Optomechanics for Gravitational Wave Detection — from Resonant Bars to Next Generation Laser Interferometers

Total Page:16

File Type:pdf, Size:1020Kb

Optomechanics for Gravitational Wave Detection — from Resonant Bars to Next Generation Laser Interferometers Optomechanics for Gravitational Wave Detection | from resonant bars to next generation laser interferometers David Blair, Li Ju and Yiqiu Ma School of Physics, The University of Western Australia 1 Acknowledgements This paper reviews 40 years of research that includes enormous contributions by many PhD students and postdocs at UWA as well as international colleagues. Robin Giffard, Vladimir Braginsky and Bill Hamilton made enormous contributions to the funda- mental ideas. Underpinning the research at UWA was the outstanding UWA Physics Workshop where highly skilled technicians made enormous contributions. Ron Bowers, John Devlin, Arthur Woods, Steve Popel, John Moore and Peter Hay made enormous contributions to the construction of bar detector NIOBE and/or to the construction of the 80m interferometer at the Gingin research centre. John Ferreirinho, Tony Mann, Peter Veitch, Peter Turner, Steve Jones, Eugene Ivanov, Mike Tobar ,Ik Siong Heng and Nick Linthorne made enormous contributions to the success of NIOBE, and Peng Hong, Mitsuru Taniwaki and Brett Cuthbertson made huge contributions to trans- ducer development. John Winterflood, Jean-Charles Dumas, Ben Lee and Eu-jeen Chin built the vibration isolators that underpinned all the research at Gingin. Mark Nottcut helped us develop interferometry at UWA. Chunnong Zhao built the first interferometer and designed almost all the important experiments at Gingin. Slawek Gras, Pablo Barriga and Jerome Degallix did all the heavy lifting for understanding parametric instability,thermal tuning and cavity mode structures. Yaohui Fan, Sunil Sunsmithan, Qi Fang, and Carl Blair undertook enormously difficult experiments at Gingin while Xu (Sundae) Chen and Jiayi Qin undertook the very difficult small scale experiments. Haixing Miao, and Stefan Danilishin made enormous contributions to our understanding of quantum optomechanics. We owe our thanks to many many others whose names are not listed here. Contents 1 Optomechanics for Gravitational Wave Detection - from res- onant bars to next generation laser interferometers 1 1.1 Introduction 1 1.2 The Gravitational Wave Spectrum 1 1.3 Gravitational Wave Detection 5 1.4 Cryogenic Bars and the First Parametric Transducers 8 1.5 Non-contacting Superconducting Microwave Parametric Trans- ducer 13 1.6 Coupling Coefficients, Thermal Noise and Effective Temperature 16 1.7 Impedance Formalism for Transducers 18 1.8 The Quantum Picture For Parametric Transducers 20 1.9 The impedance matrix for parametric transducers 23 1.10 The design of NIOBE, a 1.5 tonne resonant bar with supercon- ducting parametric transducer 28 1.11 Advanced Laser Interferometer Gravitational Wave Detectors 34 1.12 Three Mode Interactions and Parametric Instability 44 1.13 White Light Optomechanical Cavities for Broadband Enhance- ment of Gravitational Wave Detectors 48 1.14 Conclusion 55 References 57 1 Optomechanics for Gravitational Wave Detection - from resonant bars to next generation laser interferometers 1.1 Introduction This paper is written at the time of the first direct detection of gravitational waves, one century after the gravitational wave spectrum was first predicted and fifty years after physicists first began to design and construct instruments for this purpose. The discovery was made by the Advanced LIGO detectors which themselves are master- pieces of optomechanical physics and engineering. The detectors are a culmination of half a century of innovation, during which the principles and the technologies of ultrasensitive mechanical measurements were developed, in particular through the de- velopment of optomechanics, pioneered by physicists developing earlier generations of gravitational wave detectors. In 2015 the Advanced LIGO detectors had achieved a factor of 3−4 improvement in amplitude sensitivity. This small step took us across a threshold, from inability to de- tect astronomical signals, to a regime in which strong signals have become detectable. The next steps in sensitivity will offer enormous scientific rewards. This paper reviews the 40 year history that led to the first detection of gravita- tional waves, and goes on to outline techniques which will allow the detectors to be substantially improved. Following a review of the gravitational wave spectrum and the early attempts at detection, it emphasises the theme of optomechanics, and the underlying physics of parametric transducers, which was creates a connection between early resonant bar detectors and modern interferometers and techniques for enhancing their sensitivity. Developments are presented in an historical context, while themes and connections between earlier and later work are emphasised. We begin by reviewing the gravitational wave spectrum. 