Mechanical Response of Thermoelectric Materials

Total Page:16

File Type:pdf, Size:1020Kb

Mechanical Response of Thermoelectric Materials ORNL/TM-2015/227 Mechanical Response of Thermoelectric Materials A. A. Wereszczak E. D. Case Approved for public release; distribution is unlimited. May 2015 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL/TM-2015/227 Materials Science and Technology Division MECHANICAL RESPONSE OF THERMOELECTRIC MATERIALS Andrew. A. Wereszczak Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831 [email protected] Eldon. D. Case Chemical Engineering and Materials Science (retired) Michigan State University Lansing, MI 48824 Date Published: May 2015 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, TN 37831-6283 managed by UT-BATTELLE, LLC for the US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 CONTENTS LIST OF FIGURES .......................................................................................................................................v LIST OF TABLES .........................................................................................................................................v ACRONYMS .............................................................................................................................................. vii ACKNOWLEDGMENTS ........................................................................................................................... ix ABSTRACT ...................................................................................................................................................1 1. INTRODUCTION .................................................................................................................................1 2. MECHANICAL CONSIDERATIONS OF TEMATS ..........................................................................3 2.1 TENSILE STRESS LOCATION AND FLAW TYPES ..............................................................4 2.2 WEIBULL DISTRIBUTIONS AND EFFECTIVE SIZE ...........................................................6 3. RELEVANT MECHANICAL PROPERTIES, CHARACTERISTICS, AND TEST METHODS ............................................................................................................................................7 3.1 ELASTIC MODULUS AND POISSON'S RATIO .....................................................................7 3.2 TENSILE OR FLEXURE STRENGTH ......................................................................................8 3.2.1 Uniaxial flexure testing ...................................................................................................8 3.2.2 Biaxial flexure testing .....................................................................................................9 3.3 OTHER MECHANICAL CHARACTERISTICS .....................................................................10 3.3.1 Fracture toughness ........................................................................................................10 3.3.2 Compressive strength ....................................................................................................11 3.3.3 Hardness ........................................................................................................................11 3.4 THERMAL SHOCK AND GRADIENT ...................................................................................11 4. MICROSTRUCTURAL ISSUES ........................................................................................................14 4.1 RELATIONSHIP OF PROCESSING AND MICROSTRUCTURE ........................................14 4.2 POROSITY IN THERMOELECTRIC MATERIALS ..............................................................15 5. MATERIAL NONEQUILIBRIUM .....................................................................................................16 5.1 BLOATING ...............................................................................................................................17 5.2 MICROCRACKING ..................................................................................................................19 6. REFERENCES ....................................................................................................................................24 APPENDIX A. ELASTIC PROPERTIES OF VARIOUS THERMOELECTRIC MATERIALS ........................................................................................................... A-1 APPENDIX B. UNAXIAL FLEXURE STRENGTH OF VARIOUS THERMOELECTRIC MATERIALS .......................................................................B-1 APPENDIX C. BIAXIAL FLEXURE STRENGTH OF VARIOUS THERMOELECTRIC MATERIALS .......................................................................C-1 iii LIST OF FIGURES 1. Schematic of a thermoelectric leg unit cell of a