Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for IBD

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for IBD Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for IBD Chemical Activity Count (+)-8HYDROXYCALAMENENE 1 (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 2 (+)-AROMOLINE 1 (+)-BORNYL-ISOVALERATE 1 (+)-CASSYTHICINE 1 (+)-CATECHIN 5 (+)-CATECHOL 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALBACIN 1 (+)-GALLOCATECHIN 2 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (+)-T-CADINOL 2 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 6 (-)-ALPHA-HYDRASTINE 1 (-)-ANABASINE 2 (-)-APOGLAZIOVINE 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 Chemical Activity Count (-)-BORNYL-P-COUMARATE 2 (-)-CENTROLOBINE 1 (-)-DICENTRINE 2 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 4 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 3 (-)-EPIGALLOCATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 5 (-)-HYDROXYJASMONIC-ACID 1 (-)-KAUR-16-EN-19-OIC-ACID 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 3 (15:1)-CARDANOL 3 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (2Z,8Z)-10-ANGELOYLOXY-MATRICARIA-ESTER 2 (5R,8R,9S,10R)-12-OXO-ENT-3,13-CLERODIEN-15-OIC-ACID 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-2-HEXENAL 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 2 (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE 1 1'-ACETOXY-EUGENOL-ACETATE 1 1'-ACETOXYCHAVICOL-ACETATE 1 1,2,11,13,2,3'-HEXAHYDROVERNODALIN 2 1,2,4-TRIHYDROXYHEPTADECA-16-ENE 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,2-DIHYDROXY-4-GLUCOSYLNAPTHALENE 1 1,3,4,5-TETRACAFFEOYLQUINIC-ACID 1 2 Chemical Activity Count 1,3,5-TRIMETHOXYBENZENE 1 1,4-NAPTHAQUINONE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 11 1,8-DIHYDROXY-9-ANTHRONE 1 1-ACETYLJATIVATRIOL 1 1-ETHYL-BETA-CARBOLINE 1 1-MAACKIAIN 1 1-METHOXYCANTHIN-6-ONE 1 1-METHYL-2-[(Z)-7-TRIDECENYL]-4-(1H)-QUINOLONE 1 1-METHYL-2-[(Z)-8-TRIDECENYL]-4-(1H)-QUINOLONE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 1-TULIPOSIDE-A 1 1-TULIPOSIDE-B 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 2 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 11(S),13-DIHYDRO-8-DEOXYLACTUCIN 1 11(S),13-DIHYDROLACTUCIN 1 11(S),13-DIHYDROLACTUCOPICRIN 1 11-DIHYDRO-CANTHINE-6-ONE 1 11-HYDROXY-DELTA-8-THC 1 11-HYDROXY-DELTA-9-THC 1 12,118-BINARINGIN 1 12-ACETYLDEHYDROLUCICULINE 1 13',II8-BIAPIGENIN 3 3 Chemical Activity Count 13-OXYINGENOL-ESTER 1 15-ALPHA-ACETOXYKAUREN-19-OIC-ACID 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPIMETHUENINE 1 16-HYDROXYINGENOL-ESTER 1 16-HYDROXYPSEUDOJOLKINOLIDE 1 2',4'-DIHYDROXYCHALCONE 1 2',6'-DIMETHOXY-4'-HYDROXYACETOPHENONE 1 2'-HYDROXY-FLAVONE 