The Critical Role of Cyclin D2 in Cell Cycle Progression and Tumorigenicity of Glioblastoma Stem Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Critical Role of Cyclin D2 in Cell Cycle Progression and Tumorigenicity of Glioblastoma Stem Cells Oncogene (2013) 32, 3840–3845 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells R Koyama-Nasu1,4, Y Nasu-Nishimura1,4, T Todo2, Y Ino2, N Saito2, H Aburatani3, K Funato1, K Echizen1, H Sugano1, R Haruta1, M Matsui1, R Takahashi1, E Manabe1, T Oda1 and T Akiyama1 Cancer stem cells are believed to be responsible for tumor initiation and development. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma stem cells (GSCs). However, little is known about the molecular mechanisms of cell cycle regulation that discriminate between GSCs and differentiated glioblastoma cells. Here we show that cyclin D2 is the cyclin that is predominantly expressed in GSCs and suppression of its expression by RNA interference causes G1 arrest in vitro and growth retardation of GSCs xenografted into immunocompromised mice in vivo. We also demonstrate that the expression of cyclin D2 is suppressed upon serum-induced differentiation similar to what was observed for the cancer stem cell marker CD133. Taken together, our results demonstrate that cyclin D2 has a critical role in cell cycle progression and the tumorigenicity of GSCs. Oncogene (2013) 32, 3840–3845; doi:10.1038/onc.2012.399; published online 10 September 2012 Keywords: cancer stem cells; cell cycle; cyclin D2; glioblastoma INTRODUCTION investigate the role of cyclin D2 in cell cycle progression and the Glioblastoma is the most common primary brain tumor in adults.1 tumorigenicity of GSCs. Patients diagnosed with glioblastoma have a median survival of o1 year with generally poor responses to all therapeutic modalities. The existence of cancer stem cells responsible for tumor initiation RESULTS and development has been demonstrated in a variety of tumors.2 Predominant expression of cyclin D2 in GSCs The discovery of glioblastoma stem cells (GSCs) was made by We cultured GSCs isolated from four patients, GB1–3 and 5, under applying techniques for cell culture and analysis of normal neural serum-free conditions that favor NSC growth.4 Our DNA array stem cells (NSCs) to brain tumor cell populations.3 Glioblastoma analysis revealed that GB1 and GB2, 3 and 5 belong to the cells cultured in serum-free media supplemented with epidermal mesenchymal and proneural groups, respectively9 (Supple- growth factor and basic fibroblast growth factor form spheres and mentary Figure 1A). In vitro differentiation was induced in medium maintain stem cell-like properties and tumorigenicity, but when containing fetal bovine serum.4 Differentiated GB1–3 cells grown under serum-containing culture conditions, glioblastoma proliferated more rapidly than their parental undifferentiated cells undergo irreversible differentiation and lose their cells did (data not shown). By contrast, proliferation of GB5 cells tumorigenicity.4 Therefore, the mechanisms of maintaining the was inhibited in medium containing serum (Supplementary stem-like properties of GSCs have been studied extensively. Figure 2). Consistent with these properties, immunoblotting D-type cyclins are known to have critical roles in cell cycle analysis using anti-RB antibodies revealed that RB was highly progression.5 Three D-type cyclins, cyclin D1, D2 and D3, are phosphorylated in differentiated GB1–3 cells and undifferentiated encoded by distinct genes, but show significant amino-acid GB5 cells (Figure 1a). These differences may reflect the properties similarity. Among these, cyclin D1 was first discovered and has associated with the primary tumors from which they were derived. been studied most extensively. D-type cyclins associate with To study the molecular mechanisms of cell cycle regulation in partner cyclin-dependent kinases, CDK4 and CDK6, and promote GSCs, lysates from glioblastoma cells were subjected to immuno- phosphorylation and subsequent inactivation of the blotting analysis with antibodies to various cyclins. We found that retinoblastoma tumor suppressor gene product, RB and RB- cyclin D2 was abundantly expressed in undifferentiated GB2, 3 related proteins. This causes the release or de-repression of the and 5 cells, but was barely expressed in differentiated GB2, 3 and 5 E2F transcription factors and allows cells to enter the S phase. cells, which had been cultured in serum-containing medium Dysregulation of the G1/S transition appears to be a common (Figure 1a). By contrast, cyclin D1 expression was higher in event in tumorigenesis.6 Indeed, alterations in important differentiated than in undifferentiated glioblastoma cells. components of the RB pathway are frequently observed in a The expression levels of cyclin D3 did not change significantly. variety of tumors, including glioblastoma.6–8 In this study, we In GB1 cells, cyclin D2 expression was not detected in either 1Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; 