Why Overfitting Is Not (Usually) a Problem in Partial Correlation

Total Page:16

File Type:pdf, Size:1020Kb

Why Overfitting Is Not (Usually) a Problem in Partial Correlation PsyArXiv Why Overfitting is Not (Usually) a Problem in Partial Correlation Networks Donald R. Williams & Josue E. Rodriguez University of California, Davis Network psychometrics is undergoing a time of methodological reflection. In part, this was spurred by the revelation that `1-regularization does not reduce spurious associations in partial correlation networks. In this work, we address another motivation for the widespread use of regularized estimation: the thought that it is needed to mitigate overfitting. We first clarify im- portant aspects of overfitting and the bias-variance tradeoff that are especially relevant for the network literature, where the number of nodes or items in a psychometric scale are not large compared to the number of observations (i.e., a low p=n ratio). This revealed that bias and especially variance are most problematic in p=n ratios rarely encountered. We then introduce a nonregularized method, based on classical hypothesis testing, that fulfills two desiderata: (1) reducing or controlling the false positives rate and (2) quelling concerns of overfitting by providing accurate predictions. These were the primary motivations for initially adopting the graphical lasso (glasso). In several simulation studies, our nonregularized method provided more than competitive predictive performance, and, in many cases, outperformed glasso. It appears to be nonregularized, as opposed to regularized estimation, that best satisfies these desiderata. We then provide insights into using our methodology. Here we discuss the multiple comparisons problem in relation to prediction: stringent alpha levels, resulting in a sparse network, can deteriorate predictive accuracy. We end by emphasizing key advantages of our approach that make it ideal for both inference and prediction in network analysis. Keywords: partial correlation network, overfitting, prediction, frequentist inference, mean squared error In the social-behavioral sciences, network theory has hypersexuality (Werner, Štulhofer, Waldorp, & Jurin, 2018). emerged as an increasingly popular framework for under- Recently, the foundation of network psychometrics was standing psychological constructs (Borsboom, 2017; Jones, improved upon when the default methodology was revis- Heeren, & McNally, 2017). The underlying rationale is that ited (Williams & Rast, 2019; Williams, Rhemtulla, Wysocki, a group of observed variables, say, self-reported symptoms, & Rast, 2019). In the network literature, `1-regularization are a dynamic system that mutually influence and interact (a.k.a., “least absolute shrinkage and selection operator” or with one another (Borsboom & Cramer, 2013). The observed “lasso”) emerged as the default approach for detecting con- variables are “nodes” and the featured connections between ditionally dependent relations. Initially, it was motivated by nodes are “edges.” This work focuses on partial correlation the thought that it reduces spurious relations. Paradoxically, networks, wherein the edges represent conditionally depen- the exact opposite holds true: lasso is known to not select dent nodes—pairwise relations that have controlled for the the correct model (Zhao & Yu, 2006) and to have a relatively other nodes in the network (Epskamp, Waldorp, Mottus, & low false negative rate. For the latter, in structural equations Borsboom, 2018). This powerful approach has resulted in models (SEM), it was noted that “lasso kept more variables an explosion of research; for example, network analysis has in the model (more Type I and fewer Type II errors)” (p. 72, been used to shed new light upon a variety of constructs Jacobucci, Brandmaier, & Kievit, 2019). In network models, including personality (Costantini et al., 2015), narcissism it was recently demonstrated that the inflated false positive (Di Pierro, Costantini, Benzi, Madeddu, & Preti, 2019), and rate inherent to lasso depends on many factors, including the sample size, edge size, sparsity, and the number of nodes (see Figure 6 in Williams et al., 2019). On the other hand, DRW was supported by a National Science Foundation Grad- nonregularized estimation has a lower false positive rate that uate Research Fellowship under Grant No. 1650042. All does not depend on those factors (Williams & Rast, 2019). code to reproduce the simulations and figures is available online Together, it is now clear that limiting false positives does not (https://osf.io/fm92b/). motivate the default status of `1-regularization. In this work, we seek to further improve network anal- 1 2 DONALD R. WILLIAMS & JOSUE E. RODRIGUEZ ysis by revisiting another purported benefit of using `1- predictive performance compared to `1-regularization. How- regularization. Additional motivation for using lasso is the ever, in certain situations, this is a robust finding in the model thought that it can mitigate overfitting. The underlying ratio- selection literature (see references in Bertsimas, King, & nale is summarized in Fried and Cramer(2017): Mazumder, 2016; Mazumder, Radchenko, & Dedieu, 2017). In the case of network models, overfitting is an This is summarized in Hastie, Tibshirani, and Tibshirani especially severe challenge because we investi- (2017): gate relationships among a large number of vari- The lasso gives better accuracy results than ables, which means there is danger of overfitting [nonregularized] best subset selection in the low a large number of parameters. One way to miti- signal-to-noise ratio (SNR) range and worse ac- gate this problem somewhat is to regularize net- curacy than best subset in the high SNR range. works (p. 1011). The transition point—the SNR level past which Although Fried and Cramer(2017) also stated “it is unclear best subset outperforms