This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G. Phd, Mphil, Dclinpsychol) at the University of Edinburgh

Total Page:16

File Type:pdf, Size:1020Kb

This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G. Phd, Mphil, Dclinpsychol) at the University of Edinburgh This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Synthesis of the C(1)-C(9) Fragment of Disorazole C 1 and Novel Heterocyclic Analogues Helen S. Niblock A thesis submitted for the degree of Doctor of Philosophy University of Edinburgh 2012 Contents 1 Chapter 1: Introduction ........................................................................................ 1 1.1 Isolation and Biosynthesis ............................................................................ 1 1.2 Biological Activity ....................................................................................... 6 1.3 Structure Activity Relationship of the Disorazoles ...................................... 9 1.3.1 Disorazole A 1 ....................................................................................... 9 1.3.2 Disorazole C 1 ...................................................................................... 10 1.3.3 Disorazole Z ....................................................................................... 15 1.4 Synthesis of Disorazole C 1 and Analogues ................................................ 18 1.4.1 Meyers Partial Synthesis of Disorazole C 1 ......................................... 18 1.4.2 Hoffmann Synthesis of Tetradehydro-Disorazole C 1 ......................... 23 1.4.3 Wipf Total Synthesis of Disorazole C 1 .............................................. 29 1.5 Synthesis of Analogues .............................................................................. 33 1.5.1 t-Butyl Analogue ................................................................................ 33 1.5.2 C(17)-C(18) Cyclopropyl Analogue .................................................. 34 1.5.3 Attempted Synthesis of the C(6)-Desmethoxy Analogue .................. 35 1.5.4 Hydrogenated Disorazole C 1 .............................................................. 36 1.5.5 C(16)-Ketone Analogue ..................................................................... 36 1.5.6 (−)-CP 2-Disorazole C 1 ........................................................................ 37 1.5.7 Synthesis of Simplified Disorazole 18 ............................................... 41 1.6 Novel Disorazole C 1 Synthesis Utilising the Evans-Tishchenko Reaction and Ring Closing Alkyne Metathesis ..................................................................... 44 2 Chapter 2: Racemic Fragment Synthesis ............................................................ 46 2.1 Oxazole Natural Products ........................................................................... 46 2.2 Disorazole C 1 C(1)-C(9) Fragment Retrosynthesis .................................... 47 2.3 C(1)-C(5) Oxazole Syntheses ..................................................................... 48 2.3.1 Halomethyloxazole Syntheses ............................................................ 48 2.3.2 Methyloxazole Synthesis .................................................................... 50 2.4 C(6)-C(9) Aldehyde Synthesis ................................................................... 53 2.5 Halomethyloxazole and Aldehyde Coupling-Route A ............................... 55 2.5.1 Oxazole Zinc Barbier-Type Coupling ................................................ 56 I 2.5.2 Oxazole Samarium Barbier-type coupling ......................................... 57 2.5.3 Use of Other Metals in Oxazole Centred Barbier Reactions .............. 60 2.5.4 Route A: Attempted Synthesis of C(1)-C(9) fragment....................... 61 2.5.5 Fukuyama Coupling ........................................................................... 66 2.6 Methyloxazole and Aldehyde Coupling - Route B .................................... 67 2.6.1 Oxazole Lateral Lithiation Background ............................................. 67 2.6.2 Results: Initial Investigation into (2-Methyl-1,3-oxazol-4-yl)methanol Lithiation ……………………………………………………………………….69 2.6.3 Evans Group Investigation into Base Effect ...................................... 70 2.6.4 Proposed Lithiation Mechanism ......................................................... 72 2.6.5 Results: Base Optimisation ................................................................ 76 2.6.6 Alcohol Protecting Group Effect ........................................................ 77 2.7 Completion of the Racemic C(1)-C(9) Fragment of Disorazole C 1 ........... 79 2.8 Summary .................................................................................................... 80 3 Chapter 3: Enantiospecific Fragment Synthesis I .............................................. 81 3.1 Adaptation of Previous Disorazole C 1 Syntheses ....................................... 81 3.1.1 Meyers Based Approach .................................................................... 81 3.1.2 Wipf Based Approach ........................................................................ 86 3.1.3 Summary ............................................................................................ 88 3.2 C(4)-C(5) Disconnection Approach ........................................................... 