1.2 The Gravitational Wave Spectrum Nature provides us with two fundamental spectrums of zero rest mass wave-like exci- tations which travel through empty space at the speed of light. The spectrum of elec- tromagnetic waves was predicted by James Clerk Maxwell in 1865 (Maxwell, 1865), 2 Optomechanics for Gravitational Wave Detection - from resonant bars to next generation laser interferometers 150 years before this Les Houches summer school. It was more than 2 decades before Heinrich Hertz (Hertz, 1887) succeeded in generating and detecting Maxwell's waves. At the turn of the 20th century Marconi and others created radios, but it took another century of innovation to fully harness Maxwell's spectrum, from the lowest frequen- cies, such as the Schumann resonances of the Earth's ionosphere, for which the photons have energy ∼ 10−32 J to the highest energy gamma rays, for which the photon energy approaches 1 Joule. Fifty years after Maxwell published his electromagnetic field equations, Einstein published the field equations of General Relativity. As shown by Einstein in 1916 and 1918 (Einstein, 1916; Einstein, 1918) the equations predicted gravitational waves which are ripples in spacetime described by the Reimann tensor. Einstein considered the waves to be of academic interest only, because their effects appeared to be too small to measure. Others even suggested that the waves were mathematical artifacts. It was not until 1957 that the theoretical case was made for gravitational waves having firm physical reality, with ability to transport energy and do work. This was demonstrated in a thought experiment by Richard Feynman at a conference in Chapel Hill (Rickles and DeWitt, 2011), that marked the beginning of the modern resurgence of General Relativity. Even though gravitational waves have firm physical reality, their detection is a daunting challenge because the interaction of gravitational waves with matter is very weak. In this section we will use simple arguments to estimate the amplitude and frequency of gravitational waves. Wave amplitude is measured in dimensionless units that characterise the spatial strain amplitude, that represent the fluctuating spacing 4L between inertial test masses spaced distance L apart: h = ∆L=L. In their most compact form, Einstein's equations can be written as G = (8πG=c4)T, where G is the Einstein curvature tensor which describes the curvature of spacetime and T is the stress energy tensor that describes the mass-energy distribution. The coupling constant 8πG=c4 has a magnitude ∼ 10−43. Time varying stress-energy cre- ates waves of curvature which can be measured as a strain h. Without deriving the wave equation (which can be found in numerous sources) it is obvious that the cur- vature fluctuations in general must have small amplitude because of the smallness of the coupling constant. In 1916 Schwarzschild published a solution for Einsteins field equations in the limit of spherical symmetry. His solution describes the spacetime of black holes for which there is a central singularity and an event horizon, of radius now known as the 2 Schwartzchild radius, given by rs = 2GM=c . At this time there was no evidence for the physical reality of black holes. The spacetime curvature for a gravitating source of mass M can be estimated from −8 the ratio of rs=r. For the Earth rs=r < 10 where r is the radius of the Earth. At −6 the surface of the Sun, rs=r ∼ 10 . These small factors show that general relativistic effects including the generation of gravitational waves are extremely weak in the solar system. Einstein showed that the gravitational wave luminosity of a source depends ap- proximately on the square of the third time derivative of the quadrupole moment of the source. The simplest source is a pair of masses orbiting each other. For equal The Gravitational Wave Spectrum 3 masses M orbiting each other at distance L apart and with orbital frequency !, the gravitational wave luminosity LG is given (neglecting constants ∼ 1) by G L ∼ M 2L4!6: (1.1) G c5 The same formula can be expressed in terms appropriate for a binary pair of black holes. In this case it resolves to c5 v r L ∼ ( )6( s )2: (1.2) G G c r Here the gravitational wave luminosity depends only on the scale r of the system relative to the Schwarzschild radius, and the velocity of the two masses compared to the speed of light. Equation 1.2 is remarkably different from equation 1.1. The coupling factor has been inverted, so that the gravitational wave power emitted is now scaled by the enormous factor c5=G, which has magnitude ∼ 1053. Since two black holes will merge with velocity v ∼ c at a spacing 2r ∼ 2rs, it follows that black hole coalescence can create enormous gravitational wave luminosity ∼ 1053 Watts, 1023 times the solar luminosity. This power output is independent of the system mass. Because the event duration is directly proportional to mass, the total energy output increases with mass. Numerical calculations (Pretorius, 2005) show that the above estimates are roughly correct. A binary black hole coalescence creates the most powerful energy outbursts since the big bang. Typically (depending on the black hole spins and mass ratio) it emits about 5% of the system rest mass in gravitational waves. For this reason such systems have always ranked high amongst the targets of gravitational wave astronomy, but lack of knowledge about formation processes for such systems meant that there was always large uncertainty about the event rate for such coalescences.