the lasso—varies de- at present to what degree regularization techniques increase pending on the problem dimensions (p. 17). generalizability” (p. 1011), it has nonetheless permeated the network literature. Indeed, the emerging consensus is that The transition point refers to the number of variables (p) rel- ative to the number of observations (n). Hence, even in noisy `1-regularization provides “protection against overfitting” (p. 16, Christensen & Golino, 2019). We argue that such state- situations, the benefits of lasso diminish or vanish altogether ments are not entirely clear, as, for example, it is all but guar- when n is much larger than p. This is the customary situation in the network literature. The remaining consideration is the anteed that the “fit to the data” (measured by predictive ac- 2 SNR (i.e., R ). Nodes are usually items from a validated curacy) will be better for training data than unseen data— 1−R2 some degree of overfitting is a foregone conclusion. In our psychometric scale, that, by construction, should not have a opinion, it is also not readily apparent that overfitting is a terribly low SNR. Together, this suggests that the oft-touted “severe challenge” that motivates regularization compared to protective shield of regularization may be overstated. nonregularized estimation. Because regularization has seri- The thought that regularization is advantageous for limit- ous ramifications on statistical inference, such as presenting ing overfitting extends beyond the network literature. In the issues for computing valid confidence intervals (see for ex- social-behavioral sciences, this is typically presented with ample section 3.1 in Bühlmann, Kalisch, & Meier, 2014), some combination of regularization and the bias-variance the guiding idea behind this work is that the “challenge” of tradeoff (Jacobucci et al., 2019; Yarkoni & Westfall, 2017). overfitting must warrant sacrificing gold-standard statistical It is often argued that biasing estimates with regularization approaches (e.g., ordinary least squares and p-values). can be advantageous, for example, “[lasso] introduces bias The network literature provides a unique opportunity to in the parameter estimates in order to avoid overfitting”(p. investigate predictive methods in the social-behavioral sci- 6, Ryan, Bringmann, & Schuurman, 2019). However, it is ences. This is because nodewise predictability has an impor- important to note that parameter and prediction bias are not tant place in both network theory and analysis (Haslbeck & the same thing. Indeed, from the statistics literature, “the Fried, 2017; Haslbeck & Waldorp, 2018). The basic idea is nonzero estimates from the lasso tend to be biased toward to see how well a given node is predicted by the other nodes zero, so the debiasing [removing parameter bias]...can often in the network. The primary motivation of this approach is improve the prediction error of the model” (p. 16, Hastie, to determine “how self-determined the network is” (p. 860, Tibshirani, & Wainwright, 2015). In addition to propos- Haslbeck & Waldorp, 2018). This is accomplished by com- ing novel methodology, another major contribution of this puting variance explained for each node in the network, given work is clarifying possible confusion surrounding the bias- the corresponding “neighborhood” of conditional relations variance tradeoff and overfitting. (i.e., shared connections with other nodes, Meinshausen & Major Contribution Bühlmann, 2006). This approach is used extensively in the network literature, including as an outcome measure in clin- Our major contribution is explicitly examining overfitting ical interventions (see for example Blanken et al., 2019). in partial correlation networks. In the literature, the general Therefore, it is important to develop methodology that brings thought is that
Recommended publications
  • Harmless Overfitting: Using Denoising Autoencoders in Estimation of Distribution Algorithms
    Journal of Machine Learning Research 21 (2020) 1-31 Submitted 10/16; Revised 4/20; Published 4/20 Harmless Overfitting: Using Denoising Autoencoders in Estimation of Distribution Algorithms Malte Probst∗ [email protected] Honda Research Institute EU Carl-Legien-Str. 30, 63073 Offenbach, Germany Franz Rothlauf [email protected] Information Systems and Business Administration Johannes Gutenberg-Universit¨atMainz Jakob-Welder-Weg 9, 55128 Mainz, Germany Editor: Francis Bach Abstract Estimation of Distribution Algorithms (EDAs) are metaheuristics where learning a model and sampling new solutions replaces the variation operators recombination and mutation used in standard Genetic Algorithms. The choice of these models as well as the correspond- ing training processes are subject to the bias/variance tradeoff, also known as under- and overfitting: simple models cannot capture complex interactions between problem variables, whereas complex models are susceptible to modeling random noise. This paper suggests using Denoising Autoencoders (DAEs) as generative models within EDAs (DAE-EDA). The resulting DAE-EDA is able to model complex probability distributions. Furthermore, overfitting is less harmful, since DAEs overfit by learning the identity function. This over- fitting behavior introduces unbiased random noise into the samples, which is no major problem for the EDA but just leads to higher population diversity. As a result, DAE-EDA runs for more generations before convergence and searches promising parts of the solution space more thoroughly. We study the performance of DAE-EDA on several combinatorial single-objective optimization problems. In comparison to the Bayesian Optimization Al- gorithm, DAE-EDA requires a similar number of evaluations of the objective function but is much faster and can be parallelized efficiently, making it the preferred choice especially for large and difficult optimization problems.
