Sinapic Acid: Is It Safe for Humans?

Total Page:16

File Type:pdf, Size:1020Kb

Sinapic Acid: Is It Safe for Humans? FABAD J. Pharm. Sci., 41, 39-49, 2016 REVIEW ARTICLES Sinapic Acid: Is It Safe for Humans? Hasan HAMEED*, Sevtap AYDIN**,o, Nurşen BAŞARAN** Sinapic Acid: Is It Safe for Humans? Sinapik asit: İnsanlarda güvenli mi? SUMMARY ÖZET Phenolic compounds, one of the most commonly occurring groups En yaygın görülen fitokimyasal madde gruplarından biri of phytochemicals, play an important role in the growth and olan fenolik bileşikler, meyve ve sebzeleri asalak ve patojenlere reproduction of plants, providing protection against pathogens karşı korumanın yanı sıra, renk ve duyusal özelliklerine de and predators, also contributing towards the colour and sensory katkıda bulunarak, bitkilerin üreme ve büyümesinde önemli characteristics of fruits and vegetables. In humans, it is also suggested bir rol oynarlar. İnsanlarda da fenolik bileşiklerin antioksidan, to have antioxidant, anti-inflammatory, antimicrobial, anticancer, antiinflamatuvar, antimikrobiyal, kalp koruyucu ve antikanser and cardioprotective effects. Sinapic acid is a small naturally etkileri olduğu iddia edilmektedir. Sinapik asit doğal olarak occurring hydroxycinnamic acid derivative. It is a phenolic compound oluşan ufak bir hidroksisinamik asit türevidir. Sağlığa faydalı ve and a member of the phenylpropanoid family which are assumed as genel olarak toksik olmadığı varsayılan fenilpropanoid ailesinden therapeutically beneficial and generally non-toxic. Sinapic acid is bir fenolik bileşiktir. Sinapik asit bitki dünyasında (meyve, sebze, widespread in the plant kingdom (fruits, vegetables, cereal grains, tahıl taneleri, yağlı tohumlu bitkiler, bazı baharatlar ve şifalı oilseed crops, some spices and medicinal plants) and in human bitkiler) ve insan diyetinde yaygın bulunur. Sinapik asit türevleri diet. Derivatives of sinapic acid are characteristic compounds in the Brassicaceae familyasındaki karakteristik bileşiklerdir. Sinapik asit, Brassicaceae family. Sinapic acid shows antioxidant, antimicrobial, antioksidan, antimikrobiyal, anti-inflamatuvar, antikanser ve anti-inflammatory, anticancer, and anxiolytic activities. Mainly due anksiyolitik aktivite gösterir. Çoğunlukla antioksidan aktiviteleri to their antioxidative activities, these compounds have been suggested nedeniyle, sinapik asit ve türevlerinin gıda işleme, kozmetik ve ilaç for potential use in food processing, cosmetics, and pharmaceutical endüstrisinde potansiyel kullanımı önerilmektedir. Bu derlemede industry. In this review, the pharmacological effect, toxicity and safety sinapik asitin farmakolojik etkileri, toksisitesi ve güvenlik profili profile of sinapic acid were assessed. değerlendirilmiştir. Key Words: Phenolic compounds, sinapic acid, Pharmacokinetic Anahtar kelimeler: Fenolik bileşikler, sinapik asit, effects, pharmacological effects, toxicity, safety. farmakokinetik etkiler, farmakolojik etkiler, toksisite, güvenlilik. Received: 29.01.2017 Revised: 16.02.2017 Accepted: 22.02.2017 * Department of Pharmacology, Faculty of Pharmacy, Basra University, 61004, BAGHDAD ** Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, TURKEY o Corresponding author/authors: Hacettepe University, Faculty of Pharmacy, Pharmaceutical Toxicology Department, Ankara, 06100, Turkey. Tel: 312 30152167 Fax: 312 311477 E-mail: [email protected] 39 Hameed, Aydın, Başaran INTRODUCTION Sinapic acid Hydroxycinnamic acids (HCAs) are one of the Phenolic compounds are a group of key major classes of phenolic compounds found in nature plant metabolites found abundantly in fruit and (Herrmann and Nagel, 1989). They have been shown vegetables. Because of their antioxidant properties, to have beneficial effects in various human diseases, they play an important role in preventing various particularly atherosclerosis and cancer. They are degenerative disorders or diseases related to oxidative damage. Phenolic compounds exhibit a wide range secondary metabolites derived from phenylalanine of physiological properties, such as antiallergic, and tyrosine, and they all have a