1 2'-O-GLYCOSYLVITEXIN 1 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H- 1 BENZOCYCLOHEPTENE 2,4,6-TRIMETHOXYPHENOL 1 2,6-DIMETHOXY-P-BENZOQUINONE 1 2,7-DIHYDROXYCADALENE 1 2,7-DIMETHOXY-5-ISOPROPYL-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE 1 2-(3',4-DIPHENYL)-ETHANOL 1 2-ALPHA-HYDROXYURSOLIC-ACID 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-BETA-HYDROXYURSOLIC-ACID 1 2-CAFFEOYL-OXY-3-{2-(4-HYDROXYBENZYL)-4,5-DIHYDROXY}PHENYLPROPIONIC-ACID 1 2-HEXEN-1-OL 1 2-HYDROXY-5-ISOPROPYL-7-METHOXY-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE 1 2-METHOXYPHASEOLLINISOFLAVON 1 2-METHYLBUT-3-ENE-2-OL 2 2-NAPTHOL 1 2-NONANONE 1 2-PROPENE-1-SULFINOTHIOCIC-ACIDS-2-PROPENYL-ESTER 1 4 Chemical Activity Count 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 3',4',5,7-TETRAHYDROXYFLAVONE 1 3'-FORMYL-2',4',6'-TRIHYDROXY-5'-METHYLDIHYDROCHALCONE 1 3'-O-METHYLBATATASIN-III 1 3,3'-DIMETHYLELLAGIC-ACID 1 3,4,5-TRI-O-CAFFEOYLQUINIC-ACID 1 3,4-DICAFFEOYL-QUINIC-ACID 1 3,4-DIHYDROXYBENZOATE 1 3,4-DIHYDROXYBENZOIC-ACID 1 3,4-DIMETHOXYTOLUENE 2 3,4-HYDROXYCINNAMIC-ACID 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 2 3,4-SECOTRACHYLOBANOIC-ACID 2 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 2 3,5'-DIALLYL-2'-HYDROXY-4-METHOXYBIPHENYL-ETHER 1 3,5,8,3',4'-PENTAHYDROXYFLAVONE 1 3,5-BIS(3-METHYL-2-BUTENYL)-4-METHOXY-BENZOIC-ACID 1 3,5-DI-O-CAFFEOYLQUINIC-ACID 1 3,5-DICAFFEOYL-QUINIC-ACID 1 3,5-DIMETHOXY-1,6-DIHYDROXYXANTHONE 1 3,5-DIMETHYL-4,6-DI-O-METHYLPHLOROACETOPHENONE 1 3,7,8,2',5'-PENTAHYDROXYFLAVONE 1 3-ACETYLACONITINE 3 3-ACETYLNERBOWDINE 1 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-23-CAFFEATE 1 5 Chemical Activity Count 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-3-BETA-CAFFEATE 1 3-BETA-ACETOXY-20,25-EPOXYDAMMARANE-24-OL 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-20(29)-LUPEN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-12-EN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-18-EN-28-OIC-ACID 1 3-CARBOMETHOXY-1,8-DIHYDROXYANTHRAQUINONE 1 3-HYDROXY-FLAVONE 4 3-METHOXY-1,8-DIHYDROXY-ANTHRQUINONE 1 3-N-BUTYL-PHTHALIDE 3 3-O-ACETYLOLEANOLIC-ACID 1 3-O-CAFFEOYLQUINIC-ACID 1 3-O-METHYL-MANGOSTIN 1 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID 2 3-OXO-11-ALPHA-METHOXYOLEAN-12-ENE-30-OIC-ACID 2 3-OXO-OLEAN-9(11),12-DIENE-30-OIC-ACID 2 4'-HYDROXY-FLAVONE 1 4'-O-METHYLCURINE 1 4,15-DIHYDROVERNODALIN 2 4,4'-DIALLYL-2,3'-DIHYDROXYBIPHENYL 1 4,4'-DIALLYL-2,3'-DIHYDROXYBIPHENYL-ETHER 1 4,5-DI-O-CAFFEOYLQUINIC-ACID 1 4,5-DIHYDROVERNODALIN 1 4,5-DIMETHOXY-6-(2-PROPENYL)1,3-BENZDIOXOLE 1 4,7-DIHYDROXY-2-METHOXY-9,10-DIHYDROPHENANTHRENE 1 4-ACETYLARABINOSYL-ELLAGIC-ACID 1 4-ACETYLXYLOSYL-ELLAGIC-ACID 1 6 