Sub-Daily Multi-Objective Models for Optimizing Hydropower in the Deerfield River Kelcy Adamec

Total Page:16

File Type:pdf, Size:1020Kb

Sub-Daily Multi-Objective Models for Optimizing Hydropower in the Deerfield River Kelcy Adamec University of Massachusetts Amherst ScholarWorks@UMass Amherst Environmental & Water Resources Engineering Civil and Environmental Engineering Masters Projects 9-2011 Sub-Daily Multi-Objective Models for Optimizing Hydropower in the Deerfield River Kelcy Adamec Follow this and additional works at: https://scholarworks.umass.edu/cee_ewre Part of the Environmental Engineering Commons Adamec, Kelcy, "Sub-Daily Multi-Objective Models for Optimizing Hydropower in the Deerfield River" (2011). Environmental & Water Resources Engineering Masters Projects. 44. https://doi.org/10.7275/9DD1-VT19 This Article is brought to you for free and open access by the Civil and Environmental Engineering at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Environmental & Water Resources Engineering Masters Projects by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. SUB-DAILY MULTI-OBJECTIVE MODELS FOR OPTIMIZING HYDROPOWER IN THE DEERFIELD RIVER A Project Presented by Kelcy Adamec Master of Science in Environmental Engineering Department of Civil and Environmental Engineering University of Massachusetts Amherst, MA 01003 September 2011 SUB-DAILY MULTI-OBJECTIVE MODELS FOR OPTIMIZlNG HYDROPOWER IN THE DEERFIELD RIVER A Masters Project Presented by Kelcy Adamec Approved as to style and content by: !>~~· Graduate Program Director Civil and Enviro=tal · eering Department Adamec3 Acknowledgements This project was part of the Connecticut River Watershed Project, a joint partnership of The Nature Conservancy and the U.S. Army Corps of Engineers. This project would not have been possible without funding from The Nature Conservancy. I have had the good fortune to work closely with three faculty members on this project I am especially grateful for my advisor, Dr. David Ahlfeld, for his invaluable guidance. I would also like to thank the other professors involved with the project, Dr. Richard Palmer and Dr. Casey Brown. Thank you to my fellow graduate students involved with the Connecticut River Watershed Project, Brian Pitta, Scott Steinschneider, Jessica Pica, and Sarah Whateley and to Dr. Austin Polebitski. I have learned a great deal working with the team. Finally, to my family and friends, thank you for your encouragement and support. Adamec4 Contents 1 Optimization Modeling in the Deerfield Watershed .................................................... 8 1.1 Project Overview ................................................................................................... 8 1.2 Optimization Modeling ......................................................................................... 9 1.2.1 Linear Progrannning ..................................................................................... 10 1.2.2 Model Limitations ......................................................................................... 10 1.3 Literature Review ................................................................................................ 11 1.3.1 Optimization .................................................................................................. 11 1.3.2 Hydropower and Sub-Daily Time Steps ....................................................... 12 1.3.3 Environmental Impact ................................................................................... 13 1.4 The Deerfield Watershed..................................................................................... 15 2 The Structure and Necessity of a Sub-Daily Model.. ................................................. 18 2.1 Introduction ......................................................................................................... 18 2.2 Background ......................................................................................................... 19 2.3 Deerfield River Optimization Model .................................................................. 20 2.3.1 Normalizing Objective Function Components .............................................. 24 2.3.2 Model Run Information ................................................................................. 26 2.3.3 Data Input for the Optimization Model... ...................................................... 27 2.4 Model Validation ................................................................................................. 32 2.4.1 Sub-Daily Model Verification ....................................................................... 36 Adamec5 2.5 Results ................................................................................................................. 37 2.5.1 Hydropower Optimization ............................................................................. 37 2.5.2 Impact ofTime step on Model Run Time ..................................................... 43 2.6 Conclusions ......................................................................................................... 44 2.7 Acknowledgements ............................................................................................. 45 2.8 References ........................................................................................................... 45 3 Sub-Daily Modeling ofEnviromnental Targets ......................................................... 48 3.1 Introduction ......................................................................................................... 48 3.1.1 Flashiness ...................................................................................................... 49 3.2 Methods ............................................................................................................... 