Somatic Pharmacogenomics in Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Somatic Pharmacogenomics in Cancer The Pharmacogenomics Journal (2008) 8, 305–314 & 2008 Nature Publishing Group All rights reserved 1470-269X/08 $30.00 www.nature.com/tpj REVIEW Somatic pharmacogenomics in cancer ON Ikediobi Many of the initial examples of the clinical utility of pharmacogenetics were elucidated in the field of oncology. Those examples were largely based on Department of Clinical Pharmacy, School of the existence of germline genetic variation that influences the metabolism of Pharmacy, University of California, San Francisco, cytotoxic drugs. However, with the development of kinase inhibitors, drugs CA, USA designed to preferentially target altered proteins driving oncogenesis, pharmacogenetics in cancer has shifted to understanding the somatic Correspondence: Dr ON Ikediobi, Department of Clinical differences that determine response to these targeted agents. It is becoming Pharmacy, School of Pharmacy, University of increasingly clear that understanding the molecular genetics of cancer will California, 3333 California Street, Box 0613, lead to the further development of targeted therapeutics. Therefore, it is San Francisco, CA 94118, USA. imperative that pharmacogenomics researchers understand the motivations E-mail: [email protected] and challenges of developing targeted therapies to treat cancer as a paradigm for personalized medicine. However, much of the discussion in the pharmacogenomics community in cancer is still largely focused on the germline variants as predictors of drug toxicity. In light of that fact, this review presents a detailed discussion of the development of commonly used targeted therapies for the treatment of hematological and solid tumors, the somatic mutations that determine response to those therapies, and the mechanisms of drug resistance. The Pharmacogenomics Journal (2008) 8, 305–314; doi:10.1038/tpj.2008.8; published online 5 August 2008 Keywords: somatic; mutation; cancer; pharmacogenomics; kinase; inhibitor Introduction Pharmacogenomics is the study of the genetics of interindividual response to drugs and aims at molecular subsetting of patients for more effective therapy.1 The field of pharmacogenomics is especially important in oncology where most clinically used drugs have a narrow therapeutic window, that is the difference between the dose required to achieve the desired therapeutic effect and that causing toxicity, is small.2 Therefore, knowledge of genetic variations, inherited or acquired, that may predict differential response to cancer chemotherapy is key to personalized therapy. Genetic variations in drug effect are classified into two groups: those due to either pharmacokinetic or pharmacodynamic factors. The pharmacokinetic factors that influence drug effect involve the drug’s absorption, distribution, metabolism and excretion.3 In contrast, the pharmacodynamic factors that influence drug effect involve the transport of the drug into the cell and the interaction of the drug (ligand) and its target(s).3 Many of the initial examples from pharmacogenomics in cancer chemo- therapy center on understanding the inherited (germline) interindividual differences involved in drug metabolism (Table 1).2,4–7 However, there are also examples where acquired (somatic) mutations within the tumor DNA are Received 6 March 2008; revised 17 June 2008; accepted 3 July 2008; published online predictive of response to cancer chemotherapy. The elucidation of the signal- 5 August 2008 transduction networks that drive neoplastic transformation has led to rationally Somatic pharmacogenomics ON Ikediobi 306 Table 1 Standard chemotherapeutics and germline variants reported to modulate their action Drug Tumor type Allelic polymorphism Drug action (references) 6-Mercaptopurine ALL TPMT*3A Enhanced toxicity 2,4 Irinotecan Colorectal UGT1A1*28 Enhanced toxicity 5 Tamoxifen Breast CYP2D6*4, *10 Decreased efficacy 6 5-Fluorouracil Colorectal DPYD*2A Enhanced toxicity 7 Abbreviations: ALL, acute lymphoblastic leukemia; CYP2D6, cytochrome P450 2D6; DPYD, dihydropyrimidine dehydrogenase; TPMT, thiopurine methyltransferase; UGT1A1, uridine 50-diphosphate-glucuronosyl-transferase. Numbers in brackets indicate cited references. Table 2 