thermoelectric device that is subjected to a temperature gradient ............................................................................................................................1 2. Directionality and the sign (i.e., tension vs. compression) of stress as a function of position within a thermoelectric leg subjected to an axial temperature gradient ...................................3 3. Examples of one-dimensional (edge), two-dimensional (surface), and three-dimensional (volume) flaws that could be operative in thermoelectric legs ..............................................................5 4. A flaw-type triangle may be used to illustrate the different potential strength-limiting flaw classifications for brittle materials .................................................................................................5 5. Examples of uniaxial and biaxial flexure test figures used with thermoelectric strength testing .....................................................................................................................................................8 6. Dilatometry can be an effective way to identify at what temperature a material may exhibit nonequilibrium and a change in mechanical response .............................................................17 7. For a Co0.95Pd0.05Te0.05Sb3 specimen hot pressed at 793 K at 74.4 MPa maximum pressure, (a) a fracture surface of the specimen as a hot-pressed specimen and (b) a fracture surface of the same specimen, annealed at 973 K for 4 h in an argon atmosphere. ..........................................................................................................................................18 8. For a pulsed electric current SnTe specimen sintered at 673 K with a maximum pressure of 60 MPa, (a) a fracture surface of the as-densified specimen and (b) a fracture surface of the same specimen following annealing in argon at 873 K ...........................19 LIST OF TABLES 1. Example of effective size calculations for three-point bend testing for a skutterudite ..........................7 v ACRONYMS CARES ceramic analysis and reliability evaluation of structures CTE coefficient of thermal expansion FEA finite-element analysis LAST lead-antimony-silver-tellurium LASTT lead-antimony-silver-tellurium-tin PECS pulsed electric current sintering RUS resonant ultrasound spectroscopy SEM scanning electron microscope TAGS tellurium-antimony-germanium-silver TE thermoelectric TEA thermal expansion anisotropy TEMat thermoelectric material vii ACKNOWLEDGMENTS The authors wish to thank the following for their contributions and support: J. Gibbs and J. Fairbanks [US Department of Energy (DOE)]; R. Johnson, D. Stinton, A. Haynes, H. Wang, M. Ferber, H. -T Lin, E. Fox, S. Waters, T. Kirkland, E. Lara-Curzio, R. Trejo, and W. Cai [Oak Ridge National Laboratory (ORNL)]; J. Sharp, R. McCarty, and A. Thompson (Marlow Industries); J. Salvador (General Motors); J. Yang (University of Washington); F. Ren (Temple University); J. Ni (Jet Propulsion Laboratory); R. Schmidt (Michigan State University); and O.
Recommended publications
  • Bismuth Antimony Telluride
    ci al S ence Mahajan et al., J Material Sci Eng 2018, 7:4 ri s te & a E M n DOI: 10.4172/2169-0022.1000479 f g o i n l e a e n r r i n u g o Journal of Material Sciences & Engineering J ISSN: 2169-0022 Research Article Article OpenOpen Access Access Study and Characterization of Thermoelectric Material (TE) Bismuth Antimony Telluride Aniruddha Mahajan1*, Manik Deosarkar1 and Rajendra Panmand2 1Chemical Engineering Department, Vishwakarma Institute of Technology, Pune, India 2Centre for Materials Electronics and Technology (C-MET), Dr. Homi Bhabha Road, Pune, India Abstract Thermoelectric materials are used to convert the heat to electricity with no moving parts, in the present work an attempt has been made to prepare it for power generation function. Bismuth antimony telluride nanopowders were prepared by using mechanochemical method. Three different materials; Bismuth Telluride, (Bi0.75Sb0.25)2Te 3 and (Bi0.5Sb0.5)2Te 3 were synthesized. XRD and TEM analysis was carried out to confirm the results. The particle size of the material was determined by using FESEM analysis. The two alloys of Bismuth Telluride such prepared were converted in the pellet form using vacuum hydraulic pressure and their Seebeck coefficients were determined to test the material suitability for its use as a thermoelectric device. Their power factor measurement and Hall effect measurements were carried out at room temperature. Keywords: Bismuth telluride; Mechanochemical method; energy in one form into another. Use of TE solid materials Applications Nanoparticals; Seebeck coefficients in heat pump and refrigeration is well known [14] and it is now expanded such as cooled seats in luxury automobiles [15].