Chemical Activity Count 4-ALLYL-PYROCATECHOL 1 4-AMINO-4-CARBOXYCHROMAN-2-ONE 1 4-ARABINOSYL-ELLAGIC-ACID 1 4-EPIABIETIC-ACID 1 4-EPIABIETOL 1 4-HYDROXY-3(3-METHYL-2-BUTENYL)BENZOIC-ACID-METHYL-ESTER 1 4-HYDROXY-3,5-BIS(3-METHYL-2-BUTENYL)-BENZOIC-ACID 1 4-HYDROXY-3,5-BIS(3-METHYL-2-BUTENYL)BENZOIC-ACID-METHYL-ESTER 1 4-HYDROXY-3-(3-METHYL-2-BUTENYL)-5-(3-METHYL-2-BUTENYL)-BENZOIC-ACID 1 4-HYDROXY-3-(ISOPENTEN-2-YL)-ACETOPHENONE 1 4-HYDROXY-TRITRIACONTANE-16,18-DIONE 1 4-HYDROXYBENZOYL-ERYTHRITOL 1 4-HYDROXYDERRICIN 1 4-KETOPINORESINOL 1 4-METHOXY-3,5-BIS(3-METHYL-2-BUTENYL)BENZOIC-ACID 1 4-O-CAFFEOYLQUINIC-ACID 1 4-TERPINEOL 2 4-VINYL-GUAIACOL 2 5,6-DEHYDROKAWAIN 2 5,7,2',6'-TETRAHYDROXYFLAVONE 1 5,7,4'-TRIHYDROXY-6,8-DIPRENYLISOFLAVONE 1 5,7-DIHYDROXY-2-METHYLCHROMONE-8-C-BETA-GLUCOPYRANOSIDE 2 5,7-DIHYDROXY-3,8-DIMETHOXYFLAVONE 1 5,7-DIHYDROXY-FLAVONE 1 5,7-DIHYDROXYCHROMONE 1 5,7-DIHYDROXYCOUMARIN-7-METHYL-ETHER 1 5,7-DIMETHOXYFLAVONE 1 7 Chemical Activity Count 5,8-DIHYDROXYBENZOPYRANONE 1 5-BETA-HYDROXYECDYSTERONE 1 5-DEOXYINGENOL-ESTER 1 5-HEXYL-CYCLOPENTA-1,3-DIONE 1 5-HYDROXY-7,4-DIMETHOXYFLAVONE 1 5-HYDROXY-8-O-BETA-D-GLUCOPYRANOSYL-BENZOPYRANONE 1 5-HYDROXY-FLAVONE 1 5-HYDROXYTRYPTAMINE 2 5-HYDROXYTRYPTOPHAN 1 5-O-BETA-D-GLUCOPYRANOSYL-3-1-(4-PHENYL)-DECANE 1 5-O-CAFFEOYLQUINIC-ACID 1 5-OCTYL-CYCLOPENTA-1,3-DIONE 1 6'-O-ACETYL-DAIDZIN 1 6'-O-ACETYL-GENISTIN 1 6,7,4'-TRIHYDROXYISOFLAVAN 1 6,7,4'-TRIHYDROXYISOFLAVANONE 1 6,7,4'-TRIHYDROXYISOFLAVONE 1 6,7-DI-4'-METHOXYISOFLAVAN 1 6,7-DI-4'-METHOXYISOFLAVANONE 1 6,7-DI-4'-METHOXYISOFLAVONE 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVAN 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVANONE 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVONE 1 6,7-DIHYDROXYCOUMARIN 1 6,7-DIMETHOXYCOUMARIN 1 6,7-DIMETHYLAESCULETIN 2 6,7-DIMETHYLESCULETIN 2 8 Chemical Activity Count 6-ALPHA-HYDROXYDEHYDROCOSTUS-LACTONE 1 6-ALPHA-HYDROXYMEDICARPIN 1 6-DEHYDROGINGERDIONE 1 6-DEOXYJACAREUBIN 3 6-GINGERDIOL 1 6-GINGERDIONE 1 6-GINGEROL 6 6-GINGESULFONIC-ACID 1 6-HYDROXY-FLAVONE 1 6-HYDROXY-FLAVONE-GLUCOSIDE 1 6-METHOXYTECLEANTHINE 1 6-O-(2''-ACETYL-3'',4''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-O-(4''-ACETYL-2'',3''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-SHOGAOL 6 7,4'-DIHYDROXY-8-METHYLFLAVAN 1 7,4'-DIHYDROXYFLAVAN 1 7,8-DIHYDROXYFLAVONE 2 7-HYDROXY-FLAVONE 1 7-HYDROXY-FLAVONE-GLUCOSIDE 1 7-HYDROXYFLAVAN 1 7-HYDROXYFRULLANOLIDE 1 7-METHOXYCOUMARIN 3 7-N-BUTOXY-3,2',5'-TRIHYDROXYFLAVONE 1 7-O-(6-O-BETA-D-APIOFURANOSYL)-BETA-D-(GLUCOPYRANOSYL)-ORCHINOL 1 7-O-METHYL-GLABRANINE 1 7-[3-(3,4-DIHYDROXY-4-HYDROXYMETHYL-TETRAHYDRO-FURAN-2-YLOXY)-4,5-DIHYDROXY-6- 1 HYDROXYMETHYL-TETRAHYDRO-PYRAN-2-YLOXY]...