51 3 .2.1 Deerfield River Optimization Model ............................................................ 51 3.2.2 Flashiness Flow ............................................................................................. 53 3.2.3 Model Runs ................................................................................................... 55 3.3 Results ................................................................................................................. 56 3.3.1 Flashiness Control ......................................................................................... 56 3.3.2 Hydropower ................................................................................................... 60 3.4 Conclusions ......................................................................................................... 62 3.5 Acknowledgements ............................................................................................. 63 3.6 References ........................................................................................................... 63 4 References .................................................................................................................. 65 Adamec6 5 Appendices ................................................................................................................. 68 5.1 Appendix A: Dam Operation .............................................................................. 68 5.1.1 SomersetDam ............................................................................................... 68 5.1.2 Searsburg Dam .............................................................................................. 69 5.1.3 Harriman Dam ............................................................................................... 69 5.1.4 Sherman Dam ................................................................................................ 70 5.1.5 Number Five .................................................................................................. 72 5.1.6 Fife Brook/Bear Swamp ................................................................................ 72 5.1.7 Number Four ................................................................................................. 73 5.1.8 Number 1bree ............................................................................................... 73 5.1.9 Gardners Falls ............................................................................................... 74 5.1.10 Number Two ............................................................................................... 74 5.2 Appendix B: Deerfield Model Base Case Equations and Variables ................... 75 5.2.1 Base Case Equations ..................................................................................... 75 5.2.2 Variable Guide .............................................................................................. 76 5.3 Appendix C: Time Step Model Changes ............................................................ 78 5.4 Appendix D: Travel Time in Stream Channels ................................................... 79 5.5 Appendix E: Expected Sub-Daily Results .......................................................... 81 5.6 Appendix F: Sub-Daily Model Results ............................................................... 83 5.7 Appendix G: LINGO Model Code for Hydropower Optimization ..................... 93 Adamec? 5.8 Appendix H: LINGO Model Code for Flashiness ............................................ 104 5.9 Appendix I: SimulationModeling..................................................................... 116 5.9.1 Introduction ................................................................................................. 116 5.9.2 Model Physics ............................................................................................
Recommended publications
  • Transcanada Hydro Northeast Inc. Deerfield River Project (Lp 2323)
    TRANSCANADA HYDRO NORTHEAST INC. DEERFIELD RIVER PROJECT (LP 2323) LOW IMPACT HYDROPOWER CERTIFICATION APPLICATION ATTACHMENT C PROJECT DESCRIPTION Project Overview TransCanada Hydro Northeast, Inc. (the Company) owns and operates the Deerfield River Project (the Project) on the Deerfield River, a major tributary to the Connecticut River. The Project is located in Bennington and Windham Counties in Vermont, and in Berkshire and Franklin Counties in Massachusetts. It consists of eight developments: Somerset, Searsburg, Harriman, Sherman, Deerfield No. 5, Deerfield No. 4, Deerfield No. 3 and Deerfield No.2, having a total installed capacity of 86 megawatts (MW). All dam operations and generation operations are controlled remotely from the Deerfield River Control Center in Monroe Bridge Massachusetts, located near the Deerfield No. 5 Dam. The Project area encompasses about a 65-mile reach of the river, including reservoirs. Two other developments not owned by the company are also located within this area. They are Brookfield Renewable Power’s Bear Swamp Project located downstream of the Deerfield No. 5 development; and Consolidated Edison’s Gardner Falls Project located downstream of the Deerfield No. 3 development. Exhibit 1 depicts the general Project area. Settlement Agreement The Deerfield River Project was one of the first FERC Projects to be relicensed under a comprehensive Settlement Agreement approach executed in 1994. A five-year cooperative consultation process involving state and federal resource agencies, various non-governmental organizations (NGOs) and the licensee (at that time New England Power Company) resulted in settlement by the parties. The process of reaching this agreement included examination of the power and non-power tradeoffs and effects of a wide variety of operational scenarios.