    [Show full text]
  • More Perceptron
    More Perceptron Instructor: Wei Xu Some slides adapted from Dan Jurfasky, Brendan O’Connor and Marine Carpuat A Biological Neuron https://www.youtube.com/watch?v=6qS83wD29PY Perceptron (an artificial neuron) inputs Perceptron Algorithm • Very similar to logistic regression • Not exactly computing gradient (simpler) vs. weighted sum of features Online Learning • Rather than making a full pass through the data, compute gradient and update parameters after each training example. Stochastic Gradient Descent • Updates (or more specially, gradients) will be less accurate, but the overall effect is to move in the right direction • Often works well and converges faster than batch learning Online Learning • update parameters for each training example Initialize weight vector w = 0 Create features Loop for K iterations Loop for all training examples x_i, y_i … update_weights(w, x_i, y_i) Perceptron Algorithm • Very similar to logistic regression • Not exactly computing gradient Initialize weight vector w = 0 Loop for K iterations Loop For all training examples x_i if sign(w * x_i) != y_i Error-driven! w += y_i * x_i Error-driven Intuition • For a given example, makes a prediction, then checks to see if this prediction is correct. - If the prediction is correct, do nothing. - If the prediction is wrong, change its parameters so that it would do better on this example next time around. Error-driven Intuition Error-driven Intuition Error-driven Intuition Exercise Perceptron (vs. LR) • Only hyperparameter is maximum number of iterations (LR also needs learning rate) • Guaranteed to converge if the data is linearly separable (LR always converge) objective function is convex What if non linearly separable? • In real-world problems, this is nearly always the case.
    [Show full text]
  • Measuring Overfitting and Mispecification in Nonlinear Models
    WP 11/25 Measuring overfitting and mispecification in nonlinear models Marcel Bilger Willard G. Manning August 2011 york.ac.uk/res/herc/hedgwp Measuring overfitting and mispecification in nonlinear models Marcel Bilger, Willard G. Manning The Harris School of Public Policy Studies, University of Chicago, USA Abstract We start by proposing a new measure of overfitting expressed on the untransformed scale of the dependent variable, which is generally the scale of interest to the analyst. We then show that with nonlinear models shrinkage due to overfitting gets confounded by shrinkage—or expansion— arising from model misspecification. Out-of-sample predictive calibration can in fact be expressed as in-sample calibration times 1 minus this new measure of overfitting. We finally argue that re-calibration should be performed on the scale of interest and provide both a simulation study and a real-data illustration based on health care expenditure data. JEL classification: C21, C52, C53, I11 Keywords: overfitting, shrinkage, misspecification, forecasting, health care expenditure 1. Introduction When fitting a model, it is well-known that we pick up part of the idiosyncratic char- acteristics of the data as well as the systematic relationship between a dependent and explanatory variables. This phenomenon is known as overfitting and generally occurs when a model is excessively complex relative to the amount of data available. Overfit- ting is a major threat to regression analysis in terms of both inference and prediction. When models greatly over-explain the data at hand they can even show relations which reflect chance only. Consequently, overfitting casts doubt on the true statistical signif- icance of the effects found by the analyst as well as the magnitude of the response.
