Tsinghua Lectures on Hypergeometric Functions (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen
[email protected] December 8, 2015 1 Contents Preface 2 1 Linear differential equations 6 1.1 Thelocalexistenceproblem . 6 1.2 Thefundamentalgroup . 11 1.3 The monodromy representation . 15 1.4 Regular singular points . 17 1.5 ThetheoremofFuchs .. .. .. .. .. .. 23 1.6 TheRiemann–Hilbertproblem . 26 1.7 Exercises ............................. 33 2 The Euler–Gauss hypergeometric function 39 2.1 The hypergeometric function of Euler–Gauss . 39 2.2 The monodromy according to Schwarz–Klein . 43 2.3 The Euler integral revisited . 49 2.4 Exercises ............................. 52 3 The Clausen–Thomae hypergeometric function 55 3.1 The hypergeometric function of Clausen–Thomae . 55 3.2 The monodromy according to Levelt . 62 3.3 The criterion of Beukers–Heckman . 66 3.4 Intermezzo on Coxeter groups . 71 3.5 Lorentzian Hypergeometric Groups . 75 3.6 Prime Number Theorem after Tchebycheff . 87 3.7 Exercises ............................. 93 2 Preface The Euler–Gauss hypergeometric function ∞ α(α + 1) (α + k 1)β(β + 1) (β + k 1) F (α, β, γ; z) = · · · − · · · − zk γ(γ + 1) (γ + k 1)k! Xk=0 · · · − was introduced by Euler in the 18th century, and was well studied in the 19th century among others by Gauss, Riemann, Schwarz and Klein. The numbers α, β, γ are called the parameters, and z is called the variable. On the one hand, for particular values of the parameters this function appears in various problems. For example α (1 z)− = F (α, 1, 1; z) − arcsin z = 2zF (1/2, 1, 3/2; z2 ) π K(z) = F (1/2, 1/2, 1; z2 ) 2 α(α + 1) (α + n) 1 z P (α,β)(z) = · · · F ( n, α + β + n + 1; α + 1 − ) n n! − | 2 with K(z) the Jacobi elliptic integral of the first kind given by 1 dx K(z)= , Z0 (1 x2)(1 z2x2) − − p (α,β) and Pn (z) the Jacobi polynomial of degree n, normalized by α + n P (α,β)(1) = .