Recommended publications
  • UNIVERSITY of CALIFORNIA, MERCED Open System Dynamics In
    UNIVERSITY OF CALIFORNIA, MERCED Open system dynamics in quantum optomechanics A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics by Dan Hu Committee in charge: Professor Jay E. Sharping, Chair Professor Harish S. Bhat Professor Kevin A. Mitchell Professor Lin Tian, Dissertation Advisor 2014 Copyright Dan Hu, 2014 All rights reserved The dissertation of Dan Hu, titled Open system dynamics in quantum optomechanics, is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair Date Professor Jay E. Sharping Date Professor Harish S. Bhat Date Professor Kevin A. Mitchell Date Professor Lin Tian University of California, Merced 2014 iii This dissertation is dedicated to my family. iv Contents Abstract vii List of Figures ix List of Tables xi 1 Introduction 1 1.1 Cavity Optomechanics . 2 1.2 Optomechanical Phenomena . 4 1.3 Nonlinear Quantum Optomechanical System . 14 2 Linearized Optomechanical Interaction 16 2.1 Blue-detuned Optomechanics . 17 2.2 Optomechanical System With Periodic Driving . 31 3 Nonlinear Optomechanical Effects with Perturbation 42 3.1 Introduction . 43 3.2 Optomechanical System . 44 3.3 Perturbation in the Heisenberg Picture . 45 3.4 Applications of the Perturbation Solutions . 47 3.5 Conclusions . 54 4 Strongly Coupled Optomechanical System 55 4.1 Introduction . 56 4.2 Dressed-state Master Equation . 57 4.3 Analytical Solutions . 61 4.4 Numerical Results . 62 4.5 Conclusions . 70 5 Conclusions and Future Work 71 Appendix A Blue-detuned optomechanical system 73 v A.1 Covariance Matrix under RWA . 73 A.2 Optomechanical Entanglement between Cavity Output Mode and Me- chanical Mode .
    [Show full text]
  • Higher-Order Interactions in Quantum Optomechanics: Revisiting Theoretical Foundations
    Higher-order interactions in quantum optomechanics: Revisiting theoretical foundations Sina Khorasani 1,2 1 School of Electrical Engineering, Sharif University of Technology, Tehran, Iran; [email protected] 2 École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland; [email protected] Abstract: The theory of quantum optomechanics is reconstructed from first principles by finding a Lagrangian from light’s equation of motion and then proceeding to the Hamiltonian. The nonlinear terms, including the quadratic and higher-order interactions, do not vanish under any possible choice of canonical parameters, and lead to coupling of momentum and field. The existence of quadratic mechanical parametric interaction is then demonstrated rigorously, which has been so far assumed phenomenologically in previous studies. Corrections to the quadratic terms are particularly significant when the mechanical frequency is of the same order or larger than the electromagnetic frequency. Further discussions on the squeezing as well as relativistic corrections are presented. Keywords: Optomechanics, Quantum Physics, Nonlinear Interactions 1. Introduction The general field of quantum optomechanics is based on the standard optomechanical Hamiltonian, which is expressed as the simple product of photon number 푛̂ and the position 푥̂ operators, having the form ℍOM = ℏ푔0푛̂푥̂ [1-4] with 푔0 being the single-photon coupling rate. This is mostly referred to a classical paper by Law [5], where the non-relativistic Hamiltonian is obtained through Lagrangian dynamics of the system. This basic interaction is behind numerous exciting theoretical and experimental studies, which demonstrate a wide range of applications. The optomechanical interaction ℍOM is inherently nonlinear by its nature, which is quite analogous to the third-order Kerr optical effect in nonlinear optics [6,7].