    [Show full text]
  • Hydropower Resource Assessment at Non-Powered Usace Sites
    HYDROPOWER RESOURCE ASSESSMENT AT NON-POWERED USACE SITES Prepared by the Hydropower Analysis Center for USACE Headquarters July 2013 Final Report Hydropower Resource Assessment at Non-Powered USACE Sites EXECUTIVE SUMMARY The U.S. Army Corps of Engineers (USACE) is the largest owner-operator of hydropower plants in the United States, with 75 plants and an installed capability of 21,000 megawatts (MW), or about 24% of the total hydroelectric capacity. This report describes a national hydropower resource assessment study that assessed the potential and economic feasibility of adding hydroelectric power to these non- powered USACE projects over a 50-year period of analysis. Site Selection In selecting non-powered USACE projects with hydropower potential, the study employed a 2012 report by the Oak Ridge National Laboratory (ORNL) that identified the hydropower potential of 54,000 non- powered dams in the United States. Among these dams, 419 were USACE non-powered dams. This number was reduced to 223 sites using the following screening, as shown on the table below. • Generate 1 MW or more of potential hydropower. • No current Federal Energy Regulatory Commission (FERC) license. • No obvious hindrances in developing hydropower. Distribution of USACE Sites with Potential Hydropower Capability FERC Preliminary or No FERC Permits Total Projects Pending Preliminary Permit Division Identified Total Percentage Total Percent Number of Total Number of Total Great Lakes & Ohio River (LRD) 71 40 56% 31 44% Mississippi Valley (MVD) 50 28 56% 22 44% Southwestern (SWD) 39 7 18% 32 82% North Atlantic (NAD) 21 2 10% 19 90% South Atlantic (SAD) 19 8 42% 11 58% Northwestern (NWD) 12 5 42% 7 58% South Pacific (SPD) 11 2 18% 9 82% USACE Total 223 92 41% 131 59% Data Collection To improve the study data, the daily hydraulic head and flow values for all 223 sites were obtained.
    [Show full text]
  • The Shopper 05-02-18
    56 FREE Years We’ve Acquired the Message Treat your ECRWSS PRSRT STD US Postage Mom for PAID Permit #2 North Haverhill, NH See Page 3B POSTAL CUSTOMER Our Contact Information is on Page 6A Independently Owned & Locally Operated MAY 02, 2018 | WWW.VERMONTJOURNAL.COM VOLUME 56, ISSUE 49 Apple Blossom Cotillion See Pages 8A - 10A KMA Publications Inc. Construction on Woolson acquires The Message of the Block building expected to Week start in the fall REGION – Robert Miller of 1970s. “I feel like The Message BY PATRICK ADRIAN include the Springfield Housing Au- “This is a complicated project,” KMA Publications Inc., owner and is home again, back to where it The Shopper thority, Springfield Regional Devel- Morelock told the Select Board. publisher of The Vermont Journal VermontTHE started,” he said. Miller recalled opment Corporation, Springfield on “We’ve been lucky to get partners and The Shopper, announced Fri- feeling the same way when he SPRINGFIELD, Vt. – The Wool- the Move, and several social services in this particular project. If it wasn’t day, April 27, 2018 that he has pur- purchased The Shopper back in son Block building renovation organizations. for [them] we wouldn’t be doing this chased The Message of the Week. 2009, acquiring another paper has come with hurdles, including The amendment, which the Se- project. Nobody would be doing this The sale will merge the newspa- Journal his parents had started years al- revenue shortfalls and added con- lect Board unanimously approved, project.” pers but continue to be published most 57 years ago. “I grew up in struction costs, but despite chal- changes the original loan terms from Needed architectural revisions only under The Vermont Journal & the newspaper business work- lenges developers say they expect repayment over 20 years with a one have resulted in $200,000 additional and The Shopper banners.