C6_C3 carbon antiatherogenic, antiinflammatory, antimicrobial, skeleton with a double bond in the side chain that antioxidant, antithrombotic, cardioprotective and may have a cis or a trans configuration. Among the vasodilatory effects (Tarkoet al., 2013; Aydin et al., most common and well-known HCAs are cinnamic 2015; Tokaç et al., 2014). acid, o-coumaric acid, m-coumaric acid, p-coumaric Phenolic compounds, ubiquitous in plants, are acid, caffeic acid, ferulic acid, and sinapic acid (El- essential parts of human diet, and are of considerable Seedi et al., 2012). HCAs are widely distributed in interest due to their antioxidant properties. These the plant kingdom, including many species that are compounds possess an aromatic ring bearing one or more hydroxyl groups and their structures may consumed as food or made into beverages, such as range from that of a simple phenolic molecule to fruits, vegetables, and grains (Manach et al., 2004). that of a complex high-molecular weight polymer HCAs can occur freely or as components of plant (Bravo, 1998). The antioxidant activity of phenolic polymers (Podsędek, 2007). During the past decade, compounds depends on the structure, in particular HCAs received particular attention because they are the number and the positions of the hydroxyl one of the most abundant antioxidants in our diet groups and the nature of substitutions on the (Kroon et al.,1999; Eryılmaz et al., 2002) aromatic rings (Balasundram et al., 2006). Phenolic compounds are present as conjugates with mono- and Sinapic acid is a small naturally occurring polysaccharides, linked to one or more of the phenolic hydroxycinnamic acid derivative. It is a phenolic groups, and may also occur as functional derivatives compound and a member of the phenylpropanoid such as esters and methyl esters. Phenolic acids family, the member of which are assumed as consist of two subgroups, i.e., the hydroxybenzoic therapeutically beneficial and generally not toxic. and hydroxycinnamic acids. Hydroxybenzoic acids include gallic, p-hydroxybenzoic, vanillic and syringic Sinapic acid is widespread in the plant kingdom (fruits, vegetables, cereal grains, oilseed crops, and acids, which in common have the C6–C1 structure. Hydroxycinnamic acids, on the other hand, are some spices and medicinal plants) and is common aromatic compounds with a three carbon side chain in human diet. Derivatives of sinapic acid are (C6–C3), with caffeic, ferulic, p-coumaric and sinapic characteristic compounds of the Brassicaceae family. acids being the most common (Bravo, 1998). Sinapic acid shows antioxidant, antimicrobial, anti- Plant phenolics are biosynthesized by two basic inflammatory, anticancer, and anxiolytic activity. pathways: The shikimic acid pathway and the malonic Mainly due to their antioxidant activity, these acid pathway. The shikimic acid pathway participates compounds have been suggested for potential use in in the biosynthesis of most plant phenolics. The malonic acid pathway is of more significance in food processing, cosmetics, and the pharmaceutical fungi and bacteria than in higher plants (Özeker, industry (Nićiforovic and Abramovič, 2014; Chen, 1999). The shikimate pathway leads to the synthesis 2016). of aromatic amino acids such as phenylalanine and Chemical and physical properties of sinapic acid tyrosine. Hydroxycinnamic acids are formed by the deamination of phenylalanine or tyrosine to yield The synonyms of sinapic acid(C 11H12O5) (Figure 1) are sinapinic acid; 3,5-dimethoxy-4-hydroxy- the C6_C3 unit that serves as the core structure of the phenylpropanoids; the deamination is catalyzed trans-cinnamic acid; (2E)-3-(4-hydroxy-3,5- by the enzyme phenylalanine ammonia-lyase (Back, dimethoxyphenyl)-2-propenoic acid; 3-(4-Hydroxy- 2001). In plants, tyrosine ammonia-lyase converts 3,5-dimethoxyphenyl) acrylic acid; trans-4-hydroxy- tyrosine into 4-hydroxycinnamic acid. This pathway 3,5-dimethoxy-cinnamic acid; trans-sinapinic acid; is responsible for the biosynthesis of a very large number of diverse secondary metabolites such as 4-hydroxy-3,5-dimethoxy-cinnamic acid. lignins (Fukuda ve