    [Show full text]
  • Thermoelectric Properties of Sb-S System Compounds from DFT Calculations
    materials Article Thermoelectric Properties of Sb-S System Compounds from DFT Calculations Hailong Yang 1,2, Pascal Boulet 1,* and Marie-Christine Record 2 1 Campus St Jérôme, Aix-Marseille University, CNRS, Madirel, 13013 Marseille, France; [email protected] 2 Campus St Jérôme, Aix-Marseille University, University of Toulon, CNRS, IM2NP, 13013 Marseille, France; [email protected] * Correspondence: [email protected]; Tel.: +33-4135-518-10 Received: 12 August 2020; Accepted: 19 October 2020; Published: 22 October 2020 Abstract: By combining density functional theory, quantum theory of atoms in molecules and transport properties calculations, we evaluated the thermoelectric properties of Sb-S system compounds and shed light on their relationships with electronic structures. The results show that, for Sb2S3, the large density of states (DOS) variation induces a large Seebeck coefficient. Taking into account the long-range weak bonds distribution, Sb2S3 should exhibit low lattice thermal conductivity. Therefore, Sb2S3 is promising for thermoelectric applications. The insertion of Be atoms into the Sb2S3 interstitial sites demonstrates the electrical properties and Seebeck coefficient anisotropy and sheds light on the understanding of the role of quasi-one-dimensional structure in the electron transport. The large interstitial sites existing in SbS2 are at the origin of phonons anharmonicity which counteracts the thermal transport. The introduction of Zn and Ga atoms into these interstitial sites could result in an enhancement of all the thermoelectric properties. Keywords: chalcogenides; thermoelectric; DFT;QTAIM; transport properties; structure-properties relationships 1. Introduction In a preceding paper [1], we performed a chemical bonding analysis on the ternary Cu-Sb-Se system compounds and showed that the weak interactions, either in local or whole structure, played an important role in lattice thermal conductivity.
    [Show full text]
  • Preparation of Bismuth Telluride Specimens for TEM
    Preparation of Bismuth Telluride Specimens for TEM Mark Homer1, Douglas L. Medlin2 1,2. Sandia National Laboratories, Energy Nanomaterials Dept., Livermore CA, USA Bismuth telluride (Bi2Te3) and its alloys are an important class of thermoelectric material. How well a thermoelectric material works is dependent on a variety of factors such as electrical and thermal conductivity and the Seeback coefficient. Because the electrical and thermal conductivity can be affected by defects in the material, there is much interest in the basic understanding the microstructures of these materials [1]. There are challenges in preparation of TEM specimens from telluride-based materials due to their sensitivity to ion-milling artifacts. For instance, nanoscale defect arrangements have been shown to form in lead telluride (PbTe) specimens prepared under aggressive ion milling conditions if cooling and power density is not suitably controlled [2]. In this presentation we discuss methods and conditions for preparing TEM specimens of Bi2Te3 specimens considering both ion-milling and electropolishing techniques. In all cases TEM specimens were mechanically pre-thinned using conventional mechanical dimpling and polishing techniques prior to final thinning to electron transparency. The ion-milled specimens were prepared with Ar+ ion sputtering using a Fischione Model 1010 ion mill with LN cooling. The electropolished specimens were prepared using a Fischione Model 120 electropolisher and an electrolyte consisting of 53% water, 38% glycerol, 5% sodium hydroxide, and 4% tartaric acid. The electrolyte was set in an ice bath and cooled to 2° C, and electropolished at 25V and 35mA. Figures 1 and 2 show dark-field TEM micrographs comparing ion milled and electropolished Bi2Te3 specimens.
    [Show full text]
  • Tunneling Behavior of Bismuth Telluride Nanoplates in Electrical
    Tunneling behavior of bismuth telluride nanoplates in electrical transport Mustafa Eginligil a, Weiqing Zhang b, Alan Kalitsov a, Xianmao Lu b,*, and Hyunsoo Yang a,* aDepartment of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore bDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore Abstract. We study the electrical transport properties of ensembles of bismuth telluride (Bi2Te3) nanoplates grown by solution based chemical synthesis. Devices consisting of Bi2Te3 nanoplates are fabricated by surface treatment after dropping the solution on the structured gold plates and the temperature dependence of resistance shows a nonmetallic behavior. Symmetric tunneling behavior in I-V was observed in both our experimental results and theoretical calculation of surface conductance based on a simple Hamiltonian, which excludes carrier-carrier interactions. Here, we present two devices: one showing symmetric, the other showing a two-step tunneling behavior. The latter can be understood in terms of disorder. * E-mail address: [email protected] (X. Lu), [email protected] (H. Yang) 1 1. Introduction Bismuth telluride (Bi2Te3), a semiconductor with an indirect bulk energy band gap of 0.165 eV [1], is a unique multifunctional material. It is an attractive thermoelectric material with the highest figure of merit (ZT = 0.68) at room temperature in its bulk [2]. It was recently shown that in thin films of Bi2Te3 ZT can be enhanced about ten times due to line dislocations in topologically protected perfectly conductive one dimensional state [3-5]. This physical property is under investigation, yet it is a well-known fact that Bi2Te3, like other members of its family (i.e.