    [Show full text]
  • Over-Fitting in Model Selection with Gaussian Process Regression
    Over-Fitting in Model Selection with Gaussian Process Regression Rekar O. Mohammed and Gavin C. Cawley University of East Anglia, Norwich, UK [email protected], [email protected] http://theoval.cmp.uea.ac.uk/ Abstract. Model selection in Gaussian Process Regression (GPR) seeks to determine the optimal values of the hyper-parameters governing the covariance function, which allows flexible customization of the GP to the problem at hand. An oft-overlooked issue that is often encountered in the model process is over-fitting the model selection criterion, typi- cally the marginal likelihood. The over-fitting in machine learning refers to the fitting of random noise present in the model selection criterion in addition to features improving the generalisation performance of the statistical model. In this paper, we construct several Gaussian process regression models for a range of high-dimensional datasets from the UCI machine learning repository. Afterwards, we compare both MSE on the test dataset and the negative log marginal likelihood (nlZ), used as the model selection criteria, to find whether the problem of overfitting in model selection also affects GPR. We found that the squared exponential covariance function with Automatic Relevance Determination (SEard) is better than other kernels including squared exponential covariance func- tion with isotropic distance measure (SEiso) according to the nLZ, but it is clearly not the best according to MSE on the test data, and this is an indication of over-fitting problem in model selection. Keywords: Gaussian process · Regression · Covariance function · Model selection · Over-fitting 1 Introduction Supervised learning tasks can be divided into two main types, namely classifi- cation and regression problems.
    [Show full text]
  • On Overfitting and Asymptotic Bias in Batch Reinforcement Learning With
    Journal of Artificial Intelligence Research 65 (2019) 1-30 Submitted 06/2018; published 05/2019 On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability Vincent François-Lavet [email protected] Guillaume Rabusseau [email protected] Joelle Pineau [email protected] School of Computer Science, McGill University University Street 3480, Montreal, QC, H3A 2A7, Canada Damien Ernst [email protected] Raphael Fonteneau [email protected] Montefiore Institute, University of Liege Allée de la découverte 10, 4000 Liège, Belgium Abstract This paper provides an analysis of the tradeoff between asymptotic bias (suboptimality with unlimited data) and overfitting (additional suboptimality due to limited data) in the context of reinforcement learning with partial observability. Our theoretical analysis formally characterizes that while potentially increasing the asymptotic bias, a smaller state representation decreases the risk of overfitting. This analysis relies on expressing the quality of a state representation by bounding L1 error terms of the associated belief states. Theoretical results are empirically illustrated when the state representation is a truncated history of observations, both on synthetic POMDPs and on a large-scale POMDP in the context of smartgrids, with real-world data. Finally, similarly to known results in the fully observable setting, we also briefly discuss and empirically illustrate how using function approximators and adapting the discount factor may enhance the tradeoff between asymptotic bias and overfitting in the partially observable context. 1. Introduction This paper studies sequential decision-making problems that may be modeled as Markov Decision Processes (MDP) but for which the state is partially observable.
    [Show full text]
  • Overfitting Princeton University COS 495 Instructor: Yingyu Liang Review: Machine Learning Basics Math Formulation
    Machine Learning Basics Lecture 6: Overfitting Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation • Given training data 푥푖, 푦푖 : 1 ≤ 푖 ≤ 푛 i.i.d. from distribution 퐷 1 • Find 푦 = 푓(푥) ∈ 퓗 that minimizes 퐿෠ 푓 = σ푛 푙(푓, 푥 , 푦 ) 푛 푖=1 푖 푖 • s.t. the expected loss is small 퐿 푓 = 피 푥,푦 ~퐷[푙(푓, 푥, 푦)] Machine learning 1-2-3 • Collect data and extract features • Build model: choose hypothesis class 퓗 and loss function 푙 • Optimization: minimize the empirical loss Machine learning 1-2-3 Feature mapping Maximum Likelihood • Collect data and extract features • Build model: choose hypothesis class 퓗 and loss function 푙 • Optimization: minimize the empirical loss Occam’s razor Gradient descent; convex optimization Overfitting Linear vs nonlinear models 2 푥1 2 푥2 푥1 2푥1푥2 푦 = sign(푤푇휙(푥) + 푏) 2푐푥1 푥2 2푐푥2 푐 Polynomial kernel Linear vs nonlinear models • Linear model: 푓 푥 = 푎0 + 푎1푥 2 3 푀 • Nonlinear model: 푓 푥 = 푎0 + 푎1푥 + 푎2푥 + 푎3푥 + … + 푎푀 푥 • Linear model ⊆ Nonlinear model (since can always set 푎푖 = 0 (푖 > 1)) • Looks like nonlinear model can always achieve same/smaller error • Why one use Occam’s razor (choose a smaller hypothesis class)? Example: regression using polynomial curve 푡 = sin 2휋푥 + 휖 Figure from Machine Learning and Pattern Recognition, Bishop Example: regression using polynomial curve 푡 = sin 2휋푥 + 휖 Regression using polynomial of degree M Figure from Machine Learning and Pattern Recognition, Bishop Example: regression using polynomial curve 푡 = sin 2휋푥 + 휖 Figure from Machine Learning