    [Show full text]
  • Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators
    Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators Albert Schließer Dissertation an der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Albert Schließer aus M¨unchen Erstgutachter: Prof. Dr. Theodor W. H¨ansch Zweitgutachter: Prof. Dr. J¨org P. Kotthaus Tag der m¨undlichen Pr¨ufung: 21. Oktober 2009 Meinen Eltern gewidmet. ii Danke An dieser Stelle m¨ochte ich mich bei allen bedanken, deren Unterst¨utzung maßgeblich f¨ur das Gelingen dieser Arbeit war. Prof. Theodor H¨ansch danke ich f¨urdie Betreuung der Arbeit und die Aufnahme in seiner Gruppe zu Beginn meiner Promotion. Seine Neugier und Originalit¨at, die die Atmosph¨are in der gesamten Abteilung pr¨agen, sind eine Quelle der Motivation und Inspiration. In dieser Abteilung war auch die Independent Junior Research Group “Laboratory of Photonics” von Prof. Tobias Kippenberg eingebettet. Als erster Doktorand in dieser Gruppe danke ich Tobias f¨ur die Gelegenheit, an der Mikroresonator-Forschung am MPQ von Anfang an mitzuwirken. Ich bin ihm auch zu Dank verpflichtet f¨urdie tollen Rahmenbedingungen, die er mit beispiellosem Elan und Organisationstalent innerhalb k¨urzester Zeit schuf — und die mit Independent wohl wesentlich treffender beschrieben sind denn mit Junior.Ausdenungez¨ahlteDiskussionenphysikalischerFragestel- lungen und Ideen aller Art, und seiner sportliche Herangehensweise an die Herausforderungen des Forschungsalltags habe ich einiges gelernt. Ich m¨ochte auch Prof. J¨org Kotthaus danken, f¨urdie M¨oglichkeit der Probenherstellung im Reinraum seiner Gruppe, und sein Interesse am Fort- gang dieser Arbeit. Ich freue mich, dass er sich schließlich auch dazu bereit erkl¨art hat, das Zweitgutachten zu ¨ubernehmen.
    [Show full text]
  • Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter
    Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Dan M. Stamper-Kurn, Chair Professor Holger M¨uller Professor Ming Wu Spring 2013 Cavity Optomechanics in the Quantum Regime Copyright 2013 by Thierry Claude Marc Botter 1 Abstract Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter Doctor of Philosophy in Physics University of California, Berkeley Professor Dan M. Stamper-Kurn, Chair An exciting scientific goal, common to many fields of research, is the development of ever-larger physical systems operating in the quantum regime. Relevant to this dissertation is the objective of preparing and observing a mechanical object in its motional quantum ground state. In order to sense the object's zero-point motion, the probe itself must have quantum-limited sensitivity. Cavity optomechanics, the inter- actions between light and a mechanical object inside an optical cavity, provides an elegant means to achieve the quantum regime. In this dissertation, I provide context to the successful cavity-based optical detection of the quantum-ground-state motion of atoms-based mechanical elements; mechanical elements, consisting of the collec- tive center-of-mass (CM) motion of ultracold atomic ensembles and prepared inside a high-finesse Fabry-P´erotcavity, were dispersively probed with an average intracavity photon number as small as 0.1. I first show that cavity optomechanics emerges from the theory of cavity quantum electrodynamics when one takes into account the CM motion of one or many atoms within the cavity, and provide a simple theoretical framework to model optomechanical interactions.
