Function and Crystal Structure of the Dimeric P-Loop Atpase CFD1 Coordinating an Exposed [4Fe-4S] Cluster for Transfer to Apoproteins

Total Page:16

File Type:pdf, Size:1020Kb

Function and Crystal Structure of the Dimeric P-Loop Atpase CFD1 Coordinating an Exposed [4Fe-4S] Cluster for Transfer to Apoproteins Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed [4Fe-4S] cluster for transfer to apoproteins Oliver Stehlinga, Jae-Hun Jeoungb, Sven A. Freiberta,c, Viktoria D. Paula, Sebastian Bänfera, Brigitte Niggemeyera, Ralf Rössera, Holger Dobbekb, and Roland Lilla,c,1 aInstitut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35033 Marburg, Germany; bInstitut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; and cZentrum für Synthetische Mikrobiologie SynMikro, Offensive for the Development of Scientific and Economic Excellence of the State of Hesse (LOEWE), 35043 Marburg, Germany Edited by Elizabeth Anne Craig, University of Wisconsin, Madison, WI, and approved August 13, 2018 (received for review May 4, 2018) Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires leased from the scaffold and transiently bound by transfer pro- complex machineries in mitochondria and cytosol. Initially, Fe-S teins. Finally, dedicated targeting factors assist the insertion of clusters are assembled on dedicated scaffold proteins and then are the cluster into specific apoproteins. trafficked to target apoproteins. Within the cytosolic Fe-S protein Insights into the composition and function of the CIA ma- assembly (CIA) machinery, the conserved P-loop nucleoside triphos- chinery were initially obtained in yeast. Two homologous P-loop phatase Nbp35 performs a scaffold function. In yeast, Nbp35 ATPases termed “Cfd1” and “Nbp35” were shown to serve as a cooperates with the related Cfd1, which is evolutionary less scaffold complex that de novo assembles a [4Fe-4S] cluster (12– conserved and is absent in plants. Here, we investigated the 18). This synthesis reaction requires the electron transport chain potential scaffold function of human CFD1 (NUBP2) in CFD1- composed of the diflavin oxidoreductase Tah18 and the Fe-S 55 depleted HeLa cells by measuring Fe-S enzyme activities or Fe in- protein Dre2 (19, 20). Trafficking of the [4Fe-4S] cluster and corporation into Fe-S target proteins. We show that CFD1, in com- its insertion into apoproteins are accomplished by the iron-only plex with NBP35 (NUBP1), performs a crucial role in the maturation hydrogenase-like Fe-S protein Nar1 (21, 22) and the CIA- of all tested cytosolic and nuclear Fe-S proteins, including essential targeting complex (CTC) composed of the WD40 protein Cia1, ones involved in protein translation and DNA maintenance. CFD1 the DUF59 protein Cia2, and the HEAT repeat family protein also matures iron regulatory protein 1 and thus is critical for cellular Mms19 (23–25). A further, highly specialized function is exe- iron homeostasis. To better understand the scaffold function of cuted by the adapter complex Yae1-Lto1 that facilitates [4Fe-4S] Chaetomium ther- CFD1-NBP35, we resolved the crystal structure of cluster insertion into the ABC protein Rli1 (26). Functional mophilum holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 analyses revealed an additional requirement of the cytosolic protein. Importantly, two ctCfd1 monomers coordinate a bridging monothiol glutaredoxins Grx3 and Grx4 for cytosolic-nuclear Fe-S [4Fe-4S] cluster via two conserved cysteine residues. The surface- protein biogenesis, but the step in the maturation pathway at exposed topology of the cluster is ideally suited for both de novo which they act is currently unknown (27). assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presum- ably associates with a pocket near the Cfd1 dimer interface formed