89 3.2.1 C(1)-C(9) Fragment Retrosynthesis ................................................... 89 3.2.2 C(1)-C(4) Oxazole Synthesis ............................................................. 91 3.2.3 C(5)-C(9) Epoxide Retrosynthesis ..................................................... 94 3.2.4 C(7)-C(8) Alkene Bond Formation via Cross Metathesis -Route A .. 94 3.2.5 C(7)-C(8) Alkene Bond Formation via Wittig Reaction - Route B ... 99 3.2.6 Horner-Wadsworth-Emmons Reaction ............................................ 104 3.2.7 Epoxidation of C(6)-C(9) Aldehyde ................................................. 105 3.2.8 Summary .......................................................................................... 106 4 Chapter 4: Enantiospecific Synthesis II and Heterocyclic Analogues ............. 107 4.1 Retrosynthesis of C(1)-C(9) Fragment and Heterocyclic Analogues....... 107 4.2 Synthesis of C(5)-C(9) Tosylate ............................................................... 107 4.3 Investigations into Oxazole C(1)-C(4) and Tosylate Coupling ................ 112 II 4.3.1 Oxazole C-H Activation ................................................................... 112 4.3.2 Oxazole Lithiation ............................................................................ 121 4.3.3 Summary .......................................................................................... 126 4.4 Heterocyclic Analogues ........................................................................... 127 4.5 Summary .................................................................................................. 132 5 Future work ...................................................................................................... 134 5.1 Completion of C(1)-C(9) Fragment.......................................................... 134 5.2 Heterocyclic Analogues ........................................................................... 135 5.3 Evans-Tishchenko Coupling .................................................................... 136 5.4 Alkyne Metathesis .................................................................................... 137 5.4.1 Application to Disorazole C 1 Synthesis ........................................... 139 5.5 Sonogashira option ................................................................................... 140 6 Chapter 6: Experimental ................................................................................... 142 6.1 General Experimental ............................................................................... 142 6.2 Experimental for Chapter 2 ...................................................................... 144 6.3 Experimental for Chapter 3 ...................................................................... 166 6.4 Experimental for Chapter 4 ...................................................................... 182 7 References ........................................................................................................ 202 8 Abbreviations ................................................................................................... 208 III Declaration This thesis is submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Edinburgh. Unless otherwise stated the work described in this thesis is original and has not been submitted previously in whole or in part for any degree or other qualification at this, or any other university. In accordance with the regulations this thesis does not exceed 70,000 words in length. Helen Sarah Niblock IV Acknowledgements Firstly, I would like to thank Dr.
Recommended publications
  • Synthesis of the Methyl Ester Of
    Master’s Thesis 2019 60 ECTS Faculty of Chemistry, Biotechnology and Food Science Synthesis of the Methyl Ester of MaR2n-3 DPA Jeanne Sønderskov Rasmussen Master’s degree in Chemistry and Biotechnology II Acknowledgements The master’s degree was performed as collaboration between the Faculty of Chemistry, Biotechnology and Food Science at the Norwegian University of Life Sciences and the Department of Pharmacy, University of Oslo. The practical work as part of this thesis was conducted in the LIPCHEM group at the Section of Pharmaceutical Chemistry. First, I would like to thank my two supervisors, Professor Trond Vidar Hansen and Professor Yngve Stenstrøm for excellent guidance, encouragement and especially, for sharing long-time experience. Also, thanks to Dr. Jørn Tungen and Associate professor Anders Vik for solid guidance and teaching, especially during the time in the laboratory. I would also like to thank the rest of the LIPCHEM group. It has been a great experience to be a part of a research group and witness the impressive work that is carried out. Also, I am very grateful for sharing this challenging period with the four master students in pharmaceutical chemistry, Amalie Føreid Reinertsen, Marie Hermansen Mørk, Aina Kristin Pham and Margrethe Kristiansen. It has been nice to get to know you and follow your progress as well. Finally, an enormous thank to my lovely boyfriend, family and friends. Thanks for fantastic support and cheering through my six years of education. Blindern, May 2019 Jeanne Sønderskov Rasmussen III Abstract This master thesis presents the first synthesis of the methyl ester of the specialized pro-resolving mediator named MaR2n-3 DPA.