    [Show full text]
  • A Robust Hybrid of Lasso and Ridge Regression
    A robust hybrid of lasso and ridge regression Art B. Owen Stanford University October 2006 Abstract Ridge regression and the lasso are regularized versions of least squares regression using L2 and L1 penalties respectively, on the coefficient vector. To make these regressions more robust we may replace least squares with Huber’s criterion which is a hybrid of squared error (for relatively small errors) and absolute error (for relatively large ones). A reversed version of Huber’s criterion can be used as a hybrid penalty function. Relatively small coefficients contribute their L1 norm to this penalty while larger ones cause it to grow quadratically. This hybrid sets some coefficients to 0 (as lasso does) while shrinking the larger coefficients the way ridge regression does. Both the Huber and reversed Huber penalty functions employ a scale parameter. We provide an objective function that is jointly convex in the regression coefficient vector and these two scale parameters. 1 Introduction We consider here the regression problem of predicting y ∈ R based on z ∈ Rd. The training data are pairs (zi, yi) for i = 1, . , n. We suppose that each vector p of predictor vectors zi gets turned into a feature vector xi ∈ R via zi = φ(xi) for some fixed function φ. The predictor for y is linear in the features, taking the form µ + x0β where β ∈ Rp. In ridge regression (Hoerl and Kennard, 1970) we minimize over β, a criterion of the form n p X 0 2 X 2 (yi − µ − xiβ) + λ βj , (1) i=1 j=1 for a ridge parameter λ ∈ [0, ∞].
    [Show full text]
  • Lasso Reference Manual Release 17
    STATA LASSO REFERENCE MANUAL RELEASE 17 ® A Stata Press Publication StataCorp LLC College Station, Texas Copyright c 1985–2021 StataCorp LLC All rights reserved Version 17 Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in TEX ISBN-10: 1-59718-337-7 ISBN-13: 978-1-59718-337-6 This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice. The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes. The automobile dataset appearing on the accompanying media is Copyright c 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.
    [Show full text]
  • Overfitting Can Be Harmless for Basis Pursuit, but Only to a Degree
    Overfitting Can Be Harmless for Basis Pursuit, But Only to a Degree Peizhong Ju Xiaojun Lin Jia Liu School of ECE School of ECE Department of ECE Purdue University Purdue University The Ohio State University West Lafayette, IN 47906 West Lafayette, IN 47906 Columbus, OH 43210 [email protected] [email protected] [email protected] Abstract Recently, there have been significant interests in studying the so-called “double- descent” of the generalization error of linear regression models under the overpa- rameterized and overfitting regime, with the hope that such analysis may provide the first step towards understanding why overparameterized deep neural networks (DNN) still generalize well. However, to date most of these studies focused on the min `2-norm solution that overfits the data. In contrast, in this paper we study the overfitting solution that minimizes the `1-norm, which is known as Basis Pursuit (BP) in the compressed sensing literature. Under a sparse true linear regression model with p i.i.d. Gaussian features, we show that for a large range of p up to a limit that grows exponentially with the number of samples n, with high probability the model error of BP is upper bounded by a value that decreases with p. To the best of our knowledge, this is the first analytical result in the literature establishing the double-descent of overfitting BP for finite n and p. Further, our results reveal significant differences between the double-descent of BP and min `2-norm solu- tions. Specifically, the double-descent upper-bound of BP is independent of the signal strength, and for high SNR and sparse models the descent-floor of BP can be much lower and wider than that of min `2-norm solutions.