    [Show full text]
  • Deerfield and CT River Project History.Pmd
    HISTORY OF HYDROELECTRIC DEVELOPMENT ON THE CONNECTICUT AND DEERFIELD RIVERS HISTORY OF HYDROELECTRIC DEVELOPMENT ON THE CONNECTICUT AND DEERFIELD RIVERS INTRODUCTION increasingly complex. While the Depression limited further growth of the industry, a new era emerged In 1903, Malcolm Greene Chace (1875-1955) and after World War II, with streamlined management Henry Ingraham Harriman (1872-1950) established structures and increased regulations and Chace & Harriman, a company that, in its many government involvement (Cook 1991:4; Landry and incarnations over the course of the following Cruikshank 1996:2-5). The first of the 14 decades, grew into one of the largest electric utility hydroelectric facilities built on the Connecticut and companies in New England. The company built a Deerfield rivers by Chace & Harriman and its series of hydroelectric facilities on the Connecticut successors were developed in the early 1900s, and Deerfield rivers in Vermont, New Hampshire shortly after the potential of hydroelectric power and western Massachusetts, which were intended was realized on a large scale. Subsequent facilities to provide a reliable and less expensive alternative were constructed during the maturation of the to coal-produced steam power. Designed primarily industry in the 1920s, and two of the stations were to serve industrial centers in Massachusetts and completed in the post-World War II era. The history Rhode Island, the facilities also provided power to of the companies that built these stations is residential customers and municipalities in New intrinsically linked with broader trends in the history England. Chace & Harriman eventually evolved of electricity, hydropower technology, and industrial into the New England Power Association (NEPA) architecture in America.
    [Show full text]
  • The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams Preface
    The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams Preface One of the activities authorized by the Dam Safety and Security Act of 2002 is research to enhance the Nation’s ability to assure that adequate dam safety programs and practices are in place throughout the United States. The Act of 2002 states that the Director of the Federal Emergency Management Agency (FEMA), in cooperation with the National Dam Safety Review Board (Review Board), shall carry out a program of technical and archival research to develop and support: • improved techniques, historical experience, and equipment for rapid and effective dam construction, rehabilitation, and inspection; • devices for continued monitoring of the safety of dams; • development and maintenance of information resources systems needed to support managing the safety of dams; and • initiatives to guide the formulation of effective policy and advance improvements in dam safety engineering, security, and management. With the funding authorized by the Congress, the goal of the Review Board and the Dam Safety Research Work Group (Work Group) is to encourage research in those areas expected to make significant contributions to improving the safety and security of dams throughout the United States. The Work Group (formerly the Research Subcommittee of the Interagency Committee on Dam Safety) met initially in February 1998. To identify and prioritize research needs, the Subcommittee sponsored a workshop on Research Needs in Dam Safety in Washington D.C. in April 1999. Representatives of state and federal agencies, academia, and private industry attended the workshop. Seventeen broad area topics related to the research needs of the dam safety community were identified.
    [Show full text]
  • The New Deal Versus Yankee Independence: the Failure of Comprehensive Development on the Connecticut River, and Its Long-Term Consequences
    The New Deal versus Yankee independence: The failure of comprehensive development on the Connecticut River, and its long-term consequences Eve Vogel1 Department of Geosciences, UMass Amherst With assistance from Alexandra Lacy 2011 alumna (BS, Environmental Sciences), UMass Amherst Adapted from: Vogel, Eve and Alexandra Lacy. Forthcoming. The New Deal versus Yankee independence: The failure of comprehensive development on the Connecticut River, and its long-term consequences. The Northeastern Geographer 4 (2) Introduction For a person familiar with federal dams on major rivers in the American West or South, a visit to an Army Corps of Engineers dam in New England’s largest river basin, the Connecticut, can be a startling experience. Instead of an extended reservoir, one looks down from the empty heights and on both sides sees only a small river far below. Nor is there the fanfare – the visitors center, the historical information, the celebratory propaganda. Simply finding one of the Connecticut River’s federal dams can take some effort. None are on the mainstem. One must drive through the bucolic New England byways and forested hills to find a dam on a tributary (See Figure 1). For New Englanders, the near-invisibility of federal dams may not seem surprising. New England’s history and identity, including the Connecticut Valley’s, seem to rest with the small- to medium-scale development of rivers with mill dams during the 17th thru 19th centuries (e.g. Delaney 1983; Steinberg 1991). It might be more startling for many to learn that during the mid- twentieth century, the federal government did build a series of very large dams in the Connecticut Basin, which have had profound effect on the river.