Recommended publications
  • Transfer of Pseudomonas Plantarii and Pseudomonas Glumae to Burkholderia As Burkholderia Spp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1994, p. 235-245 Vol. 44, No. 2 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and Description of Burkholderia vandii sp. nov. TEIZI URAKAMI, ’ * CHIEKO ITO-YOSHIDA,’ HISAYA ARAKI,’ TOSHIO KIJIMA,3 KEN-ICHIRO SUZUKI,4 AND MU0KOMAGATA’T Biochemicals Division, Mitsubishi Gas Chemical Co., Shibaura, Minato-ku, Tokyo 105, Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Tayuhama, Niigatu 950-31, ’Plant Pathological Division of Biotechnology, Tochigi Agricultural Experiment Station, Utsunomiya 320, Japan Collection of Microorganisms, The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01,4 and Institute of Molecular Cell and Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113,’ Japan Plant-associated bacteria were characterized and are discussed in relation to authentic members of the genus Pseudomonas sensu stricto. Bacteria belonging to Pseudomonas rRNA group I1 are separated clearly from members of the genus Pseudomonas sensu stricto (Pseudomonasfluorescens rRNA group) on the basis of plant association characteristics, chemotaxonomic characteristics, DNA-DNA hybridization data, rRNA-DNA hy- bridization data, and the sequences of 5s and 16s rRNAs. The transfer of Pseudomonas cepacia, Pseudomonas mallei, Pseudomonas pseudomallei, Pseudomonas caryophylli, Pseudomonas gladioli, Pseudomonas pickettii, and Pseudomonas solanacearum to the new genus Burkholderia is supported; we also propose that Pseudomonas plantarii and Pseudomonas glumae should be transferred to the genus Burkholderia. Isolate VA-1316T (T = type strain) was distinguished from Burkholderia species on the basis of physiological characteristics and DNA-DNA hybridization data. A new species, Burkholderia vandii sp.
    [Show full text]
  • National Center for Toxicological Research
    National Center for Toxicological Research Annual Report Research Accomplishments and Plans FY 2015 – FY 2016 Page 0 of 193 Table of Contents Preface – William Slikker, Jr., Ph.D. ................................................................................... 3 NCTR Vision ......................................................................................................................... 7 NCTR Mission ...................................................................................................................... 7 NCTR Strategic Plan ............................................................................................................ 7 NCTR Organizational Structure .......................................................................................... 8 NCTR Location and Facilities .............................................................................................. 9 NCTR Advances Research Through Outreach and Collaboration ................................... 10 NCTR Global Outreach and Training Activities ............................................................... 12 Global Summit on Regulatory Science .................................................................................................12 Training Activities .................................................................................................................................14 NCTR Scientists – Leaders in the Research Community .................................................. 15 Science Advisory Board ...................................................................................................