    [Show full text]
  • Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit
    Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit Item Type Article Authors Sharma, S.; Sarath Kumar, S. R.; Schwingenschlögl, Udo Citation Sharma S, Kumar S, Schwingenschlögl U (2017) Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit. Physical Review Applied 8. Available: http://dx.doi.org/10.1103/physrevapplied.8.044013. Eprint version Publisher's Version/PDF DOI 10.1103/physrevapplied.8.044013 Publisher American Physical Society (APS) Journal Physical Review Applied Rights Archived with thanks to Physical Review Applied Download date 27/09/2021 11:57:17 Link to Item http://hdl.handle.net/10754/626090 PHYSICAL REVIEW APPLIED 8, 044013 (2017) Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit S. Sharma, S. Kumar, and U. Schwingenschlögl* Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia (Received 8 April 2017; revised manuscript received 22 June 2017; published 25 October 2017) We study the thermoelectric properties of As and Sb monolayers (arsenene and antimonene) using density-functional theory and the semiclassical Boltzmann transport approach. The materials show large band gaps combined with low lattice thermal conductivities. Specifically, the small phonon frequencies and group velocities of antimonene lead to an excellent thermoelectric response at room temperature. We show that n-type doping enhances the figure of merit. DOI: 10.1103/PhysRevApplied.8.044013 I. INTRODUCTION to other two-dimensional materials, such as graphene and phosphorene. To cope with growing energy demands, alternative A series of studies has explored the electronic properties of approaches are required that can reduce the dependence arsenene and antimonene [23–32].
    [Show full text]
  • Experimental Studies of the Thermoelectric Properties of Microstructured and Nanostructured Lead Salts
    Experimental Studies of the Thermoelectric Properties of Microstructured and Nanostructured Lead Salts by Kathleen C. Barron Submitted to the Department of Mechanical Engineering A . in Partial Fulfillment of the Requirements for the Degree of - - Bachelors of Science in Mechanical Engineering MASSACHUSETTS INSTITUTE OF TECHNOLOGY at the Massachusetts Institute of Technology APR 13 2005 February 2005 >'' 1ns Vv'thlbin Rnrrrn LIBRARIES All rights reserved The author hereby grants to MIT permission to reproduce an to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signatureof Author ............. .............................................................. Department of Mechanical Engineering January 14, 2005 Certified by ......... .... Gang Chen Professor of Mechanical Engineering Thesis Supervisor Accepted by . ...................................................................................... Ernest Cravalho Undergraduate Officer 1. Experimental Studies in the Thermoelectric Properties of Microstructured and Nanostructured Lead Salts by Kathleen C. Barron Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelors of Science in Mechanical Engineering Abstract Thermoelectric devices allow for direct conversion between thermal and electrical energy. There applications, however, are severely limited by their inefficiency. A reduction in thermal conductivity of a material potentially enhances its overall thermoelectric performance
    [Show full text]
  • A Review on Thermoelectric Generators: Progress and Applications
    energies Review A Review on Thermoelectric Generators: Progress and Applications Mohamed Amine Zoui 1,2 , Saïd Bentouba 2 , John G. Stocholm 3 and Mahmoud Bourouis 4,* 1 Laboratory of Energy, Environment and Information Systems (LEESI), University of Adrar, Adrar 01000, Algeria; [email protected] 2 Laboratory of Sustainable Development and Computing (LDDI), University of Adrar, Adrar 01000, Algeria; [email protected] 3 Marvel Thermoelectrics, 11 rue Joachim du Bellay, 78540 Vernouillet, Île de France, France; [email protected] 4 Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans No. 26, 43007 Tarragona, Spain * Correspondence: [email protected] Received: 7 June 2020; Accepted: 7 July 2020; Published: 13 July 2020 Abstract: A thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts. The low efficiency of thermoelectric devices has limited their applications to certain areas, such as refrigeration, heat recovery, power generation and renewable energy. However, for specific applications like space probes, laboratory equipment and medical applications, where cost and efficiency are not as important as availability, reliability and predictability, thermoelectricity offers noteworthy potential. The challenge of making thermoelectricity a future leader in waste heat recovery and renewable energy is intensified by the integration of nanotechnology. In this review, state-of-the-art thermoelectric generators, applications and recent progress are reported. Fundamental knowledge of the thermoelectric effect, basic laws, and parameters affecting the efficiency of conventional and new thermoelectric materials are discussed. The applications of thermoelectricity are grouped into three main domains.