Komamine, 1982) 40 FABAD J. Pharm. Sci., 41, 39-49, 2016 (Herrmann and Nagel, 1989). Sinapic acid and its derivatives are especially particularly abundant in various Brassica vegetables: broccoli, tronchuda cabbage, white cabbage, kale, turnip, radish and leaf mustard (Cartea et al., 2010). Sinapic acid has been demonstrated that the esters of sinapic acid were the major constituents of the methanolic extract from the radish sprout (Raphanus sativus L.) and 3 sinapoyl esters were identified as Figure 1. Structure of sinapic acid. methyl sinapate, 1,2-disinapoyl-β-D-glucopyranoside, Sinapic acid may be found in free form, but also and β-D-(3,4-disinapoyl)fructofuranosyl-α-D-(6- in the ester forms. Hydroxycinnamic esters are found sinapoyl)-glucopyranoside (Takaya et al., 2003). It was as sugar esters (glycosides), or as esters of a variety found to be the most abundant phenolic acid in kale of organic compounds (Nićiforovic and Abramovič, seeds (Brassica oleracea convar. acephala) (including 2014). Sinapic acid can also form dimers with itself free, ester, glycoside, and ester-bound forms), which and ferulic acid in cereal cell walls (Shirley and represents 52.4% of all phenolic acids. It was also Chapple, 2003. It is yellow-brown crystalline powder found in the leaves of kale but in a small amounts with the molecular weight of 224.21 g/mol. The (Ayaz
Recommended publications
  • Chemical Composition of Red Wines Made from Hybrid Grape and Common Grape (Vitis Vinifera L.) Cultivars
    444 Proceedings of the Estonian Academy of Sciences, 2014, 63, 4, 444–453 Proceedings of the Estonian Academy of Sciences, 2014, 63, 4, 444–453 doi: 10.3176/proc.2014.4.10 Available online at www.eap.ee/proceedings Chemical composition of red wines made from hybrid grape and common grape (Vitis vinifera L.) cultivars Priit Pedastsaara*, Merike Vaherb, Kati Helmjab, Maria Kulpb, Mihkel Kaljurandb, Kadri Karpc, Ain Raald, Vaios Karathanose, and Tõnu Püssaa a Department of Food Hygiene, Estonian University of Life Sciences, Kreutzwaldi 58A, 51014 Tartu, Estonia b Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia c Department of Horticulture, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia d Department of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia e Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., Athens, Greece Received 21 June 2013, revised 8 May 2014, accepted 23 May 2014, available online 20 November 2014 Abstract. Since the formulation of the “French paradox”, red grape wines are generally considered to be health-promoting products rather than culpable alcoholic beverages. The total wine production, totalling an equivalent of 30 billion 750 mL bottles in 2009, only verifies the fact that global demand is increasing and that the polyphenols present in wines are accounting for a significant proportion of the daily antioxidant intake of the general population. Both statements justify the interest of new regions to be self-sufficient in the wine production. Novel cold tolerant hybrid grape varieties also make it possible to produce wines in regions where winter temperatures fall below – 30 °C and the yearly sum of active temperatures does not exceed 1750 °C.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,026,285 B2 Bezwada (45) Date of Patent: Sep
    US008O26285B2 (12) United States Patent (10) Patent No.: US 8,026,285 B2 BeZWada (45) Date of Patent: Sep. 27, 2011 (54) CONTROL RELEASE OF BIOLOGICALLY 6,955,827 B2 10/2005 Barabolak ACTIVE COMPOUNDS FROM 2002/0028229 A1 3/2002 Lezdey 2002fO169275 A1 11/2002 Matsuda MULT-ARMED OLGOMERS 2003/O158598 A1 8, 2003 Ashton et al. 2003/0216307 A1 11/2003 Kohn (75) Inventor: Rao S. Bezwada, Hillsborough, NJ (US) 2003/0232091 A1 12/2003 Shefer 2004/0096476 A1 5, 2004 Uhrich (73) Assignee: Bezwada Biomedical, LLC, 2004/01 17007 A1 6/2004 Whitbourne 2004/O185250 A1 9, 2004 John Hillsborough, NJ (US) 2005/0048121 A1 3, 2005 East 2005/OO74493 A1 4/2005 Mehta (*) Notice: Subject to any disclaimer, the term of this 2005/OO953OO A1 5/2005 Wynn patent is extended or adjusted under 35 2005, 0112171 A1 5/2005 Tang U.S.C. 154(b) by 423 days. 2005/O152958 A1 7/2005 Cordes 2005/0238689 A1 10/2005 Carpenter 2006, OO13851 A1 1/2006 Giroux (21) Appl. No.: 12/203,761 2006/0091034 A1 5, 2006 Scalzo 2006/0172983 A1 8, 2006 Bezwada (22) Filed: Sep. 3, 2008 2006,0188547 A1 8, 2006 Bezwada 2007,025 1831 A1 11/2007 Kaczur (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2009/0076174 A1 Mar. 19, 2009 EP OO99.177 1, 1984 EP 146.0089 9, 2004 Related U.S. Application Data WO WO9638528 12/1996 WO WO 2004/008101 1, 2004 (60) Provisional application No. 60/969,787, filed on Sep. WO WO 2006/052790 5, 2006 4, 2007.
