Controls on long-term low explosivity at andesitic arc volcanoes: Insights from Mount Hood, Oregon Alison M. Koleszara, Adam J.R. Kentb, Paul J. Wallacec, William E. Scottd aCorresponding author:
[email protected], ph: 1-315-430-5834, fax: 1-541-737-1200, College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Building, Oregon State University, Corvallis, OR 97331, USA b
[email protected], College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Building, Oregon State University, Corvallis, OR 97331, USA
[email protected], Department of Geological Sciences, University of Oregon, Eugene, OR 97403, USA
[email protected], U.S. Geological Survey, Cascades Volcano Observatory, 1300 SE Cardinal Ct., Vancouver, WA 98683, USA 1 Abstract The factors that control the explosivity of silicic volcanoes are critical for hazard assessment, but are often poorly constrained for specific volcanic systems. Mount Hood, Oregon, is a somewhat atypical arc volcano in that it is characterized by a lack of large explosive eruptions over the entire lifetime of the current edifice (~500,000 years). Erupted Mount Hood lavas are also compositionally homogeneous, with ~95% having SiO2 contents between 58-66 wt%. The last three eruptive periods in particular have produced compositionally homogeneous andesite-dacite lava domes and flows. In this paper we report major element and volatile (H2O, CO2, Cl, S, F) contents of melt inclusions and selected phenocrysts from these three most recent eruptive phases, and use these and other data to consider possible origins for the low explosivity of Mount Hood. Measured volatile concentrations of melt inclusions in plagioclase, pyroxene, and amphibole from pumice indicate that the volatile contents of Mount Hood magmas are comparable to those in more explosive silicic arc volcanoes, including Mount St.