Significance by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaf- Eukaryotic iron-sulfur (Fe-S) proteins play essential roles in fold components during Fe-S cluster assembly and/or release. energy conversion, antiviral defense, protein translation, genome integrity, and iron homeostasis. Assembly of the CIA machinery | NUBP1-NUBP2 | NBP35 | iron-sulfur protein | metallo-cofactors is assisted by complex machineries involving iron homeostasis more than 30 known components. The initial phase of Fe-S protein maturation in the human cytosol is poorly studied thus far, with the P-loop nucleoside triphosphatase NBP35 being the roteins harboring iron-sulfur (Fe-S) cofactors participate in only known assembly factor. Here, we identified and charac- numerous essential cellular processes including respiration, P terized human CFD1 as an indispensable complex partner of nucleotide and amino acid metabolism, genome maintenance, NBP35 in cytosolic Fe-S protein assembly (CIA). The crystal ribosome function, antiviral response, and iron homeostasis. The structure of fungal holo-Cfd1 showed a surface-exposed [4Fe-4S] BIOCHEMISTRY synthesis of these simple metallo-cofactors and their target- cluster. Its shared, surface-exposed coordination by two specific insertion into apoproteins follows a complex pathway Cfd1 monomers has important mechanistic implications for the mediated by conserved assembly systems in mitochondria and – ATP-dependent de novo cluster assembly and subsequent cytosol (1 4). The mitochondrial Fe-S cluster (ISC) assembly transfer to apoproteins via downstream CIA components. machinery includes the cysteine desulfurase complex NFS1- ISD11 that provides the sulfur required for the assembly of Author contributions: O.S., J.-H.J., S.A.F., H.D., and R.L. designed research; O.S., J.-H.J., both mitochondrial and extramitochondrial Fe-S clusters (5, 6). S.A.F., V.D.P., S.B., B.N., and R.R. performed research; O.S., J.-H.J., S.A.F., V.D.P., S.B., H.D., An export system with the mitochondrial inner membrane ATP- and R.L. analyzed data; and O.S., J.-H.J., S.A.F., H.D., and R.L. wrote the paper. binding cassette (ABC) transporter Atm1 (human ABCB7) The authors declare no conflict of interest. transports an ill-defined sulfur-containing compound from mi- This article is a PNAS Direct Submission. tochondria to the cytosolic Fe-S protein assembly (CIA) ma- Published under the PNAS license. chinery that catalyzes maturation of both cytosolic and nuclear Data deposition: The atomic coordinates and structure factors reported in this paper have Fe-S proteins (7–9). Although the ISC and CIA systems are not been deposited in the Protein Data Bank, www.wwpdb.org (PDB ID code 6G2G). evolutionarily related, they share some common mechanistic 1To whom correspondence should be addressed. Email: [email protected]. principles during biogenesis (10, 11). First, dedicated assembly This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. factors catalyze the de novo formation of an Fe-S cluster on a 1073/pnas.1807762115/-/DCSupplemental. scaffold complex. Second, the newly made Fe-S cluster is re- Published online September 10, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1807762115 PNAS | vol. 115 | no. 39 | E9085–E9094 Downloaded by guest on September 26, 2021 In human cells, the CIA pathway is less well characterized, Depletion of Human CFD1 Affects both Fe-S Cluster Assembly on especially in its initial steps where only NBP35 [also termed IRP1 and Cellular Iron Homeostasis. We tested the effect of CFD1 “NUBP1” (28)] has been functionally defined as a CIA factor depletion on the maturation of iron regulatory protein 1 (IRP1), (29). So far, the human homologs of yeast Tah18, Dre2, and a bifunctional cytosolic protein with a critical sensory