    [Show full text]
  • High-Frequency Cavity Optomechanics Using Bulk Acoustic Phonons
    SCIENCE ADVANCES | RESEARCH ARTICLE APPLIED PHYSICS Copyright © 2019 The Authors, some High-frequency cavity optomechanics using bulk rights reserved; exclusive licensee acoustic phonons American Association for the Advancement 1 2 1 1 1 of Science. No claim to Prashanta Kharel *, Glen I. Harris , Eric A. Kittlaus , William H. Renninger , Nils T. Otterstrom , original U.S. Government 2 1 Jack G. E. Harris , Peter T. Rakich * Works. Distributed under a Creative To date, microscale and nanoscale optomechanical systems have enabled many proof-of-principle quantum Commons Attribution operations through access to high-frequency (gigahertz) phonon modes that are readily cooled to their thermal NonCommercial ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize License 4.0 (CC BY-NC). robust ground-state operation within these microstructures. In contrast, we demonstrate an alternative strategy for accessing high-frequency (13 GHz) phonons within macroscopic systems (centimeter scale) using phase- matched Brillouin interactions between two distinct optical cavity modes. Counterintuitively, we show that these macroscopic systems, with motional masses that are 1 million to 100 million times larger than those of microscale counterparts, offer a complementary path toward robust ground-state operation. We perform both optomechan- ically induced amplification/transparency measurements and demonstrate parametric instability of bulk phonon modes. This is an important step toward using these beam splitter and two-mode squeezing interactions within Downloaded from bulk acoustic systems for applications ranging from quantum memories and microwave-to-optical conversion to high-power laser oscillators. INTRODUCTION as the basis for phonon counting (17, 26), generation of nonclassical The coherent control of mechanical objects (1–4) can enable applica- mechanical states (18), and efficient transduction of information be- tions ranging from sensitive metrology (5) to quantum information tween optical and phononic domains (27).
    [Show full text]
  • Cavity Optomechanics: a Playground for Quantum Physics
    Cavity optomechanics: a playground for quantum physics David Vitali School of Science and Technology, Physics Division, University of Camerino, Italy, THE GROUP: COLLABORATION with M. Asjad, M. Abdi, M. Bawaj, Sh. Barzanjeh, C. Biancofiore, G.J. Milburn, G. Di Giuseppe, M.S. Kim, M. Karuza, G.S. Agarwal R. Natali, P. Tombesi 1 Cavity Optomechanics, Innsbruck, Nov 04 2013 Outline of the talk 1. Introduction to cavity optomechanics: the membrane- in-the-middle (MIM) setup as paradigmatic example 2. Proposal for generating nonclassical mechanical states in a quadratic MIM setup 3. Controlling the output light with cavity optomechanics: i) optomechanically induced transparency (OMIT); ii) ponderomotive squeezing 4. Proposal for a quantum optomechanical interface between microwave and optical signals 2 INTRODUCTION Micro- and nano-(opto)-electro-mechanical devices, i.e., MEMS, MOEMS and NEMS are extensively used for various technological applications : • high-sensitive sensors (accelerometers, atomic force microscopes, mass sensors….) • actuators (in printers, electronic devices…) • These devices operate in the classical regime for both the electromagnetic field and the motional degree of freedom However very recently cavity optomechanics has emerged as a new field with two elements of originality: 1. the opportunities offered by entering the quantum regime for these devices 2. The crucial role played by an optical (electromagnetic) cavity 3 Why entering the quantum regime for opto- and electro-mechanical systems ? 1. quantum-limited sensing, i.e., working at the sensitivity limits imposed by Heisenberg uncertainty principle VIRGO (Pisa) Nano-scale: Single-spin MRFM Macro-scale: gravitational wave D. Rugar group, IBM Almaden interferometers (VIRGO, LIGO) Detection of extremely weak forces and tiny displacements 4 2.
    [Show full text]
  • A Quantum Heat Machine from Fast Optomechanics
    A Quantum Heat Machine from Fast Optomechanics James S. Bennetta,1, Lars S. Madsena, Halina Rubinsztein-Dunlopa, and Warwick P. Bowena aAustralian Research Council Centre of Excellence for Engineered Quantum Systems (EQuS), School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia This manuscript was compiled on June 8, 2020 We consider a thermodynamic machine in which the working fluid is refrigerator, and heat pump modes of operation. The working a quantized harmonic oscillator that is controlled on timescales that fluid (oscillator) can be quantum squeezed during portions of are much faster than the oscillator period. We find that operation the thermal cycle. The oscillator can also be transiently cooled in this ‘fast’ regime allows access to a range of quantum thermody- to below the cold bath temperature, unlike standard techniques namical behaviors that are otherwise inaccessible, including heat en- for cooling an oscillator (19, 20). Interestingly, these behaviors gine and refrigeration modes of operation, quantum squeezing, and all hinge on the sub-mechanical-period (‘fast’) dynamics of vis- transient cooling to temperatures below that of the cold bath. The cous damping. While applicable to oscillator-based quantum machine involves rapid periodic squeezing operations and could po- machines quite generally, our machine might—for example—be tentially be constructed using pulsed optomechanical interactions. experimentally implemented using a quantum electromechani- The prediction of rich behavior in the fast regime opens up new pos- cal oscillator coupled to a pulsed electromagnetic field. Within sibilities for quantum optomechanical machines and quantum ther- this context, we provide one possible protocol to implement modynamics.