    [Show full text]
  • Caomatograpby
    rOURNAL DF LIQUID CaOMATOGRAPBY VOLUME 18 NUMBER 7 1995 ~ditor: DR. JACK CAZES ~ssociate Editors: DR. HALEEM J. ISSAQ DR. STEVEN H. WONG Special Section on CAPILlARY ZONE ELECTROPHORESIS AND REIATED TECHNIQUES Edited by HALEEM J. ISSAQ NCI-Frederick Cancer Research & Development Center Frederick, Maryland JOURNAL OF LIQUID CHROMATOGRAPHY April 1995 Aims and Scope. The journal publishes papers involving the applications of liquid chromatography to the solution of problems in all areas of science and technology, both analytical and preparative, as well as papers that deal specifically with liquid chromatography as a science within itself. Included will be thin-layer chromatography and all models of liquid chromatography. IdentiilCation Statement. Journal of Liquid Chromatography (lSSN: 0148-3919) is published semimonthly except monthly in May, August, October, and December for the institutional rate of $1,450.00 and the individual rate of $725.00 by Marcel Dekker, Inc., P.O. Box 5005, Monticello, NY 12701-5185. Second Class postage paid at Monticello, NY. POSTMASTER: Send address changes to Journal ofLiquid Chromatography, P.O. Box 5005, Monticello, NY 12701-5185. Individual Foreign Postage Professionals' Institutional and Student Airmail Airmail Volume Issues Rate Rate Surface to Europe to Asia 18 20 $1,450.00 $725.00 $70.00 $110.00 $130.00 Individual professionals' and student orders must be prepaid by personal check or may be charged to MasterCard, VISA, or American Express. Please mail payment with your order to: Marcel Dekker Journals, P.O. Box 5017, Monticello, New York 12701-5176. CODEN: JLCHD8 18(7) i-iv, 1273-1494 (1995) ISSN: 0148-3919 Printed in the U.S.A.
    [Show full text]
  • TAAR1 Activation Modulates Monoaminergic Neurotransmission, Preventing Hyperdopaminergic and Hypoglutamatergic Activity
    TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity Florent G. Revela, Jean-Luc Moreaua, Raul R. Gainetdinovb, Amyaouch Bradaiac, Tatyana D. Sotnikovab, Roland Morya, Sean Durkina, Katrin Groebke Zbindend, Roger Norcrossd, Claas A. Meyere, Veit Metzlera, Sylvie Chaboza, Laurence Ozmena, Gerhard Trubea, Bruno Pouzeta, Bernhard Bettlerf, Marc G. Carong, Joseph G. Wettsteina, and Marius C. Hoenera,1 aNeuroscience Research, dDiscovery Chemistry, and eDiscovery Technologies, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland; bDepartment of Neuroscience and Brain Technologies, Italian Institute of Technology, 16163 Genoa, Italy; cNeuroservice, Domaine de Saint-Hilaire, 13593 Aix-en-Provence, France; fDepartment of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland; and gDepartment of Cell Biology, Duke University Medical Center, Durham, NC 27710 Edited by Richard D. Palmiter, University of Washington, Seattle, WA, and approved March 31, 2011 (received for review February 24, 2011) The trace amine-associated receptor 1 (TAAR1), activated by en- sitive to the locomotor-stimulating effect of d-amphetamine dogenous metabolites of amino acids like the trace amines and show elevated striatal release of dopamine (DA), noradren- p-tyramine and β-phenylethylamine, has proven to be an impor- aline (NA), and serotonin [5-hydroxytryptamine (5-HT)] after a d-amphetamine challenge (10, 12). Furthermore, the spontaneous tant modulator of the dopaminergic system and is considered −/− firing rate of the VTA DA neurons is augmented in Taar1 mice, a promising target for the treatment of neuropsychiatric disorders. fi To decipher the brain functions of TAAR1, a selective TAAR1 ago- and only in WT mice does pTyr decrease this ring rate (10).