    [Show full text]
  • Characterization of Cell Wall Degrading Enzymes from Chrysosporium Lucknowense C1 and Their Use to Degrade Sugar Beet Pulp
    Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp Stefan Kühnel Thesis committee Thesis supervisor Prof. dr. ir. H. Gruppen Professor of Food Chemistry Wageningen University Thesis co-supervisor Dr. H. A. Schols Associate Professor, Laboratory of Food Chemistry Wageningen University Other members Dr. E. Bonnin Institut National de la Recherche Agronomique (INRA), Nantes, France Prof. dr. J. van der Oost Wageningen University Prof. dr. J. G. M. Sanders Wageningen University Dr. J. A. M. de Bont C5 Yeast Company B. V., Bergen op Zoom This research was conducted under the auspices of the Graduate School VLAG (Graduate School of Nutrition, Food Technology, Agrobiotechnology and Health Sciences) Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp Stefan Kühnel Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M. J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 9 September 2011 at 4 p.m. in the Aula. Stefan Kühnel Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp 192 pages PhD thesis Wageningen University, NL (2011) With references, with summaries in English, Dutch and German ISBN: 978-90-8585-978-9 Abstract Kühnel, S Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp Ph.D. thesis Wageningen University, The Netherlands, 2011 Key words Pectin, arabinan, biorefinery, mode of action, branched arabinose oligomers, ferulic acid esterase, arabinohydrolase, pretreatment Sugar beet pulp is the cellulose and pectin-rich debris remaining after sugar extrac- tion from sugar beets.
    [Show full text]
  • Panax Ginseng Callus, Suspension, and Root Cultures: Extraction and Qualitative Analysis Lyubov S
    Dyshlyuk L.S. et al. Foods and Raw Materials, 2020, vol. 8, no. 2, pp. 369–376 E-ISSN 2310-9599 Foods and Raw Materials, 2020, vol. 8, no. 2 ISSN 2308-4057 Research Article DOI: http://doi.org/10.21603/2308-4057-2020-2-369-376 Open Access Available online at http://jfrm.ru/en Panax ginseng callus, suspension, and root cultures: extraction and qualitative analysis Lyubov S. Dyshlyuk , Anastasia I. Dmitrieva* , Svetlana A. Ivanova , Yuliya V. Golubcova, Lev A. Ostroumov Kemerovo State University, Kemerovo, Russia * e-mail: [email protected] Received May 29, 2020; Accepted in revised form June 11, 2020; Published August 25, 2020 Abstract: Introduction. In recent years, scientists have been actively searching for medicinal plants containing biologically active substances with geroprotective properties to treat diseases of old age, in particular cancer, diabetes, cardiovascular diseases, and others. Ginseng (Panax ginseng L.) is a promising source of geroprotective compounds. We aimed to select optimal parameters for extracting organic compounds from ginseng callus, suspension, and root cultures and analyze their qualitative composition. Study objects and methods. We studied ginseng callus, suspension, and root cultures, as well as their extracts. Biologically active substances were extracted with 30 to 70% ethanol. Organic compounds were determined by thin-layer chromatography. The results for each plant were archived and analyzed for the presence of quercetin, mangiferin, luteolin, rutin, quercetin-2-D-glucoside, malvidin, as well as caffeic, cinnamic, ferulic, and sinapinic acids. Results and discussion. We developed a procedure for screening solvents and performed a fractional qualitative analysis of biologically active substances extracted from ginseng.