    [Show full text]
  • Table of Contents
    Table of Contents Schedule-at-a-Glance . 2 FiO + LS Chairs’ Welcome Letters . 3 General Information . 5 Conference Materials Access to Technical Digest Papers . 7 FiO + LS Conference App . 7 Plenary Session/Visionary Speakers . 8 Science & Industry Showcase Theater Programming . 12 Networking Area Programming . 12 Participating Companies . 14 OSA Member Zone . 15 Special Events . 16 Awards, Honors and Special Recognitions FiO + LS Awards Ceremony & Reception . 19 OSA Awards and Honors . 19 2019 APS/Division of Laser Science Awards and Honors . 21 2019 OSA Foundation Fellowship, Scholarships and Special Recognitions . 21 2019 OSA Awards and Medals . 22 OSA Foundation FiO Grants, Prizes and Scholarships . 23 OSA Senior Members . 24 FiO + LS Committees . 27 Explanation of Session Codes . 28 FiO + LS Agenda of Sessions . 29 FiO + LS Abstracts . 34 Key to Authors and Presiders . 94 Program updates and changes may be found on the Conference Program Update Sheet distributed in the attendee registration bags, and check the Conference App for regular updates . OSA and APS/DLS thank the following sponsors for their generous support of this meeting: FiO + LS 2019 • 15–19 September 2019 1 Conference Schedule-at-a-Glance Note: Dates and times are subject to change. Check the conference app for regular updates. All times reflect EDT. Sunday Monday Tuesday Wednesday Thursday 15 September 16 September 17 September 18 September 19 September GENERAL Registration 07:00–17:00 07:00–17:00 07:30–18:00 07:30–17:30 07:30–11:00 Coffee Breaks 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 15:30–16:00 15:30–16:00 13:30–14:00 13:30–14:00 PROGRAMMING Technical Sessions 08:00–18:00 08:00–18:00 08:00–10:00 08:00–10:00 08:00–12:30 15:30–17:00 15:30–18:30 Visionary Speakers 09:15–10:00 09:15–10:00 09:15–10:00 09:15–10:00 LS Symposium on Undergraduate 12:00–18:00 Research Postdeadline Paper Sessions 17:15–18:15 SCIENCE & INDUSTRY SHOWCASE Science & Industry Showcase 10:00–15:30 10:00–15:30 See page 12 for complete schedule of programs .
    [Show full text]
  • Quantum Entanglement and Networking with Spin-Optomechanics
    University College London Doctoral Thesis Quantum Entanglement and Networking with Spin-Optomechanics Author: Supervisor: Victor Montenegro-Tobar Prof. Sougato Bose A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Atomic, Molecular, Optical and Positron Physics Group Department of Physics and Astronomy September 2015 Declaration of Authorship I, Victor Montenegro-Tobar, declare that this thesis titled, 'Quantum Entan- glement and Networking with Spin-Optomechanics' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: i List of Publications • Victor Montenegro, Alessandro Ferraro, and Sougato Bose, \Nonlinearity- induced entanglement stability in a qubit-oscillator system", Physical Review A 90, 013829 (2014). • Victor Montenegro, Alessandro Ferraro, and Sougato Bose, \Entanglement distillation in optomechanics via unsharp measurements", arXiv:1503.04462 (2015). • Victor Montenegro and Sougato Bose, \Mechanical Qubit-Light Entanglers in Nonlinear Optomechanics", in preparation.