role in iron Cfd1, termed “NDOR1,”“CIAPIN1,” and “CFD1” (NUBP2), metabolism (2, 44). Assembly of its [4Fe-4S] cluster and con- respectively, have not been assigned a function in Fe-S protein version to cytosolic aconitase (cytAco) was shown previously to biogenesis in vivo. Work performed in vitro and by yeast com- require NBP35, IOP1, and the specialized CIA-targeting factor plementation has suggested that human NDOR1 and CIAPIN1 CIA2A (29, 36, 38). The Fe-S cluster is lost under iron deficiency have a biochemical function similar to that of their homologs in or upon Fe-S protein biogenesis defects, which induce IRP1 to bind to mRNA stem–loop structures called “iron-responsive el- yeast (20, 30). Interestingly, plants lack a homolog of Cfd1, and ” plant Nbp35 has been shown to fulfill its scaffold function in- ements (IREs), thereby posttranscriptionally regulating the dependently of this partner (31). Trypanosomes, on the other expression of various proteins involved in cellular iron homeo- stasis. We assessed cytAco activity in cytosolic fractions almost hand, seem to rely on both Nbp35 and Cfd1 for cytosolic Fe-S devoid of mitochondrial contaminations as indicated by cytosolic protein biogenesis (32). In higher eukaryotes NBP35 and CFD1 lactate dehydrogenase (LDH) and mitochondrial citrate synthase have been implicated in the organization of microtubules, cen- – (CS) enzyme activities (SI Appendix,Fig.S3A and B). RNAi- trosomes, and cilia (33 35), but it remains unclear whether this mediated depletion of CFD1 resulted in a time-dependent de- role is direct or indirect. The second part of the human CIA cline of cytAco activity by up to 70% (Fig. 1B, Lower and SI pathway is much better characterized than the initial phase. Cell Appendix, Fig. S3C), in line with earlier findings in HEK293 cells biological and biochemical studies have identified essential roles (45). Further, IRP1 protein levels decreased substantially (Fig. 1B, of the Nar1 homolog IOP1, the CTC components CIAO1- Upper and SI Appendix, Fig. S3D), presumably due to impaired – CIA2B-MMS19, and CIA2A (25, 36 41). The latter four com- IRP1 protein stability as a consequence of defective Fe-S cluster ponents, in particular, were shown to assist several target-specific assembly (38, 46). Consistent with the cytosolic location of CFD1, Fe-S cluster-insertion routes by transient binding to their dedi- its depletion did not affect activities or protein levels of the two cated Fe-S apoproteins (SI Appendix, Fig. S1) (9, 25, 38, 42). mitochondrial Fe-S enzymes aconitase (mtAco) and succinate Nbp35 and Cfd1 belong to the SIMIBI (signal recognition, dehydrogenase (SDH) (SI Appendix,Fig.S3E–H).
Recommended publications
  • Supplementary Data
    Supplementary Data for Quantitative Changes in the Mitochondrial Proteome from Subjects with Mild Cognitive Impairment, Early Stage and Late Stage Alzheimer’s disease Table 1 - 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Table 2 - MCI mitochondrial samples, Protein Summary Table 3 - MCI mitochondrial samples, Experiment 1 Table 4 - MCI mitochondrial samples, Experiment 2 Table 5 - MCI mitochondrial samples, Experiment 3 Table 6 - EAD Mitochondrial Study, Protein Summary Table 7 - EAD Mitochondrial Study, Experiment 1 Table 8 - EAD Mitochondrial Study, Experiment 2 Table 9 - EAD Mitochondrial Study, Experiment 3 Table 10 - LAD Mitochondrial Study, Protein Summary Table 11 - LAD Mitochondrial Study, Experiment 1 Table 12 - LAD Mitochondrial Study, Experiment 2 Table 13 - LAD Mitochondrial Study, Experiment 3 Supplemental Table 1. 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Description Data MCI EAD LAD AATM_HUMAN (P00505) Aspartate aminotransferase, mitochondrial precursor (EC Mean 1.43 1.70 1.31 2.6.1.1) (Transaminase A) (Glutamate oxaloacetate transaminase 2) [MASS=47475] SEM 0.07 0.09 0.09 Count 3.00 3.00 3.00 ACON_HUMAN (Q99798) Aconitate hydratase, mitochondrial precursor (EC 4.2.1.3) Mean 1.24 1.61 1.19 (Citrate hydro-lyase) (Aconitase) [MASS=85425] SEM 0.05 0.17 0.18 Count 3.00 2.00 3.00 ACPM_HUMAN (O14561) Acyl carrier protein, mitochondrial