Kinase inhibitors and somatic mutations reported to modulate their drug action Kinase inhibitor Tumor type Gene product Somatic alterations Imatinib CML, ALL, GIST BCR-ABL, KIT, PDGFRA Mutation, deletion, translocation Nilotinib CML BCR-ABL Mutation Dasatinib CML, ALL BCR-ABL Mutation Sunitinib GIST KIT, PDGFRA, FLT3, VEGFR2 Mutation Trastuzumab Breast ERBB2 Amplification, overexpression Pertuzumab Breast ERBB2, EGFR, ERBB3 PTEN deletion, Akt overexpression Lapatinib Breast ERBB2, EGFR ERBB2 amplification Gefitinib NSCLC EGFR Mutation, amplification Erlotinib NSCLC EGFR Mutation, amplification Abbreviations: Akt, serine/threonine protein kinase Akt; ALL, acute lymphoblastic leukemia; BCR-ABL, breakpoint cluster region-ABL; CML, chronic myeloid leukemia; ERBB2, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma-derived oncogene homolog (avian); ERBB3, v-erb-b2 erythroblastic leukemia viral oncogene homolog 3; FLT3, fms-related tyrosine kinase 3; GIST, gastrointestinal stromal tumor; KIT, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homologue; NSCLC, non-small cell lung cancer; PDGFRA, platelet-derived growth factor receptor, a-polypeptide; PTEN, phosphatase and tensin homolog; VEGFR2, vascular endothelial growth factor receptor 2. designed cancer therapeutics that target specific molecular within the tumor DNA but absent within the germline. In abnormalities.8 These targeted therapeutics, unlike tradi- this review, I have highlighted the most common examples tional cytotoxic cancer chemotherapeutics, do not have whereby somatic mutations within tumor DNA determine narrow therapeutic indices and therefore have less severe clinical response to kinase inhibitors (Table 2). side effects. The less severe side effects experienced by taking targeted therapies is as a result of their greater affinity for inhibiting the activity of somatic alterations of the target BCR-ABL, KIT, PDGFR kinase inhibitors kinase(s) that are present within the tumor DNA but absent within the germline. In addition, targeted therapeutics, The first example of the success of small-molecule targeted unlike traditional cytotoxic chemotherapy are available in therapies in treatment of cancer is demonstrated with oral dosage forms for better ease of administration. imatinib, the first small-molecule kinase inhibitor approved Many of the currently known targeted therapeutic agents for clinical use that targets the breakpoint cluster region are protein kinase inhibitors. Kinases are key components of (BCR)-ABL protein tyrosine kinase for the treatment of cell signaling pathways involved in neoplastic transforma- chronic myeloid leukemia (CML). The BCR-ABL protein tion. Genes that encode protein kinases are often over- results from the fusion of the BCR and nonreceptor protein expressed or activated as a result of mutations or tyrosine kinase ABL resulting from a reciprocal chromoso- chromosomal rearrangements in human tumors. Kinase mal translocation t(9;22) producing a shortened chromo- inhibitors are designed as adenosine triphosphate (ATP) some 22, called the Philadelphia (Ph) chromosome. The mimetics and therefore compete with ATP for binding at the resultant fusion protein has constitutive tyrosine kinase active site.8 When bound to the active site of the putative activity enabling the activation of several signaling path- kinase(s), kinase inhibitors reduce the activity of the ways such as Ras, PI3K-Akt and Jak-STAT leading to cell activated protein kinase(s), reducing the cellular oncogenic proliferation and survival.9 The BCR-ABL protein is asso- drive and inducing tumor regression. Interestingly, only a ciated predominantly not only with CML but also with subset of patients respond to these targeted therapies and acute lymphoblastic leukemia.9 Imatinib works by binding their response is governed by the presence of specific to and stabilizing an inactive conformation of the BCR-ABL somatic alterations of the target kinase that are present protein kinase.10,11 Because imatinib also has specificity for The Pharmacogenomics Journal Somatic pharmacogenomics ON Ikediobi 307 the platelet-derived growth factor receptor, a-polypeptide malignancies harboring mutant forms of those proteins.24 (PDGFRA) and KIT protein kinases, it is also used in Another second