    [Show full text]
  • Transfer Hydrogenations and Kinetic Resolutions Van Dirk Klomp
    transferhydrogenations and kineticresolutions DirkKlomp transferhydrogenationsandkineticresolutions DirkKlomp Uitnodiging voorhetbijwonenvande openbareverdedigingvan hetproefschriften destellingenop maandag 13maart2006 13.00uur endedaaraan voorafgaandetoelichting voorniet-chemiciom 12.30uur indeSenaatszaalvande TechnischeUniversiteitDelft Mekelweg5teDelft Naafloopvande plechtigheidbentuookvan hartewelkomopdereceptie inhetzelfdegebouw. DirkKlomp Esdoornlaan32 1521EBWormerveer 075-6223403 [email protected] Stellingen behorende bij het proefschrift transfer hydrogenations and kinetic resolutions van Dirk Klomp 1- De door Kao et al. gebruikte structuurbepalende verbinding fructose voor de synthese van de mesoporeuze silica SBA-1 bepaalt niet de structuur van het materiaal. H.-M. Kao, C.-C. Ting, A. S. T. Chiang, C.-C. Teng, C.-H. Chen, Chem. Commun. 2005 ,1058-1060. 2- Het door Kim et al. gesuggereerde mechanisme voor de deactivering van het enzym α-CT in de hydrolyse van β-lactonen, waarbij het lacton opent op de 4-positie, is zeer onwaarschijnlijk. D. H. Kim, J. Park, S. J. Chung, J. D. Park, N.-K. Park, J. H. Han, Bioorg. Med. Chem. 2002 , 10 , 2553-2560. 3- Psychologisch gezien betekent de omschakeling door wetenschappelijke tijdschriften van papieren versies naar elektronische, een verlies aan kennis voor de wetenschapper. 4- Omdat de aarde langzamer gaat draaien is soms de toevoeging van schrikkelsecondes noodzakelijk. Wetenschappers die deze secondes pas willen toevoegen op het moment dat ze zijn opgespaard tot een schrikkeluur, omdat de toevoegingen storingen kunnen veroorzaken in elektronische apparatuur, hebben de menselijke factor uit het oog verloren. 5- In de weekeindes waarin een nieuw boek over Harry Potter uitkomt, is het aantal kinderen dat op de eerstehulpafdeling van het ziekenhuis belandt bijna half zo groot als in andere weekeindes. Gwilym et al. hebben de afname over de lange termijn waarschijnlijk onderschat.
    [Show full text]
  • Synthesis, Hydrogenation, and Hydrodeoxygenation of Biomass-Derived Furans for Diesel Fuel
    Synthesis, Hydrogenation, and Hydrodeoxygenation of Biomass-Derived Furans for Diesel Fuel By Ying Lin Louie A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alexis T. Bell, Chair Professor Alexander Katz Professor F. Dean Toste Summer 2017 Synthesis, Hydrogenation, and Hydrodeoxygenation of Biomass-Derived Furans for Diesel Fuel © 2017 Ying Lin Louie All rights reserved Abstract Synthesis, Hydrogenation, and Hydrodeoxygenation of Biomass-Derived Furans for Diesel Fuel by Ying Lin Louie Doctor of Philosophy in Chemical Engineering University of California, Berkeley Professor Alexis T. Bell, Chair Hydrogenation and hydrodeoxygenation (HDO) processes are critical for the chemical conversion of lignocellulosic biomass into liquid transportation fuels such as gasoline, jet, and diesel. Hydro-treatment processes can remove undesired functionalities and reduce the oxygen content in biomass-derived oxygenates to produce candidates suitable for fuel blends. In this study, the liquid phase hydrogenation and hydrogenolysis of several model substrates including, 2,5-dimethylfuran (DMF), 5-methylfurfural (5-MF), bis(5-methylfuran-2-yl)methane (BMFM), and 5-(2-(5-methylfuran-2-yl)vinyl)furan-2-aldehyde (MFVFAL), were investigated over noble metal catalysts (Pd, Pt, Ru) at moderate conditions (353 – 473 K, 0.55 – 5.1 MPa). Understanding the mechanism and kinetics by which undesired functionalities found in these substrates, such as aromatic furans, unsaturated C=C bonds, and C=O bonds, are removed during hydrogenation will allow for the design of efficient catalysts and processes to improve the hydroupgrading reactions of biomass-derived fuels.