2Department of Neurosurgery, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan and 3Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan. Correspondence: Professor T Akiyama, Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 110-0032, Japan. Email: [email protected] 4These authors contributed equally to this work. Received 22 February 2012; revised 29 June 2012; accepted 20 July 2012; published online 10 September 2012 Role of cyclin D2 in glioblastoma stem cells R Koyama-Nasu et al 3841 expression levels of cyclin D2 was significantly decreased within one day after serum addition and was completely downregulated in late-passage cells (410 passages), similar to what was observed for the cancer stem cell marker CD133 (Mizrak et al.10) and the NSC marker nestin11 (Figure 2a, left panel). By contrast, cyclin D1 mRNA was induced upon serum stimulation and highly expressed in late- passage cells. However, when differentiated GB2 cells (410 passages) were cultured in serum-free conditions, cells started to form nonadherent, multicellular spheres indistinguishable from undifferentiated GSCs (Supplementary Figure 3B). Nevertheless, the expression levels of cyclin D2 as well as CD133 and nestin were not fully restored by serum deprivation (Figure 2a, right panel). We also investigated the expression profiles of D-type cyclins in patient glioblastomas, commonly used glioma cell lines and normal human NSCs taken from a public microarray database (Figure 2b). As expected, almost all patient glioblastomas expressed substantial levels of cyclin D2, whereas no glioma cell line did. Cyclin D1 was highly expressed in the glioma cell lines. Moreover, the expression of cyclin D2 as well as CD133 and nestin was not restored by serum withdrawal in the glioma cell line T98G, U251 or U87 (Figure 2c). Furthermore, either overexpression of p21 or depletion of E2F1 and/or E2F2 did not lead to the restoration of cyclin D2 expression (Supplementary Figures 4A–D). These data are compatible with the notion that these cell lines have become differentiated under serum-containing conditions. Interestingly, cyclin D2 and D3, but not cyclin D1, were found to be expressed in human NSCs. Cyclin D3 and D1 showed a reciprocal expression pattern in the glioma cell lines. We next investigated the expression profiles of D-type cyclins in various histological grades of gliomas. The expression levels of cyclin D2, but not of cyclin D1 or D3, were found to be significantly upregulated in glioblastomas (grade IV) compared with astro- cytomas (grade II or III) and non-tumor tissues (Supplementary Figure 5 and Supplementary Table 1). Taken together, these data raise the possibility that cyclin D2 expression may be a common feature of GSCs. Important role of cyclin D2 in cell cycle progression of GSCs We next examined the role of cyclin D2 in cell cycle progression of GSCs using small interference RNA (siRNA). Flow-cytometric analyses of DNA content in undifferentiated GB2 cells showed that knockdown of cyclin D2, but not of cyclin D1 and/or D3, resulted in a significant increase in the fraction of cells in the G1 Figure 1. Predominant expression of cyclin D2 in GSCs. (a) Lysates phase (Figure 3a, left panel). Consistent with this result, knock- from undifferentiated (stem) or differentiated (diff) GB1–3 and 5 down of cyclin D2 led to an increase in the amount of the cells were immunoblotted with antibodies to the indicated proteins. hypophosphorylated form of RB, suggesting that the activity of The asterisk indicates a non-specific band. (b) The mRNA levels CDK4 and/or CDK6 was suppressed and cells were arrested in the of D-type cyclins in undifferentiated (stem) or differentiated (diff) G1 phase of the cell cycle (Figure 3b, left panel). Silencing of cyclin GB1–3 and 5 cells were evaluated by quantitative RT–PCR. Error D2 expression also caused a reduction in the level of cyclin B1, the bars represent the s.d. (n ¼ 3). expression of which is known to be low in the G1 phase (Figure 3b, left panel). In addition, knockdown of cyclin D2 the undifferentiated or differentiated state. This may be a resulted in a slight decrease in the expression levels of E2F1 and common feature in the mesenchymal subtype of glioblastoma E2F2. We also observed that ectopic expression of cyclin D1 or D3 (Supplementary Figure 1B). Reverse transcription–polymerase partially rescued the reduction in RB expression and phosphoryla- chain reaction (RT–PCR) analysis also revealed that cyclin D2 tion caused by knockdown of cyclin D2. Thus, a certain amount of messenger RNA (mRNA) was predominantly expressed in undif- D-type cyclins may be required for cell cycle progression of ferentiated GB2, 3 and 5 cells (Figure 1b). undifferentiated GB2 cells (Supplementary Figure 6). By contrast, knockdown of cyclin D1, but not of cyclin D2 or D3, induced G1 arrest of differentiated GB2 cells cultured in serum-containing GSC-specific expression of cyclin D2 medium (Figures 3a and b, right panels).