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Genotype Frequency Distributions of 28 SNP Markers in Two Commercial
    Li et al. BMC Genetics (2020) 21:12 https://doi.org/10.1186/s12863-020-0815-z RESEARCH ARTICLE Open Access Genotype frequency distributions of 28 SNP markers in two commercial lines and five Chinese native chicken populations Jing-Jing Li1, Long Zhang2, Peng Ren1, Ye Wang1, Ling-Qian Yin1, Jin-Shan Ran1, Xian-Xian Zhang1 and Yi-Ping Liu1* Abstract Background: Modern breeding in the poultry industry mainly aims to produce high-performance poultry lines and breeds in two main directions of productivity, meat and eggs. To understand more about the productive potential of lowly selected Chinese native chicken populations, we selected 14 representative SNP markers strongly associated with growth traits or carcass traits and 14 SNP markers strongly associated with egg laying traits through previous reports. By using the MassArray technology, we detected the genotype frequency distributions of these 28 SNP markers in seven populations including four lowly selected as well as one moderately selected Sichuan native chicken populations, one commercial broiler line and one commercial layer line. Results: Based on the genotype frequency distributions of these 28 SNP markers in 5 native chicken populations and 2 commercial lines, the results suggested that these Chinese indigenous chicken populations have a relatively close relationship with the commercial broiler line but a marked distinction from the commercial layer line. Two native chicken breeds, Shimian Caoke Chicken and Daheng Broilers, share similar genetic structure with the broiler line. Conclusions: Our observations may help us to better select and breed superior domestic chickens and provide new clues for further study of breeding programs in local chicken populations.
    [Show full text]
  • Human Leucine-Rich Repeat Proteins: a Genome-Wide Bioinformatic Categorization and Functional Analysis in Innate Immunity
    Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity Aylwin C. Y. Nga,b,1, Jason M. Eisenberga,b,1, Robert J. W. Heatha, Alan Huetta, Cory M. Robinsonc, Gerard J. Nauc, and Ramnik J. Xaviera,b,2 aCenter for Computational and Integrative Biology, and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; bThe Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; and cMicrobiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved June 11, 2010 (received for review February 17, 2010) In innate immune sensing, the detection of pathogen-associated proteins have been implicated in human diseases to date, notably molecular patterns by recognition receptors typically involve polymorphisms in NOD2 in Crohn disease (8, 9), CIITA in leucine-rich repeats (LRRs). We provide a categorization of 375 rheumatoid arthritis and multiple sclerosis (10), and TLR5 in human LRR-containing proteins, almost half of which lack other Legionnaire disease (11). identifiable functional domains. We clustered human LRR proteins Most LRR domains consist of a chain of between 2 and 45 by first assigning LRRs to LRR classes and then grouping the proteins LRRs (12). Each repeat in turn is typically 20 to 30 residues long based on these class assignments, revealing several of the resulting and can be divided into a highly conserved segment (HCS) fol- protein groups containing a large number of proteins with certain lowed by a variable segment (VS).