    [Show full text]
  • The Evans-Tishchenko Reaction: Scope and Applications
    Edinburgh Research Explorer The Evans-Tishchenko Reaction: Scope and Applications Citation for published version: Ralston, KJ & Hulme, AN 2012, 'The Evans-Tishchenko Reaction: Scope and Applications', Synthesis: Journal of Synthetic Organic Chemistry, vol. 44, no. 15, SS-2012-M0312-SR, pp. 2310–2324. https://doi.org/10.1055/s-0032-1316544 Digital Object Identifier (DOI): 10.1055/s-0032-1316544 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Synthesis: Journal of Synthetic Organic Chemistry Publisher Rights Statement: Copyright © 2012 Georg Thieme Verlag Stuttgart & New York. All rights reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 This document is the Accepted Version of a published article that appeared in final form in Synthesis, copyright © Georg Thieme Verlag Stuttgart · New York. To access the final edited and published work see http://dx.doi.org/10.1055/s-0032-1316544 Cite as: Ralston, K. J., & Hulme, A. N. (2012). The Evans-Tishchenko Reaction: Scope and Applications.
    [Show full text]
  • Stereoselective Total Synthesis of Etnangien and Etnangien Methyl Ester
    pubs.acs.org/joc Stereoselective Total Synthesis of Etnangien and Etnangien Methyl Ester Pengfei Li,† Jun Li,‡,§ Fatih Arikan,‡, ) Wiebke Ahlbrecht,† Michael Dieckmann,† and Dirk Menche*,†,‡ †Institut fur€ Organische Chemie, Ruprecht-Karls-Universitat€ Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, and ‡Helmholtz-Zentrum fur€ Infektionsforschung, Medizinische Chemie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. §Present address: Institut fur€ Pharmazeutische Wissenschaften, ETH Zurich..€ Present) address: ABX GmbH, Radeberg. [email protected] Received February 5, 2010 A highly stereoselective joint total synthesis of the potent polyketide macrolide antibiotics etnangien and etnangien methyl ester was accomplished by a convergent strategy and proceeds in 23 steps (longest linear sequence). Notable synthetic features include a sequence of highly stereoselective substrate-controlled aldol reactions to set the characteristic assembly of methyl- and hydroxyl- bearing stereogenic centers of the propionate portions, an efficient diastereoselective Heck macro- cyclization of a deliberately conformationally biased precursor, and a late-stage introduction of the labile side chain by means of a high-yielding Stille coupling of protective-group-free precursors. Along the way, an improved, reliable protocol for a Z-selective Stork-Zhao-Wittig olefination of aldehydes was developed, and an effective protocol for a 1,3-syn reduction of sterically particularly hindered β-hydroxy ketones was devised. Within the synthetic campaign, a more detailed under- standing of the intrinsic isomerization pathways of these labile natural products was elaborated. The expedient and flexible strategy of the etnangiens should be amenable to designed analogues of these RNA-polymerase inhibitors, thus enabling further exploration of the promising biological potential of these macrolide antibiotics.
    [Show full text]
  • Convergent Total Synthesis and Preliminary Biological Investigations
    Norrislide: Convergent Total Synthesis and Preliminary Biological Investigations Author: Krista Elizabeth Granger Persistent link: http://hdl.handle.net/2345/731 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2009 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry NORRISOLIDE: CONVERGENT TOTAL SYNTHESIS AND PRELIMINARY BIOLOGICAL INVESTIGATIONS a dissertation by KRISTA ELIZABETH GRANGER submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2009 © copyright by KRISTA ELIZABETH GRANGER 2009 Norrisolide: Convergent Total Synthesis and Preliminary Biological Investigations Krista Elizabeth Granger Thesis Advisor: Professor Marc L. Snapper Abstract • Chapter 1: A review of Shapiro reactions as a coupling strategy in natural product total synthesis. The syntheses of lycoramine, galanthamine, yuehchukene analogues, ovalicin, studies toward the ingenol core, haemanthidine, pretazettine, tazettine, crinamine, Taxol, colombiasin A, elisapterosin B, the AB ring fragment of spongistatin 1 and 8-epipuupewhedione are discussed. Ar O S O nBuLi Li E+ E NH R' R' N R R R' R • Chapter 2: The convergent total synthesis of the marine natural product norrisolide is described. Both subunits, the hydrindane core and the norrisane side chain, are prepared in an asymmetric fashion through kinetic resolution and enantioselective cyclopropanation, respectively. A Shapiro reaction couples the two fragments and a Peterson olefination installs the 1,1-disubstituted olefin. O O MeO OTBS AcO MeO O O O O N Me Me Me MeO O O Me Li O OP H H Me Me Me Me norrisolide H Me Me • Chapter 3: Preliminary experiments to isolate the biological target of norrisolide through reductive alkylation and tritium labeling are investigated.