generation ABL kinase inhibitor that treatment of malignancies associated with dysregulated demonstrates activity against imatinib resistance is dasati- forms of those proteins.11 nib. Dasatinib, although not specifically designed to target Although the initial response to imatinib is dramatic, imatinib-resistant forms of BCR-ABL, is a potent inhibitor of treatment failure quickly ensues. As is the case with the BCR-ABL, Src-family kinases, KIT and PDGFR.25,26 In con- treatment of CML patients with imatinib, patients initially trast to imatinib and nilotinib, dasatinib binds to the active experience complete cytogenetic and hematological remis- conformation of the ABL kinase.27 On the basis of promising sion. However because imatinib fails to deplete leukemic data from phase I and II trials of dasatinib, in patients with stem cells that harbor the BCR-ABL fusion protein,12 some imatinib-resistant CML and Ph-positive ALL patients, it was patients develop resistance to imatinib, particularly in the recently approved in the United States and Europe
Recommended publications
  • Pharmacogenomics to Predict Tumor Therapy Response: a Focus on ATP-Binding Cassette Transporters and Cytochromes P450
    Journal of Personalized Medicine Review Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450 Viktor Hlaváˇc 1,2,* , Petr Holý 1,2,3 and Pavel Souˇcek 1,2 1 Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; [email protected] (P.H.); [email protected] (P.S.) 2 Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic 3 Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-267082681; Fax: +420-267311236 Received: 31 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: Pharmacogenomics is an evolving tool of precision medicine. Recently,due to the introduction of next-generation sequencing and projects generating “Big Data”, a plethora of new genetic variants in pharmacogenes have been discovered. Cancer resistance is a major complication often preventing successful anticancer treatments. Pharmacogenomics of both somatic mutations in tumor cells and germline variants may help optimize targeted treatments and improve the response to conventional oncological therapy. In addition, integrative approaches combining copy number variations and long noncoding RNA profiling with germline and somatic variations seem to be a promising approach as well. In pharmacology, expression and enzyme activity are traditionally the more studied aspects of ATP-binding cassette transporters and cytochromes P450. In this review, we briefly introduce the field of pharmacogenomics and the advancements driven by next-generation sequencing and outline the possible roles of genetic variation in the two large pharmacogene superfamilies.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • Access to Guideline-Recommended Pharmacogenomic Tests for Cancer Treatments: Experience of Providers and Patients
    Access to Guideline-Recommended Pharmacogenomic Tests for Cancer Treatments: Experience of Providers and Patients The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Wu, Ann Chen, Kathleen M. Mazor, Rachel Ceccarelli, Stephanie Loomer, and Christine Y. Lu. 2017. “Access to Guideline-Recommended Pharmacogenomic Tests for Cancer Treatments: Experience of Providers and Patients.” Journal of Personalized Medicine 7 (4): 17. doi:10.3390/jpm7040017. http:// dx.doi.org/10.3390/jpm7040017. Published Version doi:10.3390/jpm7040017 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34868910 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Journal of Personalized Medicine Article Access to Guideline-Recommended Pharmacogenomic Tests for Cancer Treatments: Experience of Providers and Patients Ann Chen Wu 1,*, Kathleen M. Mazor 2, Rachel Ceccarelli 1, Stephanie Loomer 1 and Christine Y. Lu 1 1 Precision Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, 401 Park Drive, Suite 401, Boston, MA 02215, USA; [email protected] (R.C.); [email protected] (S.L.); [email protected] (C.Y.L.) 2 Meyers Primary Care Institute, A Joint Endeavor of the University of Massachusetts Medical School, Reliant Medical Group and Fallon Health; 630 Plantation Street, Worcester, MA 02215, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-617-867-4823; Fax: +1-617-859-8112 Academic Editor: Stephen B.