    [Show full text]
  • Application of MALDI Mass Spectrometry in Natural Products Analysis
    Reviews 671 Application of MALDI Mass Spectrometry in Natural Products Analysis Authors Ricardo Silva 1, Norberto Peporine Lopes1, Denise Brentan Silva 1, 2 Affiliations 1 Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil 2 Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil Key words Abstract DHAP: 2,5-dihydroxyacetophenone l" MALDI ! DHB: 2,5-dihydroxybenzoic acid l" dereplication This article presents the utility of mass spectrom- DIT: dithranol l" natural products etry with a MALDI ionization source in natural EI: electron ionization l" fragmentation products analysis. The advantages and drawbacks FAB: fast atom bombardment l" data processing of this technique for natural products analyses FT: Fourier transform will be presented and discussed. In addition, the IAA: trans-3-indoleacrylic acid structural determination of secondary metabo- ICR: ion cyclotron resonance lites using MALDI‑MS/MS will be explored, which IMS: imaging mass spectrometry received May 3, 2015 can guide MALDI experimental methods and IT: ion trap revised March 1, 2016 stimulate new research in this area. Finally, sev- LDI: laser desorption/ionization accepted March 2, 2016 eral important approaches for MALDI data pro- LiDHB: lithium 2,4-dihydroxybenzoate Bibliography cessing will be discussed. HABA: 2-(4-hydroxyphenylazo)benzoic
    [Show full text]
  • Free Radicals Induced Oxidative Stress at a Molecular Level: the Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols
    J. Mex. Chem. Soc. 2015, 59(4), 231-262 Article © 2015, Sociedad Química de México ISSN 1870-249X Free Radicals Induced Oxidative Stress at a Molecular Level: The Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols Annia Galano1 1 To whom correspondence should be addressed. E-mail: [email protected]; [email protected] Departamento de Química. Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa. C. P. 09340. México D. F. México. Received September 14th, 2015; Accepted January 18th, 2016 Abstract. Oxidative stress is frequently caused by an excess of free Resumen. El estrés oxidativo frecuentemente es causado por un exce- radicals and has been associated with a wide variety of health disor- so de radicales libres, y ha sido asociado con una amplia variedad de ders. Therefore, finding strategies for scavenging free radicals has be- problemas de salud. Es por ello que encontrar estrategias viables para come an active area of research. This review summarizes, from a eliminar radicales libres se ha convertido en una activa área de inves- physicochemical perspective, relevant strategies to fight oxidative tigación. Esta reseña resume, desde una perspectiva fisicoquímica, stress via antioxidants, including prevention, deactivation of oxidants, estrategias relevantes para combatir el estrés oxidativo por medio de and repair of damaged targets. Different reaction mechanisms in- antioxidantes incluyendo prevención, desactivación de oxidantes, y volved in the chemical protection exerted by antioxidants are dis- reparación de blancos dañados. Se discuten diferentes mecanismos de cussed, as well as their relative importance depending on several reacción involucrados en la protección química que ejercen los an- aspects.