    [Show full text]
  • Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations † ‡ ‡ ‡ § † ‡ Michael W
    Review pubs.acs.org/cm Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations † ‡ ‡ ‡ § † ‡ Michael W. Gaultois,*, , Taylor D. Sparks,*, Christopher K. H. Borg, Ram Seshadri,*, , , ∥ ∥ William D. Bonificio, and David R. Clarke † ‡ § Department of Chemistry and Biochemistry, Materials Research Laboratory, and Materials Department, University of California, Santa Barbara, California 93106, United States ∥ School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States ABSTRACT: In this review, we describe the creation of a large database of thermoelectric materials prepared by abstracting information from over 100 publications. The database has over 18 000 data points from multiple classes of compounds, whose relevant properties have been measured at several temperatures. Appropriate visualization of the data immediately allows certain insights to be gained with regard to the property space of plausible thermoelectric materials. Of particular note is that any candidate material needs to display an electrical resistivity value that is close to 1 mΩ cm at 300 K, that is, samples should be significantly more conductive than the Mott minimum metallic conductivity. The Herfindahl−Hirschman index, a commonly accepted measure of market concentration, has been calculated from geological data (known elemental reserves) and geopolitical data (elemental production) for much of the periodic table. The visualization strategy employed here allows rapid sorting
    [Show full text]
  • Thermoelectric Materials in Hybrid Cars
    IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 5 Ver. VI (Sep-Oct. 2014), PP 73-76 www.iosrjournals.org Thermoelectric materials in hybrid cars S.Karthik Sharan, D.Giftson Felix Department of Mechanical Engineering, Panimalar Engineering College, Chennai-123 Abstract: Due to the ever growing demand for alternative energy fuel sources, hybrid cars are gaining importance in this current century. In order to achieve greater efficiency in hybrid cars, automobile companies are investing heavily in research and development. Need for conservation of energy is necessary for achieving greater efficiency in hybrid vehicles. In this context, thermoelectric materials play a very important role. The main objective of this paper is to analyze an improved method of recharging the batteries in hybrid vehicles using a ceramic coated cast iron bar with an inner lining of fiber glass material inside to which a bismuth telluride bar is placed, is fitted to the cylinder head of the gasoline engine. The electricity generated is given to the battery which makes it charge at a faster rate. Keywords: Bismuth telluride, fiber glass. I. Introduction: The hunt for environmentally friendly vehicles has been on for quite a while now. Alternative sources of fuel (such as biodiesel and hydrogen) reduce tailpipe emissions from internal combustion engines. Electric vehicles are not much good either in the real world, although there are no emissions from them, they have a limited drivable range and the batteries take way too long to recharge. To overcome the drawbacks of an electric vehicle, the hybrid vehicle was created.