    [Show full text]
  • Cancer Pharmacogenomics, Challenges in Implementation, and Patient-Focused Perspectives
    Pharmacogenomics and Personalized Medicine Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Cancer pharmacogenomics, challenges in implementation, and patient-focused perspectives Jai N Patel Abstract: Cancer pharmacogenomics is an evolving landscape and has the potential to signifi- cantly impact cancer care and precision medicine. Harnessing and understanding the genetic code Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas of both the patient (germline) and the tumor (somatic) provides the opportunity for personalized HealthCare System, Charlotte, NC, dose and therapy selection for cancer patients. While germline DNA is useful in understanding USA the pharmacokinetic and pharmacodynamic disposition of a drug, somatic DNA is particularly useful in identifying drug targets and predicting drug response. Molecular profiling of somatic DNA has resulted in the current breadth of targeted therapies available, expanding the arma- mentarium to battle cancer. This review provides an update on cancer pharmacogenomics and genomics-based medicine, challenges in applying pharmacogenomics to the clinical setting, and For personal use only. patient perspectives on the use of pharmacogenomics to personalize cancer therapy. Keywords: oncology, personalized, pharmacogenetics, germline, somatic, DNA, biomarker Introduction The 21st century has been a major milestone in the advancement of cancer therapies. With the unveiling of the first human genome in 2003 to the discovery of thousands
    [Show full text]
  • CTGA 2014 Week 10
    NHGRI Current Topics in Genome Analysis 2014 May 7, 2014 Week 10: Pharmacogenomics Howard McLeod, PharmD PHARMACOGENOMICS: 2014 Dr Howard L. McLeod Medical Director, DeBartolo Family Personalized Medicine Institute Senior Member, Division of Population Sciences Current Topics in Genome Analysis 2014 Howard McLeod Gentris Corporation Member, Board of Director 1 NHGRI Current Topics in Genome Analysis 2014 May 7, 2014 Week 10: Pharmacogenomics Howard McLeod, PharmD “A surgeon who uses the wrong side of the scalpel cuts her own fingers and not the patient; if the same applied to drugs they would have been investigated very carefully a long time ago” Rudolph Bucheim Beitrage zur Arzneimittellehre, 1849 The clinical problem • Multiple active regimens for the treatment of most diseases • Variation in response to therapy • Unpredictable toxicity $$ $ $ $ $ $ $ $ $ $ $ $ With choice comes decision 2 NHGRI Current Topics in Genome Analysis 2014 May 7, 2014 Week 10: Pharmacogenomics Howard McLeod, PharmD Science Translaonal Medicine 2013 Pharmacogenomics: what is your intent? Human genetic discovery Drug Safety Explain variation in phenotype Clinical trial inclusion/exclusion Clinical practice PM EM po BID 3 NHGRI Current Topics in Genome Analysis 2014 May 7, 2014 Week 10: Pharmacogenomics Howard McLeod, PharmD Cancer Pharmacogenomics and Tumor and Germline Genomes. Wang L et al. N Engl J Med 2011;364:1144-1153. Applications of pharmacogenetics " ! Explanation for untoward event (DPYD, CYP2D6) " ! Required for insurance coverage (KRAS, EGFR, ABL)
    [Show full text]
  • Role of Pharmacogenetics in Personalised Imatinib Dosing
    1557 Review Article Role of pharmacogenetics in personalised imatinib dosing Daniel T. Barratt1,2, Andrew A. Somogyi1,2,3 1Discipline of Pharmacology, Adelaide Medical School, 2Centre for Personalised Cancer Medicine, University of Adelaide, Adelaide, Australia; 3Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, Australia Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: DT Barratt; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Dr. Daniel T. Barratt. Discipline of Pharmacology, Adelaide Medical School, Level 5 Medical School North, University of Adelaide, Adelaide, South Australia 5005, Australia. Email: [email protected]. Abstract: Imatinib is the original tyrosine kinase inhibitor specifically designed and clinically used for the molecularly targeted treatment of chronic myeloid leukaemia (CML). It remains one of the most widely used first-line treatments for CML, and is now also indicated in multiple other BCR-ABL-, c-KIT- and PDGFR-driven cancers. Imatinib is orally administered, predominantly hepatically cleared with a low hepatic extraction ratio, is 95% bound to plasma proteins, and has an intracellular site of action. In the CML setting, treatment outcomes correlate with plasma imatinib concentrations, which show large interpatient variability. Treatment outcomes also correlate with markers of drug transporter variability considered to influence imatinib distribution into CML cells. Personalised imatinib dosing is therefore expected to improve treatment outcomes compared to a “one-dose-fits-all” approach, with a potential additional role for pharmacogenetics. Imatinib is metabolised by CYPs 2C8 and 3A4 in vitro.