    [Show full text]
  • Connecticut River Flow Restoration Study Report
    Connecticut River Flow Restoration Study STUDY REPORT A watershed-scale assessment of the potential for flow restoration through dam re-operation THE NATURE CONSERVANCY, U.S. ARMY CORPS OF ENGINEERS, UNIVERSITY OF MASSACHUSETTS AMHERST The Connecticut River Flow Restoration Study A watershed-scale assessment of the potential for flow restoration through dam re-operation Katie Kennedy, The Nature Conservancy Kim Lutz, The Nature Conservancy Christopher Hatfield, U.S. Army Corps of Engineers Leanna Martin, U.S. Army Corps of Engineers Townsend Barker, U.S. Army Corps of Engineers Richard Palmer, University of Massachusetts Amherst Luke Detwiler, University of Massachusetts Amherst Jocelyn Anleitner, University of Massachusetts Amherst John Hickey, U.S. Army Corps of Engineers Kennedy, K., K. Lutz, C. Hatfield, L. Martin, T. Barker, R. Palmer, L. Detwiler, J. Anleitner, J. Hickey. 2018. The Connecticut River Flow Restoration Study: A watershed-scale assessment of the potential for flow restoration through dam re-operation. The Nature Conservancy, U.S. Army Corps of Engineers, and University of Massachusetts Amherst. Northampton, MA. Available: http://nature.org/ctriverwatershed For a quick, easy-to-read overview of the Connecticut River Watershed Study, see our companion “Study Overview” document, available at: http://nature.org/ctriverwatershed June 2018 Table of Contents Table of Contents ..................................................................................................................................................................................................1
    [Show full text]
  • Deerfield River & Lower Connecticut River Tactical Basin Plan
    Deerfield River & Lower Connecticut River Tactical Basin Plan Green River, Guilford December 2019 | Public Draft Tactical Basin Plan was prepared in accordance with 10 VSA § 1253(d), the Vermont Water Quality Standards1, the Federal Clean Water Act and 40 CFR 130.6, and the Vermont Surface Water Management Strategy. Approved: ----------------------------------------- ------------------------- Emily Boedecker, Commissioner Date Department of Environmental Conservation -------------------------------------- ------------------------- Julie Moore, Secretary Date Agency of Natural Resources Cover Photo: Green River in Guilford – Marie L. Caduto The Vermont Agency of Natural Resources is an equal opportunity agency and offers all persons the benefits of participating in each of its programs and competing in all areas of employment regardless of race, color, religion, sex, national origin, age, disability, sexual preference, or other non-merit factors. This document is available in alternative formats upon request. Call 802-828-1535 i Table of Contents Executive Summary ............................................................................................................... 1 What is a Tactical Basin Plan ................................................................................................. 3 A. The Vermont Clean Water Act ........................................................................................... 4 B. Vermont Water Quality Standards ....................................................................................
    [Show full text]
  • Appendices for the West, Williams and Saxtons Rivers and Adjacent Connecticut River Tributaries
    Appendices for the West, Williams and Saxtons Rivers and adjacent Connecticut River Tributaries Contents Appendices for the West, Williams and Saxtons Rivers and adjacent Connecticut River Tributaries ....................................... 1 Appendix A – Existing Uses ........................................................................................................................................................................................ 2 Appendix B. 1 – Dams in the Basin ............................................................................................................................................................................ 9 Appendix B. 2 – Coordination Plan ......................................................................................................................................................................... 12 Appendix B – 3. How a Dam Affects a River ............................................................................................................................................................ 19 Appendix B – 4. Whitewater Paddling Releases on the West River ........................................................................................................................ 20 Appendix B – 5. VDFW Whitewater Release Memo ................................................................................................................................................ 22 Appendix C – Fisheries Assessment Summary ........................................................................................................................................................