    [Show full text]
  • Optimal Band Structure for Thermoelectrics with Realistic Scattering and Bands ✉ ✉ Junsoo Park 1 , Yi Xia 2, Vidvuds Ozoliņš 3,4 and Anubhav Jain 1
    www.nature.com/npjcompumats ARTICLE OPEN Optimal band structure for thermoelectrics with realistic scattering and bands ✉ ✉ Junsoo Park 1 , Yi Xia 2, Vidvuds Ozoliņš 3,4 and Anubhav Jain 1 Understanding how to optimize electronic band structures for thermoelectrics is a topic of long-standing interest in the community. Prior models have been limited to simplified bands and/or scattering models. In this study, we apply more rigorous scattering treatments to more realistic model band structures—upward-parabolic bands that inflect to an inverted-parabolic behavior— including cases of multiple bands. In contrast to common descriptors (e.g., quality factor and complexity factor), the degree to which multiple pockets improve thermoelectric performance is bounded by interband scattering and the relative shapes of the bands. We establish that extremely anisotropic “flat-and-dispersive” bands, although best-performing in theory, may not represent a promising design strategy in practice. Critically, we determine optimum bandwidth, dependent on temperature and lattice thermal conductivity, from perfect transport cutoffs that can in theory significantly boost zT beyond the values attainable through intrinsic band structures alone. Our analysis should be widely useful as the thermoelectric research community eyes zT >3. npj Computational Materials (2021) 7:43 ; https://doi.org/10.1038/s41524-021-00512-w 1234567890():,; INTRODUCTION using model band structures and scattering15–19, but they had one Thermoelectricity enables clean electricity generation and fluid- or more of the following limitations: (1) the bands were purely free cooling. The ultimate goal of basic thermoelectric materials parabolic or parabolic-like with infinite dispersion; (2) only a single research is to design or discover materials with high figure of isotropic band was considered; (3) models for scattering and/or merit zT, commonly expressed as: transport were based on constant lifetimes, constant mean free paths, or at best scattering proportional to the density of α2σ states (DOS).
    [Show full text]
  • 1 Thermoelectric Band Engineering: the Role of Carrier Scattering Evan
    Thermoelectric Band Engineering: The Role of Carrier Scattering Evan Witkoske, Xufeng Wang, and Mark Lundstrom Purdue University, West Lafayette, IN USA Vahid Askarpour and Jesse Maassen Dalhousie University, Halifax, Nova Scotia, CA Abstract – Complex electronic band structures, with multiple valleys or bands at the same or similar energies can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented. 1. Introduction The performance of a thermoelectric device is controlled by the material figure of merit [1-4], S 2σT zT = , (1) κ e +κ L where S is the Seebeck coefficient, σ the electrical conductivity, T the absolute temperature, the electronic thermal conductivity, and the lattice thermal κ e κ L conductivity. How various material parameters affect zT is well understood (e.g. [1-4]), but parabolic energy band analyses suggest that the prospects for improving the electronic contribution to zT are limited [5].
    [Show full text]
  • Thermoelectric and Galvanomagnetic Properties of Bismuth Chalcogenide Nanostructured Hetero-Epitaxial Films
    Thermoelectric and galvanomagnetic properties of bismuth chalcogenide nanostructured hetero-epitaxial films L N Lukyanova 1, Yu A Boikov 1, V A Danilov 1, O A Usov 1, M P Volkov 1, 2 , and V A Kutasov 1 1Ioffe Physical-Technical Institute, Russian Academy of Sciences, Polytekhnicheskaya 26, 194021 St.- Petersburg, Russia 2International Laboratory of High Magnetic Fields and Low Temperatures, 53-421, Wroclaw, Poland E-mail: [email protected] Abstract Hot wall technique was used to grow block single crystal films of Bi 2Te 3 and solid solutions of Bi 0.5 Sb 1.5 Te 3 on mica (muscovite) substrates. X-ray diffraction studies demonstrated that the crystalline c- axis in the films was normal to the substrate plane. Seebeck coefficient, electrical conductivity and magnetoresistivity tensor components were measured at various orientations of magnetic and electric fields in the temperature interval 77-300 K and magnetic field up to 14 T. Scattering mechanism of charge carriers in the films were studied using temperature dependences of the degeneracy parameter and the Seebeck coefficient in terms of a many-valley model of energy spectrum. Obtained results have shown that the effective scattering parameter is considerably differed from the value specific for an acoustic scattering of charge carriers in the weakly degenerate films due to an additional scattering of charge carriers on interface and interctystallite boundaries. These features of charge carrier scattering are supposed to affect electronic transport in the films and enhance figure of merit. Keywords: bismuth-telluride-based films, transport properties, charge carrier scattering mechanism PACS: 72.15.Jf, 72.20.My, 72.20.Pa 1.
    [Show full text]