    [Show full text]
  • Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols
    Hindawi Publishing Corporation ISRN Spectroscopy Volume 2013, Article ID 813563, 45 pages http://dx.doi.org/10.1155/2013/813563 Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols Riccardo Flamini Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Italy Correspondence should be addressed to Riccardo Flamini; riccardo.�amini�entecra.it Received 24 September 2012; Accepted 12 October 2012 Academic �ditors: D.-A. Guo, �. Sta�lov, and M. Valko Copyright © 2013 Riccardo Flamini. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polyphenols are the principal compounds associated with health bene�c effects of wine consumption and in general are characterized by antioxidant activities. Mass spectrometry is shown to play a very important role in the research of polyphenols in grape and wine and for the quality control of products. e so ionization of LC/MS makes these techniques suitable to study the structures of polyphenols and anthocyanins in grape extracts and to characterize polyphenolic derivatives formed in wines and correlated to the sensorial characteristics of the product. e coupling of the several MS techniques presented here is shown to be highly effective in structural characterization of the large number of low and high molecular weight polyphenols in grape and wine and also can be highly effective in the study of grape metabolomics. 1. Principal Polyphenols of Grape and Wine During winemaking the condensed (or nonhydrolyzable) tannins are transferred to the wine and contribute strongly to Polyphenols are the principal compounds associated to the sensorial characteristic of the product.
    [Show full text]
  • Analysis, Isolation and Bioactives of Rapeseed Phenolics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Analysis, isolation, and bioactivities of rapeseed phenolics Satu Vuorela ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in lecture hall B2, Viikki, on October 21st, at 12 o’clock noon. University of Helsinki Department of Applied Chemistry and Microbiology Food Chemistry Helsinki 2005 Custos: Professor Vieno Piironen Department of Applied Chemistry and Microbiology University of Helsinki Helsinki, Finland Supervisor: Professor Marina Heinonen Department of Applied Chemistry and Microbiology University of Helsinki Helsinki, Finland Reviewers: Professor Karin Schwarz Institute of Human Nutrition and Food Science University of Kiel Kiel, Germany Professor KristiinaWähälä Department of Chemistry University of Helsinki Helsinki, Finland Opponent: Professor Rainer Huopalahti Department of Biochemistry and Food Chemistry University of Turku Turku, Finland ISBN 952-10-2721-5 (paperback) ISBN 952-10-2722-3 (PDF) ISSN 0355-1180 Yliopistopaino Helsinki 2005 Vuorela, S 2005. Analysis, isolation, and bioactivities of rapeseed phenolics (dissertation). EKT series 1343. University of Helsinki. Department of Applied Chemistry and Microbiology. ABSTRACT The main objective of the work was to investigate the antioxidant and various bioactivity properties of rapeseed phenolics. Rapeseed meal and oil phenolics were analyzed and hydrolyzed, and methods of isolating the phenolics suitable for food applications were evaluated. The bioactivity testing was focused on antioxidant activity. HPLC analysis of the phenolic extracts showed the main phenolics in rapeseed meal to be sinapine, the choline ester of sinapic acid, and sinapic acid, while those in crude post-expelled rapeseed oil were vinylsyringol and, in smaller amount, sinapine and sinapic acid.
    [Show full text]
  • Sinapic Acid and Its Derivatives As Medicine in Oxidative Stress-Induced Diseases and Aging
    Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity Volume 2016, Article ID 3571614, 10 pages http://dx.doi.org/10.1155/2016/3571614 Review Article Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging Chunye Chen Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China Correspondence should be addressed to Chunye Chen; [email protected] Received 29 October 2014; Revised 2 January 2015; Accepted 12 January 2015 Academic Editor: Mat´ıas Mosqueira Copyright © 2016 Chunye Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. 1. Introduction Sinapicacidexistsinbothfreeandesterform;some esters are sinapoyl esters, sinapine (sinapoylcholine), and As a result of metabolic processes, there is continuous pro- sinapoyl malate [8, 9]. Sinapic acid is a phytochemical found duction of reactive oxygen species (ROS), such as hydroxyl in various edible plants such as spices, citrus and berry fruits, radicals [1], in human body.