    [Show full text]
  • 'Gating' Residues Ile199 and Tyr326 in Human Monoamine Oxidase B
    The ‘gating’ residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition Erika M. Milczek1,*, Claudia Binda2, Stefano Rovida2, Andrea Mattevi2 and Dale E. Edmondson1 1 Departments of Chemistry and Biochemistry, Emory University, Atlanta, Georgia, USA 2 Department of Genetics and Microbiology, University of Pavia, Italy Keywords The major structural difference between human monoamine oxidases A dipartite to monopartite cavity conversion; (MAO A) and B (MAO B) is that MAO A has a monopartite substrate inhibitor specificity; monoamine oxidase B; cavity of 550 A˚3 volume and MAO B contains a dipartite cavity struc- mutations of gating residues; structure of ture with volumes of 290 A˚3 (entrance cavity) and 400 A˚3 (substrate methylene blue complex cavity). Ile199 and Tyr326 side chains separate these two cavities in MAO Correspondence B. To probe the function of these gating residues, Ile199Ala and Ile199Ala- D. E. Edmondson, Department of Tyr326Ala mutant forms of MAO B were investigated. Structural data on Biochemistry, Emory University, 1510 the Ile199Ala MAO B mutant show no alterations in active site geometries Clifton Road, Atlanta, GA 30322, USA compared with wild-type enzyme while the Ile199Ala-Tyr326Ala MAO B Fax: +1 404 727 2738 mutant exhibits alterations in residues 100–103 which are part of the loop Tel: +1 404 727 5972 gating the entrance to the active site. Both mutant enzymes exhibit catalytic E-mail: [email protected] properties with increased amine KM but unaltered kcat values. The altered *Present address KM values on mutation are attributed to the influence of the cavity struc- Department of Chemistry, Princeton ture in the binding and subsequent deprotonation of the amine substrate.
    [Show full text]
  • Journal of Inorganic Biochemistry 187 (2018) 73–84
    Journal of Inorganic Biochemistry 187 (2018) 73–84 Contents lists available at ScienceDirect Journal of Inorganic Biochemistry journal homepage: www.elsevier.com/locate/jinorgbio New heterobimetallic ferrocenyl derivatives: Evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium T tuberculosis Feriannys Rivasa, Andrea Medeirosb,c, Esteban Rodríguez Arcea, Marcelo Cominib, ⁎ Camila M. Ribeirod, Fernando R. Pavand, Dinorah Gambinoa, a Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay b Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay c Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay d Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Brazil ARTICLE INFO ABSTRACT Keywords: Searching for prospective agents against infectious diseases, four new ferrocenyl derivatives, [M(L)(dppf)4] Ferrocenyl compounds (PF6), with M = Pd(II) or Pt(II), dppf = 1,1′-bis(dipheny1phosphino) ferrocene and HL = tropolone (HTrop) or Tropolone derivatives hinokitiol (HHino), were synthesized and characterized. Complexes and ligands were evaluated against the Trypanosoma brucei bloodstream form of T. brucei, L. infantum amastigotes, M. tuberculosis (MTB) sensitive strain and MTB clinical Mycobacterium tuberculosis isolates. Complexes showed a significant increase of the anti-T. brucei activity with respect to the free ligands Leishmaniasis (> 28- and > 46-fold for Trop and 6- and 22-fold for Hino coordinated to Pt-dppf and Pd-dppf, respectively), yielding IC50 values < 5 μM. The complexes proved to be more potent than the antitrypanosomal drug Nifurtimox. The new ferrocenyl derivatives were more selective towards the parasite than the free ligands. The Pt compounds were less toxic on J774 murine macrophages (mammalian cell model), than the Pd ones, showing selectivity index values (SI = IC50 murine macrophage/IC50 T.