    [Show full text]
  • Least Squares After Model Selection in High-Dimensional Sparse Models.” DOI:10.3150/11-BEJ410SUPP
    Bernoulli 19(2), 2013, 521–547 DOI: 10.3150/11-BEJ410 Least squares after model selection in high-dimensional sparse models ALEXANDRE BELLONI1 and VICTOR CHERNOZHUKOV2 1100 Fuqua Drive, Durham, North Carolina 27708, USA. E-mail: [email protected] 250 Memorial Drive, Cambridge, Massachusetts 02142, USA. E-mail: [email protected] In this article we study post-model selection estimators that apply ordinary least squares (OLS) to the model selected by first-step penalized estimators, typically Lasso. It is well known that Lasso can estimate the nonparametric regression function at nearly the oracle rate, and is thus hard to improve upon. We show that the OLS post-Lasso estimator performs at least as well as Lasso in terms of the rate of convergence, and has the advantage of a smaller bias. Remarkably, this performance occurs even if the Lasso-based model selection “fails” in the sense of missing some components of the “true” regression model. By the “true” model, we mean the best s-dimensional approximation to the nonparametric regression function chosen by the oracle. Furthermore, OLS post-Lasso estimator can perform strictly better than Lasso, in the sense of a strictly faster rate of convergence, if the Lasso-based model selection correctly includes all components of the “true” model as a subset and also achieves sufficient sparsity. In the extreme case, when Lasso perfectly selects the “true” model, the OLS post-Lasso estimator becomes the oracle estimator. An important ingredient in our analysis is a new sparsity bound on the dimension of the model selected by Lasso, which guarantees that this dimension is at most of the same order as the dimension of the “true” model.
    [Show full text]
  • Modern Regression 2: the Lasso
    Modern regression 2: The lasso Ryan Tibshirani Data Mining: 36-462/36-662 March 21 2013 Optional reading: ISL 6.2.2, ESL 3.4.2, 3.4.3 1 Reminder: ridge regression and variable selection Recall our setup: given a response vector y 2 Rn, and a matrix X 2 Rn×p of predictor variables (predictors on the columns) Last time we saw that ridge regression, ^ridge 2 2 β = argmin ky − Xβk2 + λkβk2 β2Rp can have better prediction error than linear regression in a variety of scenarios, depending on the choice of λ. It worked best when there was a subset of the true coefficients that are small or zero But it will never sets coefficients to zero exactly, and therefore cannot perform variable selection in the linear model. While this didn't seem to hurt its prediction ability, it is not desirable for the purposes of interpretation (especially if the number of variables p is large) 2 Recall our example: n = 50, p = 30; true coefficients: 10 are nonzero and pretty big, 20 are zero Linear MSE ● True nonzero Ridge MSE True zero 1.0 ● Ridge Bias^2 ● 0.8 ● Ridge Var ● ● ● ● 0.6 ● 0.5 ● ● ● 0.4 Coefficients ● ● ● ● ● 0.0 ● ● 0.2 ● ● ● ● ● ● 0.0 −0.5 0 5 10 15 20 25 0 5 10 15 20 25 λ λ 3 Example: prostate data Recall the prostate data example: we are interested in the level of prostate-specific antigen (PSA), elevated in men who have prostate cancer. We have measurements of PSA on n = 97 men with prostate cancer, and p = 8 clinical predictors.
    [Show full text]
  • On Lasso Refitting Strategies
    On Lasso refitting strategies EVGENII CHZHEN1,* , MOHAMED HEBIRI1,** , and JOSEPH SALMON2,y 1LAMA, Universit´eParis-Est, 5 Boulevard Descartes, 77420, Champs-sur-Marne, France E-mail: *[email protected]; **[email protected] 2IMAG, Universit´ede Montpellier, Place Eug`eneBataillon, 34095 Montpellier Cedex 5, France E-mail: [email protected] A well-know drawback of `1-penalized estimators is the systematic shrinkage of the large coefficients towards zero. A simple remedy is to treat Lasso as a model-selection procedure and to perform a second refitting step on the selected support. In this work we formalize the notion of refitting and provide oracle bounds for arbitrary refitting procedures of the Lasso solution. One of the most widely used refitting techniques which is based on Least-Squares may bring a problem of interpretability, since the signs of the refitted estimator might be flipped with respect to the original estimator. This problem arises from the fact that the Least-Squares refitting considers only the support of the Lasso solution, avoiding any information about signs or amplitudes. To this end we define a sign consistent refitting as an arbitrary refitting procedure, preserving the signs of the first step Lasso solution and provide Oracle inequalities for such estimators. Finally, we consider special refitting strategies: Bregman Lasso and Boosted Lasso. Bregman Lasso has a fruitful property to converge to the Sign-Least-Squares refitting (Least-Squares with sign constraints), which provides with greater interpretability. We additionally study the Bregman Lasso refitting in the case of orthogonal design, providing with simple intuition behind the proposed method.
    [Show full text]