    [Show full text]
  • 4.2. FG Strategies. Part II.Pdf
    Master Course 2018-19 in Organic Chemistry methods and design in organic synthesis Pere Romea Rubik’s cube 4.2. Single & Double Bonds Non functional group R R disconnection Carbon-a Carbon-d R R ¿"? Alkyl%d Alkyl%a Li Potential precursors X Alkyl lithium Alkyl halide, X: Cl, Br, I MgBr RSO3 Alkyl magnesium halide Alkyl sulfonates M + Y M: Li, MgX M: halide, sulfonate The reaction is plagued by many side reactions due to high pKa of Alkyl-d (pKa 45–50) OH OMe O N O MeO H N O (–) Hennoxazole A ?antiviral Smith, T. E. JOC 2008, 73, 142 Polyfibrospongia OH OMe O N O MeO H N O ¿ FGA ? OPG OMe TBS O N O MeO H N O OPG OMe TBS O N O Li Br MeO H N O Oxazole alkylation studies O Ph N two potential reacting sites Oxazole alkylation studies Li Li O base O O –78 °C Ph N Ph N Ph N MeI MeI ratio 1:2 O Me Me O BuLi LDA LiNEt2 (14:86) (37:63) (99:1) Ph N Ph N 1 2 This reversal of regioselectivity is thought to arise from the ability of Et2NH to mediate the low-temperature equilibration of a kinetic mixture of otherwise noninterconverting lithiated intermediates However, such a situation was dramatically modified in a model close to the TGT structure TAKE-HOME MESSAGE: the model should be as similar as possible to the real system Oxazole alkylation studies single product Chelation could be the reason O Li O Li O MeO OMe MeO OMe MeO OMe N base N N H N N N –78 °C H H O O O three potential base: BuLi, LDA, LiNEt2 reacting sites These results suggest that deprotonation at the heterocycle is thermodynamically as well as kinetically favored SOLUTION: BLOCKING THAT
    [Show full text]
  • THAT ARE NOT LOUILLOTTIUS009850268B2 (12 ) United States Patent ( 10) Patent No
    THAT ARE NOT LOUILLOTTIUS009850268B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,850 , 268 B2 Hoveyda et al. ( 45 ) Date of Patent: Dec . 26 , 2017 ( 54 ) METATHESIS CATALYSTS AND METHODS 17/ 269 (2013 . 01 ) ; C07C 17 /275 ( 2013. 01 ) ; THEREOF C07C 17 / 278 ( 2013 . 01 ) ; C07C 17361 ( 2013 .01 ) ; C07C 37 /62 ( 2013 .01 ) ; C07C 41/ 30 (71 ) Applicants :Massachusetts Institute of ( 2013 . 01 ) ; C07C 45 /63 ( 2013 . 01 ) ; C07C Technology , Cambridge , MA (US ) ; 67 /307 ( 2013 .01 ) ; C07C 67 /333 (2013 .01 ) ; Trustees of Boston College, Chestnut C07D 209 / 10 ( 2013 . 01 ) ; C07D 209 /48 Hill , MA (US ) ( 2013 .01 ) ; C070 333 /54 ( 2013 . 01) ; COFF 5 / 025 ( 2013 .01 ) ; CO7F 7 / 1844 ( 2013 .01 ) ; (72 ) Inventors : Amir H . Hoveyda , Lincoln , MA (US ) ; CO7F 7 / 1852 ( 2013 .01 ) ; C07 ) 9 /00 ( 2013 .01 ) ; Hanmo Zhang , Chestnut Hill, MA C07 ) 51/ 00 ( 2013 .01 ) ; B01J 2231/ 543 (US ) ; Ming Joo Koh , Chestnut Hill , ( 2013 . 01 ) ; B01 ) 2531 / 64 ( 2013 .01 ) ; B01J MA (US ) ; Richard Royce Schrock , 2531/ 66 ( 2013. 01 ); C07C 2601/ 14 ( 2017 .05 ) ; Winchester , MA (US ) C07C 2603/ 26 ( 2017 .05 ) (58 ) Field of Classification Search (73 ) Assignees : Trustees of Boston College , Chestnut CPC .. C07C 17 / 275 ; C07C 45/ 63 ; C07C 37 /62 ; Hill , MA (US ) ; Massachusetts B01J 2231/ 543 ; B01J 2531 /64 ; B01J Institute of Technology , Cambridge, 2531/ 66 ; B01J 31/ 2265 MA (US ) USPC .. .. 548 /402 ; 514 / 408 , 184 ( * ) Notice: Subject to any disclaimer , the term of this See application file for complete search history . patent is extended or adjusted under 35 U . S . C .