    [Show full text]
  • Parkinson Disease and Other Movement Disorders
    P1: Trim: 8.375in × 10.875in Top: 0.373in Gutter: 0.664in LWBK915-57 LWW-KodaKimble-educational September 17, 2011 2:31 Parkinson Disease and Other 57 Movement Disorders Michael E. Ernst and Mildred D. Gottwald CORE PRINCIPLES CHAPTER CASES PARKINSON DISEASE 1 Parkinson disease (PD) is a chronic, progressive movement disorder resulting from Case 57-1 (Questions 1, 2) loss of dopamine from the nigrostriatal tracts in the brain, and is characterized by rigidity, bradykinesia, postural disturbances, and tremor. 2 Treatment for PD is aimed at restoring dopamine supply through one, or a Case 57-1 combination, of the following methods: exogenous dopamine in the form of a (Questions 3–18), precursor, levodopa; direct stimulation of dopamine receptors via dopamine Case 57-2 (Questions 1, 2) agonists; and inhibition of metabolic pathways responsible for degradation of levodopa. 3 Therapy for PD is usually delayed until there is a significant effect on quality of life; Case 57-1 (Questions 4, 10) generally younger patients start with dopamine agonists, whereas older patients may start with levodopa. 4 Initial therapy with dopamine agonists is associated with a lower risk of developing Case 57-1 (Questions 4, motor complications than with levodopa, but all patients will eventually require 10–15) levodopa. 5 Advanced PD is characterized by motor fluctuations including a gradual decline in Case 57-1 (Questions on time, and the development of troubling dopaminergic-induced dyskinesias. 15–18), Case 57-2 Dopamine agonists, monoamine oxidase type B (MAO-B) inhibitors, and (Question 1), Case 57-3 catechol-O-methyltransferase (COMT) inhibitors can reduce motor fluctuations; (Questions 1, 2) amantadine can improve dyskinesias.
    [Show full text]
  • Identification and Analysis of Hepatitis C Virus NS3 Helicase Inhibitors Using Nucleic Acid Binding Assays Sourav Mukherjee1, Alicia M
    Published online 27 June 2012 Nucleic Acids Research, 2012, Vol. 40, No. 17 8607–8621 doi:10.1093/nar/gks623 Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays Sourav Mukherjee1, Alicia M. Hanson1, William R. Shadrick1, Jean Ndjomou1, Noreena L. Sweeney1, John J. Hernandez1, Diana Bartczak1, Kelin Li2, Kevin J. Frankowski2, Julie A. Heck3, Leggy A. Arnold1, Frank J. Schoenen2 and David N. Frick1,* 1Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, 2University of Kansas Specialized Chemistry Center, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047 and 3Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA Received March 26, 2012; Revised May 30, 2012; Accepted June 4, 2012 Downloaded from ABSTRACT INTRODUCTION Typical assays used to discover and analyze small All cells and viruses need helicases to read, replicate and molecules that inhibit the hepatitis C virus (HCV) repair their genomes. Cellular organisms encode NS3 helicase yield few hits and are often con- numerous specialized helicases that unwind DNA, RNA http://nar.oxfordjournals.org/ founded by compound interference. Oligonucleotide or displace nucleic acid binding proteins in reactions binding assays are examined here as an alternative. fuelled by ATP hydrolysis. Small molecules that inhibit After comparing fluorescence polarization (FP), helicases would therefore be valuable as molecular homogeneous time-resolved fluorescence (HTRFÕ; probes to understand the biological role of a particular Cisbio) and AlphaScreenÕ (Perkin Elmer) assays, helicase, or as antibiotic or antiviral drugs (1,2). For an FP-based assay was chosen to screen Sigma’s example, several compounds that inhibit a helicase Library of Pharmacologically Active Compounds encoded by herpes simplex virus (HSV) are potent drugs in animal models (3,4).
    [Show full text]
  • Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations
    molecules Review Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations Marcin Gackowski 1,* , Anna Przybylska 1 , Stefan Kruszewski 2 , Marcin Koba 1 , Katarzyna M ˛adra-Gackowska 3 and Artur Bogacz 4 1 Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; [email protected] (A.P.); [email protected] (M.K.) 2 Biophysics Department, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiello´nska13 Street, PL–85067 Bydgoszcz, Poland; [email protected] 3 Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland; [email protected] 4 Department of Otolaryngology and Oncology, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland; [email protected] Citation: Gackowski, M.; Przybylska, * Correspondence: [email protected] A.; Kruszewski, S.; Koba, M.; M ˛adra-Gackowska,K.; Bogacz, A. Abstract: The present review summarizes scientific reports from between 2010 and 2019 on the use Recent Applications of Capillary of capillary electrophoresis to quantify active constituents (i.e., phenolic compounds, coumarins, Electrophoresis in the Determination protoberberines, curcuminoids, iridoid glycosides, alkaloids, triterpene acids) in medicinal plants and of Active Compounds in Medicinal herbal formulations. The present literature review is founded on PRISMA guidelines and selection Plants and Pharmaceutical criteria were formulated on the basis of PICOS (Population, Intervention, Comparison, Outcome, Formulations.