    [Show full text]
  • Investigating Tradeoffs Between Flood Control and Ecological Flow Benefits in the Connecticut River Basin Jocelyn Anleitner
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Environmental & Water Resources Engineering Civil and Environmental Engineering Masters Projects 5-2014 Investigating Tradeoffs Between Flood Control And Ecological Flow Benefits in the Connecticut River Basin Jocelyn Anleitner Follow this and additional works at: https://scholarworks.umass.edu/cee_ewre Part of the Environmental Engineering Commons Anleitner, Jocelyn, "Investigating Tradeoffs Between Flood Control And Ecological Flow Benefits in the onneC cticut River Basin" (2014). Environmental & Water Resources Engineering Masters Projects. 64. https://doi.org/10.7275/8vfa-s912 This Article is brought to you for free and open access by the Civil and Environmental Engineering at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Environmental & Water Resources Engineering Masters Projects by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. INVESTIGATING TRADEOFFS BETWEEN FLOOD CONTROL AND ECOLOGICAL FLOW BENEFITS IN THE CONNECTICUT RIVER BASIN A Master’s Project Presented By: Jocelyn Anleitner Submitted to the Department of Civil and Environmental Engineering of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering April 2014 INVESTIGATING TRADEOFFS BETWEEN FLOOD CONTROL AND ECOLOGICAL FLOW BENEFITS IN THE CONNECTICUT RIVER BASIN A Master's Project Presented by JOCELYN ANLEITNER Approved as to style and content by: ~~tor Civil and Environmental Engineering Department ACKNOWLEDGEMENTS I would like to thank The Nature Conservancy (TNC) for funding this work through the Connecticut River Project. This work would not have been possible without, not only their funding, but the support and expertise they have provided.
    [Show full text]
  • This Is the Bennington Museum Library's “History-Biography” File, with Information of Regional Relevance Accumulated O
    This is the Bennington Museum library’s “history-biography” file, with information of regional relevance accumulated over many years. Descriptions here attempt to summarize the contents of each file. The library also has two other large files of family research and of sixty years of genealogical correspondence, which are not yet available online. Abenaki Nation. Missisquoi fishing rights in Vermont; State of Vermont vs Harold St. Francis, et al.; “The Abenakis: Aborigines of Vermont, Part II” (top page only) by Stephen Laurent. Abercrombie Expedition. General James Abercrombie; French and Indian Wars; Fort Ticonderoga. “The Abercrombie Expedition” by Russell Bellico Adirondack Life, Vol. XIV, No. 4, July-August 1983. Academies. Reproduction of subscription form Bennington, Vermont (April 5, 1773) to build a school house by September 20, and committee to supervise the construction north of the Meeting House to consist of three men including Ebenezer Wood and Elijah Dewey; “An 18th century schoolhouse,” by Ruth Levin, Bennington Banner (May 27, 1981), cites and reproduces April 5, 1773 school house subscription form; “Bennington's early academies,” by Joseph Parks, Bennington Banner (May 10, 1975); “Just Pokin' Around,” by Agnes Rockwood, Bennington Banner (June 15, 1973), re: history of Bennington Graded School Building (1914), between Park and School Streets; “Yankee article features Ben Thompson, MAU designer,” Bennington Banner (December 13, 1976); “The fall term of Bennington Academy will commence (duration of term and tuition) . ,” Vermont Gazette, (September 16, 1834); “Miss Boll of Massachusetts, has opened a boarding school . ,” Bennington Newsletter (August 5, 1812; “Mrs. Holland has opened a boarding school in Bennington . .,” Green Mountain Farmer (January 11, 1811); “Mr.
    [Show full text]
  • FINAL REPORT 7 Hazen Drive, PO Box 483 Concord, NH 03302-0483 14
    Technical Report Documentation Page 1. Report No. 2. Gov. 3. Recipient's Catalog No. FHWA-NH-RD-14282F Accession No. 4. Title and Subtitle 5. Report Date Estimation of Flood Discharges at Selected Recurrence Intervals for Streams in New 2008 Hampshire 7. Author(s) 8. Performing Organization Report No. Scott A. Olson 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) U. S. Geological Survey New Hampshire-Vermont Water Science Center 361 Commerce Way Pembroke, NH 03275 11. Contract or Grant No. 14282F, X-A000 (601) 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered New Hampshire Department of Transportation FINAL REPORT 7 Hazen Drive, PO Box 483 Concord, NH 03302-0483 14. Sponsoring Agency Code 15. Supplementary Notes In cooperation with the U. S. Department of Transportation, Federal Highway Administration 16. Abstract This report provides estimates of flood discharges at selected recurrence intervals for streamgages in and adjacent to New Hampshire and equations for estimating flood discharges at recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, and 500-years for ungaged, unregulated, rural streams in New Hampshire. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 117 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, mean April precipitation, percentage of wetland area, and main channel slope. The average standard error of prediction for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval flood discharges with these equations are 30.0, 30.8, 32.0, 34.2, 36.0, 38.1, and 43.4 percent, respectively.
    [Show full text]