    [Show full text]
  • 1 Quantum Optomechanics
    1 Quantum optomechanics Florian Marquardt University of Erlangen-Nuremberg, Institute of Theoretical Physics, Staudtstr. 7, 91058 Erlangen, Germany; and Max Planck Institute for the Science of Light, Günther- Scharowsky-Straÿe 1/Bau 24, 91058 Erlangen, Germany 1.1 Introduction These lectures are a basic introduction to what is now known as (cavity) optome- chanics, a eld at the intersection of nanophysics and quantum optics which has de- veloped over the past few years. This eld deals with the interaction between light and micro- or nanomechanical motion. A typical setup may involve a laser-driven optical cavity with a vibrating end-mirror, but many dierent setups exist by now, even in superconducting microwave circuits (see Konrad Lehnert's lectures) and cold atom experiments. The eld has developed rapidly during the past few years, starting with demonstrations of laser-cooling and sensitive displacement detection. For short reviews with many relevant references, see (Kippenberg and Vahala, 2008; Marquardt and Girvin, 2009; Favero and Karrai, 2009; Genes, Mari, Vitali and Tombesi, 2009). In the present lecture notes, I have only picked a few illustrative references, but the dis- cussion is hopefully more didactic and also covers some very recent material not found in those reviews. I will emphasize the quantum aspects of optomechanical systems, which are now becoming important. Related lectures are those by Konrad Lehnert (specic implementation in superconducting circuits, direct classical calculation) and Aashish Clerk (quantum limits to measurement), as well as Jack Harris. Right now (2011), the rst experiments have reported laser-cooling down to near the quantum ground state of a nanomechanical resonator.
    [Show full text]
  • Slow and Fast Light Enhanced Light Drag in a Moving Microcavity
    Slow and fast light enhanced light drag in a moving microcavity Tian Qin,1 Jianfan Yang,1 Fangxing Zhang,1 Yao Chen,1 Dongyi Shen,2 Wei Liu,2 Lei Chen,2 Yuanlin Zheng,2, 3 Xianfeng Chen,2 and Wenjie Wan1, 2, ∗ 1The State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China 2MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 3Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA (Dated: May 21, 2019) Fizeau experiment, inspiring Einsteins special theory of relativity, reveals a small dragging effect of light inside a moving medium. Dispersion can enhance such light drag according to Lorentzs predication. Here we experimentally demonstrate slow and fast light enhanced light drag in a moving optical microcavity through stimulated Brillouin scattering induced transparency and absorption. The strong dispersion provides an enhancement factor up to ∼ 104 , greatly reducing the system size down to the micrometer range. These results may offer a unique platform for a compact, integrated solution to motion sensing and ultrafast signal processing applications. I. INTRODUCTION (EIT) medium of strong normal dispersion to enhance the dragging effect has been realized both in hot atomic It is well-known that the speed of light in a vacuum vapors [8, 9] as well as cold atoms [10]. However, the rigid is the same regardless of the choice of reference frame, experimental conditions requiring vacuum and precise according Einsteins theory of special relativity [1].
    [Show full text]
  • 1 Quantum Optomechanics
    1 Quantum optomechanics Florian Marquardt University of Erlangen-Nuremberg, Institute of Theoretical Physics, Staudtstr. 7, 91058 Erlangen, Germany; and Max Planck Institute for the Science of Light, G¨unther- Scharowsky-Straße 1/Bau 24, 91058 Erlangen, Germany Lectures delivered at the Les Houches School ”Quantum Machines”, July 2011 These lecture notes will be published by Oxford University Press. 1.1 Introduction These lectures are a basic introduction to what is now known as (cavity) optome- chanics, a field at the intersection of nanophysics and quantum optics which has de- veloped over the past few years. This field deals with the interaction between light and micro- or nanomechanical motion. A typical setup may involve a laser-driven optical cavity with a vibrating end-mirror, but many different setups exist by now, even in superconducting microwave circuits (see Konrad Lehnert’s lectures) and cold atom experiments. The field has developed rapidly during the past few years, starting with demonstrations of laser-cooling and sensitive displacement detection. For short reviews with many relevant references, see (Kippenberg and Vahala, 2008; Marquardt and Girvin, 2009; Favero and Karrai, 2009; Genes, Mari, Vitali and Tombesi, 2009). In the present lecture notes, I have only picked a few illustrative references, but the dis- cussion is hopefully more didactic and also covers some very recent material not found in those reviews. I will emphasize the quantum aspects of optomechanical systems, which are now becoming important. Related lectures are those by Konrad Lehnert (specific implementation in superconducting circuits, direct classical calculation) and Aashish Clerk (quantum limits to measurement), as well as Jack Harris.
    [Show full text]