    [Show full text]
  • A Kinetic Approach in the Evaluation of Radical-Scavenging Efficiency Of
    molecules Article A Kinetic Approach in the Evaluation of Radical-Scavenging Efficiency of Sinapic Acid and Its Derivatives Neda Ni´ciforovi´c 1, Tomaž Polak 1, Damjan Makuc 2, Nataša Poklar Ulrih 1 and Helena Abramoviˇc 1,* 1 Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia; [email protected] (N.N.); [email protected] (T.P.); [email protected] (N.P.U.) 2 Slovenian NMR Centre, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-1-320-37-82; Fax: +386-1-256-62-96 Academic Editor: Derek J. McPhee Received: 19 January 2017; Accepted: 22 February 2017; Published: 28 February 2017 Abstract: A kinetic approach was used to determine the radical scavenging activities of sinapic acid and its derivatives: sinapine, 4-vinylsyringol, syringic acid, syringaldehyde, and ethyl, propyl and butyl sinapate. The responses were expressed as rates of 2,2-diphenyl-1-picrylhydrazyl radical · ·− (DPPH ) scavenging (RS), superoxide radical (O2 ) scavenging (RFF), and β-carotene bleaching in the emulsion system (RB). For RS and RB, the esters of sinapic acid showed the highest responses while, for RFF, this was seen for syringic acid. The effectiveness of the selected compounds for scavenging these free radicals was also determined at a fixed endpoint. The early response parameters were demonstrated to be good discriminators in assessing differences for antioxidants with comparable fixed endpoint activity. The primary feature that ranks the kinetic data and the endpoint determinations is interpreted in terms of the mechanisms of the reactions involved in each of the assays conducted.
    [Show full text]
  • Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements
    antioxidants Article Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements Jitka Viktorova 1 , Milena Stranska-Zachariasova 2,*, Marie Fenclova 2, Libor Vitek 3 , Jana Hajslova 2, Vladimir Kren 4 and Tomas Ruml 1 1 Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic 2 Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republice 3 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Katerinska 32, 12000 Prague, Czech Republic 4 Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republice * Correspondence: [email protected] Received: 29 June 2019; Accepted: 12 August 2019; Published: 18 August 2019 Abstract: Numerous in vitro assays are used to characterize the antioxidant properties of natural-based matrices. However, many of them generate contradictory and non-compliant results. In our study, we focused on the characterization of traditionally used biochemical (2,20-azino-bis-(3- ethylbenzothiazoline-6 sulfonic acid) (ABTS), Oxygen Radical Absorption Capacity (ORAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and cellular (CAA) antioxidant tests on a broad set of milk thistle dietary supplements containing silymarin. In addition to 26 commercially available preparations, also the natural silymarin extract available from Sigma Aldrich, St. Louis, MI, USA, and a model mixture of pure flavonoid/flavonolignans mimicking the silymarin composition were investigated as control samples. Significant differences in the antioxidant capacity of the supplements were observed. Unlike the DPPH, the results of the ABTS and ORAC methods correlated with the silymarin components determined by U-HPLC-HRMS/MS.
    [Show full text]
  • Comparison of Antioxidant Capacity and Phenolic Compounds of Berries, Chokecherry and Seabuckthorn
    Cent. Eur. J. Biol. • 4(4) • 2009 • 499–506 DOI: 10.2478/s11535-009-0041-1 Central European Journal of Biology Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn Research Article Wende Li1, Arnold W. Hydamaka 1, Lynda Lowry2, Trust Beta1,3* 1Department of Food Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 2Food Development Centre, Portage la Prairie, Manitoba R1N 3J9, Canada 3Richardson Centre for Functional Foods & Nutraceuticals, Smartpark, University of Manitoba, Winnipeg, Manitoba R3T 6C5, Canada Received 9 June 2009; Accepted 21 July 2009 Abstract: Antioxidant capacity and phenolic compounds (phenolic acids and anthocyanins) of four berry fruits (strawberry, Saskatoon berry, raspberry and wild blueberry), chokecherry and seabuckthorn were compared in the present study. Total phenolic content and total anthocyanin content ranged from 22.83 to 131.88 g/kg and 3.51 to 13.13 g/kg, respectively. 2,2-Diphenyl-1-picryhydrazyl free radical scavenging activity ranged from 29.97 to 78.86%. Chokecherry had the highest antioxidant capacity when compared with berry fruits and seabuckthorn. The highest caffeic acid, gallic acid and trans-cinnamic acid levels were found in chokecherry (6455 mg/kg), raspberry (1129 mg/kg) and strawberry (566 mg/kg), respectively. Caffeic acid was also the major phenolic acid in Saskatoon berry (2088 mg/kg) and wild blueberry (1473 mg/kg). The findings that chokecherry has very high antioxidant capacity and caffeic acid levels, are useful for developing novel value-added antioxidant products and also provide evidence essential for breeding novel cultivars of fruit plants with strong natural antioxidants.
    [Show full text]