    [Show full text]
  • Β-Carboline Alkaloids and Essential Tremor: Exploring the Environmental Determinants of One of the Most Prevalent Neurological Diseases
    Review TheScientificWorldJOURNAL (2010) 10, 1783–1794 ISSN 1537-744X; DOI 10.1100/tsw.2010.159 β-Carboline Alkaloids and Essential Tremor: Exploring the Environmental Determinants of One of the Most Prevalent Neurological Diseases Elan D. Louis1,2,3,4,* and Wei Zheng5 1GH Sergievsky Center, 2Department of Neurology, 3Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York; 4Department of Epidemiology, Mailman School of Public Health, Columbia University, New York; 5School of Health Sciences, Purdue University, West Lafayette, IN E-mail: [email protected]; [email protected] Received May 24, 2010; Revised July 15, 2010; Accepted July 15, 2010; Published September 1, 2010 Essential tremor (ET) is among the most prevalent neurological diseases, yet its etiology is not well understood. Susceptibility genotypes undoubtedly underlie many ET cases, although no genes have been identified thus far. Environmental factors are also likely to contribute to the etiology of ET. Harmane (1-methyl-9H-pyrido[3,4- β]indole) is a potent, tremor-producing β-carboline alkaloid, and emerging literature has provided initial links between this neurotoxin and ET. In this report, we review this literature. Two studies, both in New York, have demonstrated higher blood harmane levels in ET cases than controls and, in one study, especially high levels in familial ET cases. Replication studies of populations outside of New York and studies of brain harmane levels in ET have yet to be undertaken. A small number of studies have explored several of the biological correlates of exposure to harmane in ET patients.
    [Show full text]
  • Ethanol, Catecholamines and Alkaloids: Interface of Neurochemistry and Alcoholism
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1974 Ethanol, Catecholamines and Alkaloids: Interface of Neurochemistry and Alcoholism Joel Allen Rubenstein Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Pharmacology, Toxicology and Environmental Health Commons Recommended Citation Rubenstein, Joel Allen, "Ethanol, Catecholamines and Alkaloids: Interface of Neurochemistry and Alcoholism" (1974). Dissertations. 1428. https://ecommons.luc.edu/luc_diss/1428 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1974 Joel Allen Rubenstein ETHANOL, CATECHOLAMINES AND ALKALOIDS : INTERFACE OF NEUROCHEMISTRY AND ALCOHOLISM by Joel Allen Rubenstein A Dissertation Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy June 1974 Joel Allen Rubenstein Loyola University of Chicago ETHANOL, CATECHOI.AMINES AND ALKALOIDS: INTERFACE Of NEUROCHEMISTRY AND ALCOHOLISM The theory has been advanced that tetrahydroisoquinoline (TIQ) alkaloids may form in neuronal and chrornaffin cells during alcohol metab­ olism via condensation of catecholamines (CAs) and alcohol-derived aldehydes. The cyclic CA-type alkaloids could assume a physiological role in the development of alcohol dependence (G.Cohen and M. Collins, Science 167: 1749-1751). As groundwork for in vivo studies on TIQs during alcoholism, the following questions required study.
    [Show full text]
  • MALDI Mass Spectrometry Imaging for Visualizing in Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals
    Metabolites 2014, 4, 319-346; doi:10.3390/metabo4020319 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Review MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals Yoshinori Fujimura * and Daisuke Miura * Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Y.F.); [email protected] (D.M.); Tel.: +81-92-642-6160 (Y.F.); +81-92-642-6091 (D.M.); Fax: +81-92-642-6285 (Y.F.); +81-92-642-6285 (D.M.). Received: 26 February 2014; in revised form: 17 April 2014 / Accepted: 4 May 2014 / Published: 5 May 2014 Abstract: Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues
    [Show full text]