutomu Sato Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (GSJ, AIST) 1. Nankai and Tonankai earthquakes Great earthquakes about magnitude 8 or more along the Nankai trough, off central to southwest Japan have been recognized nine times since 684 by ancient writings. Recent events were the 1944 Tonankai (M 7.9) and the 1946 Nankai (M 8.0) earthquakes along the Nankai trough after 90 - 92 years from the 1854 Ansei Tokai (M 8.4) and the 1854 Ansei Nankai (M 8.4) earthquakes. 2. Groundwater anomalies before and after the Nankai and Tonankai earthquakes Hydrological anomalies related to the past Nankai-Tonankai Preseismic hydrological anomalies at fifteen wells several days before the 1946 earthquakes were repeatedly reported in and around Shikoku Nankai earthquake were reported by Hydrographic Bureau (1948). Reported and Kii Peninsula by ancient writings. In particular, discharges anomalies were turbid groundwater and/or decreases of groundwater level or hot of hot spring stopped or decreased at the Dogo and Yunomine spring discharge. The manuscript also reported that there were legends in which hot springs after four and five of the nine Nankai-Tonankai decreases of groundwater level might happen before the occurrence of the Nankai- earthquakes, respectively. The 1946 Nankai earthquake caused Tonankai earthquakes around the wells where the preseismic anomalies were 11.2 m drop of well water level at the Dogo hot spring.