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 0521770971 - Modern Methods of Organic Synthesis W. Carruthers and Iain Coldham Index More information Index acidity 1 from alkynes 125–32 acyl anion equivalents 56 from diols 123 acyloin reaction 425 from hydrazones 120 Adams’ catalyst 407 reaction of AD-mix ␣ 352 with carbenes 303–9 AD-mix ␤ 352 with dienes in Diels–Alder reaction 162 agelastatin A 376 with radicals 280–98 AIBN 268 reduction of 322, 408–13, 459 alane 437, 444 alkenyllithium species 57, 59 alcohols alkylation 1–19 deoxygenation 270 asymmetric 37 from alkenes 323, 349 with enamines 1, 17 from carbonyl compounds 416, 421, 423, 434–56 with enolates 1–16 oxidation 378–93 with metalloenamines 16 aldehydes alkyl halides alkylation of 17 oxidation to carbonyl compounds 384 as dienophiles in Diels–Alder reaction 169 reductive cleavage to hydrocarbons 269, 406, 442 decarbonylation of 419 alkyllithium species 46 from alcohols 380 alkynes from alkenes 325, 360, 364 conversion to alkenes 125–32, 414 oxidation of 392 deprotonation of 58 reduction of 435, 439, 443 hydrometallation 128 reductive dimerization of 148, 425 preparation of 137 Alder–ene reaction 231 reduction of 125 aldol reaction 27–36 allopumiliotoxin 58 diastereoselective 32 allosamidin disaccharides 272 enantioselective 41 allylic organometallics 71–4 aldosterone 276 allylic oxidation 374 alkenes allylic 1,3-strain 26, 73, 351 allylic oxidation of 374 ␲-allylpalladium complexes 98 conversion to alcohols 323 amabiline 220 conversion to ketones (Wacker reaction) 365 ambruticin S 308 epoxidation
    [Show full text]
  • A Acetophenones, 10 Horner–Emmons Olefination, 7 Acrylonitrile
    Index A Alkenylmetals, 38 Acetophenones, 10 Alkenylsilanes, 18 Horner–Emmons olefination, 7 Alkenylstannanes, 18 Acrylonitrile, Z-selective cross metathesis, 46 α-Alkoxycyclopentenone, 25 Acylgermanes, 18 (E)-β-Alkoxy divinyl ketones, 25 Acyl phosphonates, olefination, Co(TPP), 160 α-Alkoxyketones, 12 Acylsilanes, 18 Alkyl aryl ketones, 16 Acylstannanes, 18 Alkylidenephosphoranes, olefination, 208 Africanol, 187 Alkynes, conjugated dienes, 98 Aldehydes, 197 Z-alkenes, 40, 43 Fe(II)(TTP), olefination, 151 hydrofluorination, 60 Mo-based catalytic olefination, 149 hydrofunctionalizations, 134 MTO-catalyzed olefination, 149 hydrometalation, 43 olefination, 6 2-Alkynoate, conjugated dienes, 109 diazocarbonyl reagents, 161 Alkynoates, 108 oxygen-substituted phosphorus Alkynyl ketones, 16 ylides, 156 Allenamides, 126 Ph3As, 157 Allenoates, 108 Rh-catalyzed methylenation, 157 one-pot Wittig reaction, 213 Ru-catalyzed olefination, 157 Allylation, 54 Aldimines, olefination, 28 Allyl ethers, chiral, 258 Alkaloids, 171 N-Allylhydrazones, 107 Alkene cross metathesis, 178 Allylic alcohols, trisubstituted, 207 Alkene metathesis, catalytic Allylic carbonates, one-pot Wittig enantioselective, 187 reaction, 213 catalytic Z-selective, 189 Allylic gem-difluorides, 67 selective, 163 Allylic substitution, 54 selective relay, 174 Allylidenetriethylphosphoranes, 205 Alkenes, 197 Allylsulfides, multisubstituted, synthesis, 239 desulfurization, 16 tetrasubstituted, 1 Amino acid, (Z)-fluoroalkenyl moiety, 83 Z-Alkenes, stereoselective synthesis, 33 α-Aminoketones, 14 Alkenylboronic