    [Show full text]
  • Germline Variants in Cancer Therapy
    Kaehler et al. Cancer Drug Resist 2019;2:18-30 Cancer DOI: 10.20517/cdr.2019.05 Drug Resistance Review Open Access Germline variants in cancer therapy Meike Kaehler, Ingolf Cascorbi Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel D-24105, Germany. Correspondence to: Prof. Ingolf Cascorbi, Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig- Holstein, Arnold-Heller-Str. 3, Campus Kiel, Kiel D-24105, Germany. E-mail: [email protected] How to cite this article: Kaehler M, Cascorbi I. Germline variants in cancer therapy. Cancer Drug Resist 2019;2:18-30. http://dx.doi.org/10.20517/cdr.2019.05 Received: 13 Dec 2018 First Decision: 21 Dec 2018 Revised: 11 Feb 2019 Accepted: 15 Feb 2019 Published: 19 Mar 2019 Science Editor: Enrico Mini Copy Editor: Cai-Hong Wang Production Editor: Huan-Liang Wu Abstract Cancer pharmacogenetics implies a complex combination of germline variants from the patient and somatic mutations in tumor cells. Somatic mutations meanwhile have become drugable targets or biomarkers, whereas germline mutations potentially predict adverse drug effects or drug response. Here, we evaluate hereditary variants in biotransforming enzymes and drug transporters, such as thiopurine S-methyltransferase, UDP-glucuronosyltransferase (UGT1A1), dihydropyrimidine dehydrogenase (DPD), as well as ABC transporters (ABCB1, ABCG2 and ABCC subfamily) with respect to cytostatics and targeted therapies. Furthermore, gene expression regulation with regards to epigenetics and posttranscriptional modification are discussed. Keywords: Pharmacogenetics, cytotoxic drugs, anticancer drugs, toxicity, drug resistance, drug metabolism, drug transporter INTRODUCTION The tumor cell genome consists of a complex combination of germline and somatic mutations that potentially interfere with anticancer treatment[1].
    [Show full text]
  • Access to Guideline-Recommended Pharmacogenomic Tests for Cancer Treatments: Experience of Providers and Patients
    Journal of Personalized Medicine Article Access to Guideline-Recommended Pharmacogenomic Tests for Cancer Treatments: Experience of Providers and Patients Ann Chen Wu 1,*, Kathleen M. Mazor 2, Rachel Ceccarelli 1, Stephanie Loomer 1 and Christine Y. Lu 1 1 Precision Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, 401 Park Drive, Suite 401, Boston, MA 02215, USA; [email protected] (R.C.); [email protected] (S.L.); [email protected] (C.Y.L.) 2 Meyers Primary Care Institute, A Joint Endeavor of the University of Massachusetts Medical School, Reliant Medical Group and Fallon Health; 630 Plantation Street, Worcester, MA 02215, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-617-867-4823; Fax: +1-617-859-8112 Academic Editor: Stephen B. Liggett Received: 4 October 2017; Accepted: 8 November 2017; Published: 15 November 2017 Abstract: Genomic tests are the fastest growing sector in medicine and medical science, yet there remains a dearth of research on access to pharmacogenomic tests and medications. The objective of this study is to explore providers’ and patients’ experiences and views on test access as well as strategies used for gaining access. We interviewed clinicians who prescribed medications that should be guided by pharmacogenomic testing and patients who received those prescriptions. We organized the themes into the four dimensions suggested by the World Health Organization framework on access to medications and health technologies. Guideline-recommended pharmacogenomic tests for cancer care are generally available, although the timeliness of return of test results is sometimes suboptimal.
    [Show full text]
  • Pregnane X Receptor (PXR) Polymorphisms and Cancer
    biomolecules Review PregnaneReview X Receptor (PXR) Polymorphisms andPregnane Cancer XTreatment Receptor (PXR) Polymorphisms and Cancer Treatment Aikaterini Skandalaki, Panagiotis Sarantis and Stamatios Theocharis * Aikaterini Skandalaki , Panagiotis Sarantis and Stamatios Theocharis * First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] (A.S.); [email protected] (P.S.) * Correspondence:First Department [email protected]; of Pathology, Medical Tel.: School, +30-210-746-2116 National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] (A.S.); [email protected] (P.S.) * Correspondence: [email protected]; Tel.: +30-210-746-2116 Abstract: Pregnane X Receptor (PXR) belongs to the nuclear receptors’ superfamily and mainly functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal Abstract: Pregnane X Receptor (PXR) belongs to the nuclear receptors’ superfamily and mainly and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR’s regula- functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal tion. Antineoplastic agents are of particular interest since cancer patients are characterized by sig- and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR’s regulation. nificant intra-variability to treatment response and severe toxicities. Various PXR polymorphisms Antineoplastic agents are of particular interest since cancer patients are characterized by significant may alter the function of the protein and are linked with significant effects on the pharmacokinetics intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may of chemotherapeutic agents and clinical outcome variability.