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • Download (4MB)
    DISSERTATION submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by M.Sc. Daniela Casarrubea born in Palermo (Italy) Oral examination: 1st February 2013 A NEW MOUSE MODEL WITH GAIN OF IRON REGULATORY PROTEIN 1 FUNCTION Referees: 1. Dr. Darren Gilmour 2. Prof. Dr. Klaus Unsicker SUMMARY SUMMARY Disorders of iron metabolism account for some of the most common human diseases, such as anemias and hemochromatosis. To maintain physiological iron balance, homeostatic mechanisms are normally in place both at the systemic and the cellular level. Cellular iron homeostasis is secured by Iron Regulatory Proteins (IRP) −1 and −2 through their binding to cis- regulatory iron-responsive elements (IRE) in target mRNAs encoding proteins with key functions in iron metabolism. In turn, the IRE−binding activity of the two IRPs is feedback regulated by the cellular labile iron pool. Mouse models with IRP deficiency have contributed valuable insights into the in vivo roles of the IRP/IRE system as well as mammalian iron biology. However, the physiological consequences of gain of IRP function have so far remained unexplored. To investigate the importance of adequate IRP expression in vivo, we have generated a mouse model allowing conditional gain of IRP function using Cre/Lox technology. This new line expresses a flag-tagged IRP1 mutant (IRP1*), which escapes iron-mediated regulation, being constitutively active in its IRE binding form. Systemic expression of the IRP1* transgene from the Rosa26 locus yields viable animals with gain of IRE-binding activity in all organs that were analyzed.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Cytosolic Iron-Sulfur Protein Assembly 1 (CIAO1) Downstream Activation
    ogy iol : Op r B e a n l A u c c c e l e s Qi et al., Mol Biol 2012, 1:2 o s M Molecular Biology: Open Access DOI: 10.4172/2168-9547.1000105 ISSN: 2168-9547 Research Article Open Access Cytosolic Iron-Sulfur Protein Assembly 1 (CIAO1) Downstream Activation of Phospholipase A2 and Hormone-Mediated Signaling-Induced Cell Death Network in Human Hepatocellular Carcinoma (HCC) by Systems- Theoretical Analysis Lianxiu Qi1, Lin Wang1*, Minghu Jiang2, Juxiang Huang1 and Hong Lin1 1Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China 2Lab of Computational Linguistics, School of Humanities and Social Sciences, Tsinghua University, Beijing, 100084, China Abstract We constructed the significant high expression (fold change ≥ 2) cytosolic iron-sulfur protein assembly 1 (CIAO1) downstream activation of phospholipase A2 and hormone-mediated signaling-induced cell death network in human Hepato Cellular Carcinoma (HCC), compared with low expression no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) in GEO data set, by using integration of gene regulatory activated and inhibited network inference method. Our result showed that CIAO1 downstream activation of phospholipase A2 and hormone-mediated signaling-induced cell death upstream network had no result, and downstream CIAO1-activated PLA2G1B, NUP62 in HCC. By integrative analysis of biological processes simultaneous occurrence between the different CIAO1 activated downstream cell death gene ontology (GO) network of HCC
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/28/2021 09:08:00AM Via Free Access
    245 E L Woodward et al. Genetic changes in anaplastic 24:5 209–220 Research thyroid cancer Genomic complexity and targeted genes in anaplastic thyroid cancer cell lines Eleanor L Woodward1, Andrea Biloglav1, Naveen Ravi1, Minjun Yang1, Lars Ekblad2, Johan Wennerberg3 and Kajsa Paulsson1 1Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden Correspondence 2Division of Oncology and Pathology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden should be addressed 3Division of Otorhinolaryngology/Head and Neck Surgery, Clinical Sciences, Lund University and Skåne to K Paulsson University Hospital, Lund, Sweden Email [email protected] Abstract Anaplastic thyroid cancer (ATC) is a highly malignant disease with a very short median Key Words survival time. Few studies have addressed the underlying somatic mutations, and the f thyroid genomic landscape of ATC thus remains largely unknown. In the present study, we f molecular genetics have ascertained copy number aberrations, gene fusions, gene expression patterns, f gene expression and mutations in early-passage cells from ten newly established ATC cell lines using single nucleotide polymorphism (SNP) array analysis, RNA sequencing and whole exome sequencing. The ATC cell line genomes were highly complex and displayed signs of replicative stress and genomic instability, including massive aneuploidy and frequent Endocrine-Related Cancer Endocrine-Related breakpoints in the centromeric regions and in fragile sites. Loss of heterozygosity involving whole chromosomes was common, but there were no signs of previous near- haploidisation events or chromothripsis. A total of 21 fusion genes were detected, including six predicted in-frame fusions; none were recurrent.
    [Show full text]