    [Show full text]
  • Mathieson, Jennifer E. (2012) a Flexible One-Step Synthesis of Dienamides: Approaches Towards a Total Synthesis of the Crocacins
    Mathieson, Jennifer E. (2012) A flexible one-step synthesis of dienamides: approaches towards a total synthesis of the Crocacins. MSc(R) thesis http://theses.gla.ac.uk/3577/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] A Flexible One-Step Synthesis of Dienamides: Approaches Towards a Total Synthesis of the Crocacins Jennifer E. Mathieson (M. Sci) A thesis submitted in fulfilment of the requirements of the degree of Master of Science School of Chemistry College of Science & Engineering University of Glasgow June 2012 2 Abstract Dienamides are prevalent in many biologically active natural products and pharmaceutical drug leads. A number of different approaches have been reported for the synthesis of dienamides. These methods have varying degrees of success in terms of yield and selectivity. In particular, the control of double bond geometry presents a significant challenge. Presented, is an efficient one step synthesis of dienamide units starting from previously established N-formyl imide building blocks. This approach presents an attractive alternative to other methods available currently in terms of the number of steps, yield and overall simplicity.
    [Show full text]
  • Mr. Debabrata Bhattasali
    SYNTHETIC STUDIES TOWARD NEW α- GLUCOSIDASE INHIBITORS PENAROLIDE SULFATE A1, SCHULZEINES B AND C BY MR. DEBABRATA BHATTASALI DR. MUKUND K. GURJAR (RESEARCH GUIDE) DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA OCTOBER 2008 Synthetic Studies Toward New α-Glucosidase Inhibitors Penarolide Sulfate A1, Schulzeines B And C A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY) TO KALYANI UNIVERSITY BY Mr. DEBABRATA BHATTASALI Dr. Mukund K. Gurjar (Research Guide) DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA OCTOBER 2008 DEDICATED TO MY BELOVED PARENTS DECLARATION The research work embodied in this thesis has been carried out at National Chemical Laboratory, Pune under the supervision of Dr. M. K. Gurjar, Division of Organic Chemistry, National Chemical Laboratory, Pune- 411008. This work is original and has not been submitted part or full, for any degree or diploma of this or any other University. Pune-411008 (Debabrata Bhattasali) October 2008 Candidate CERTIFICATE The research work presented in thesis entitled “Synthetic Studies Toward New α- Glucosidase Inhibitors Penarolide Sulfate A1, Schulzeines B And C” has been carried out under my supervision and is a bonafide work of Mr. Debabrata Bhattasali. This work is original and has not been submitted for any other degree or diploma of this or any other University. Pune-411008 (Dr. M. K. Gurjar) October 2008 Research Guide ACKNOWLEDGEMENTS It gives me great pleasure to express my deep sense of esteem and gratitude to my research guide, Dr. Mukund. K. Gurjar, Division of Organic Chemistry, NCL, for his inspiring guidance, never diminishing encouragement, support and his complete dedication during the progress of my work.
    [Show full text]