    [Show full text]
  • Discovering Long Noncoding RNA Predictors of Anticancer Drug Sensitivity Beyond Protein-Coding Genes
    Discovering long noncoding RNA predictors of anticancer drug sensitivity beyond protein-coding genes Aritro Natha, Eunice Y. T. Laub, Adam M. Leea, Paul Geeleherc, William C. S. Chob, and R. Stephanie Huanga,1 aDepartment of Experimental and Clinical Pharmacology, University of Minnesota Minneapolis, MN 55455; bDepartment of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China; and cDepartment of Computational Biology, St. Jude Children’s Research Hospital Memphis, TN 38105 Edited by Dennis A. Carson, University of California San Diego, La Jolla, CA, and approved August 29, 2019 (received for review June 12, 2019) Large-scale cancer cell line screens have identified thousands of potential confounding influence of the tissue lineage along PCGs protein-coding genes (PCGs) as biomarkers of anticancer drug proximal to the lncRNAs. response. However, systematic evaluation of long noncoding RNAs Here we report the results of a systematic investigation of the (lncRNAs) as pharmacogenomic biomarkers has so far proven lncRNA transcriptome and genome of cancer cell lines and challenging. Here, we study the contribution of lncRNAs as drug large-scale drug screens to establish a pharmacogenomic land- response predictors beyond spurious associations driven by scape of lncRNAs. We use regularized regression models to correlations with proximal PCGs, tissue lineage, or established predict drug response using lncRNA transcriptome to demon- biomarkers. We show that, as a whole, the lncRNA transcriptome is strate its potency compared to PCGs. To guide the discovery of equally potent as the PCG transcriptome at predicting response individual lncRNA biomarkers, we delineate the effects of cis- to hundreds of anticancer drugs. Analysis of individual lncRNAs PCGs on drug–lncRNA associations in regression models.
    [Show full text]
  • Pharmacogenomics in Oncology Care
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector MINI REVIEW ARTICLE published: 08 April 2014 doi: 10.3389/fgene.2014.00073 Pharmacogenomics in oncology care Kelly K. Filipski 1*, Leah E. Mechanic 1, Rochelle Long 2 and Andrew N. Freedman 1 1 Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA 2 Pharmacological and Physiological Sciences Branch, Division of Pharmacology, Physiology, and Biological Chemistry, National Institute of General Medical Sciences, Bethesda, MD, USA Edited by: Cancer pharmacogenomics have contributed a number of important discoveries to Luis Abel Quiñones, University of current cancer treatment, changing the paradigm of treatment decisions. Both somatic Chile, Chile and germline mutations are utilized to better understand the underlying biology of Reviewed by: cancer growth and treatment response. The level of evidence required to fully translate Elena García-Martín, Universidad de Extremadura, Spain pharmacogenomic discoveries into the clinic has relied heavily on randomized control Angela Roco, Servicio de Salud trials. In this review, the use of observational studies, as well as, the use of adaptive Metropolitano Occidente, Chile trials and next generation sequencing to develop the required level of evidence for clinical *Correspondence: implementation are discussed. Kelly K. Filipski, Epidemiology and Genomics Research Program, Keywords: pharmacogenomics, pharmacogenetics, somatic, germline, targeted therapy Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Dr. Room 4E228, Rockville, MD 20850, USA e-mail: kelly.fi[email protected] INTRODUCTION providing molecular drug targets. Prospective tumor sequencing In the last decade, the use of genomics in oncology significantly is being increasingly utilized, changing the paradigm of cancer impacted treatment decisions for many patients.
    [Show full text]
  • Role of Long Non-Coding RNA Polymorphisms in Cancer Chemotherapeutic Response
    Journal of Personalized Medicine Review Role of Long Non-Coding RNA Polymorphisms in Cancer Chemotherapeutic Response Zheng Zhang 1,† , Meng Gu 2,†, Zhongze Gu 1,3,* and Yan-Ru Lou 2,* 1 School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; [email protected] 2 Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; [email protected] 3 State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China * Correspondence: [email protected] (Z.G.); [email protected] (Y.-R.L.) † Zheng Zhang and Meng Gu contributed equally to this work. Abstract: Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non- coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients.
    [Show full text]