Recommended publications
  • Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin a and Affects the Migration and Invasion Potential of Breast Cancer Cells
    Published OnlineFirst February 28, 2010; DOI: 10.1158/0008-5472.CAN-08-1108 Tumor and Stem Cell Biology Cancer Research Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin A and Affects the Migration and Invasion Potential of Breast Cancer Cells Zhijiu Zhong, Wen-Shuz Yeow, Chunhua Zou, Richard Wassell, Chenguang Wang, Richard G. Pestell, Judy N. Quong, and Andrew A. Quong Abstract Cyclin D1 belongs to a family of proteins that regulate progression through the G1-S phase of the cell cycle by binding to cyclin-dependent kinase (cdk)-4 to phosphorylate the retinoblastoma protein and release E2F transcription factors for progression through cell cycle. Several cancers, including breast, colon, and prostate, overexpress the cyclin D1 gene. However, the correlation of cyclin D1 overexpression with E2F target gene regulation or of cdk-dependent cyclin D1 activity with tumor development has not been identified. This suggests that the role of cyclin D1 in oncogenesis may be independent of its function as a cell cycle regulator. One such function is the role of cyclin D1 in cell adhesion and motility. Filamin A (FLNa), a member of the actin-binding filamin protein family, regulates signaling events involved in cell motility and invasion. FLNa has also been associated with a variety of cancers including lung cancer, prostate cancer, melanoma, human bladder cancer, and neuroblastoma. We hypothesized that elevated cyclin D1 facilitates motility in the invasive MDA-MB-231 breast cancer cell line. We show that MDA-MB-231 motility is affected by disturbing cyclin D1 levels or cyclin D1-cdk4/6 kinase activity.
    [Show full text]
  • Cyclin D2 Activates Cdk2 in Preference to Cdk4 in Human Breast Epithelial Cells
    Oncogene (1997) 14, 1329 ± 1340 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 Cyclin D2 activates Cdk2 in preference to Cdk4 in human breast epithelial cells Kimberley J Sweeney, Boris Sarcevic, Robert L Sutherland and Elizabeth A Musgrove Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia To investigate the possibility of diering roles for cyclins Similarly, overexpression of cyclin D2 in myeloid cells D1 and D2 in breast epithelial cells, we examined the results in a decrease in the duration of G1 and an expression, cell cycle regulation and activity of these two increase in the percentage of cells in S-phase (Ando et G1 cyclins in both 184 normal breast epithelial cells and al., 1993; Kato and Sherr, 1993). Microinjection or T-47D breast cancer cells. Synchronisation studies in 184 electroporation of cyclin D1 or cyclin D2 antibodies cells demonstrated that cyclin D1 and cyclin D2 were demonstrated that these proteins were not only rate- dierentially regulated during G1, with cyclin D2 limiting but essential for progress through G1 (Baldin abundance increasing by 3.7-fold but only small changes et al., 1993; Quelle et al., 1993; Lukas et al., 1995b). in cyclin D1 abundance observed. The functional These eects are thought to be mediated by activation consequences of increased cyclin D2 expression were of cyclin-dependent kinases (CDKs) and consequent examined in T-47D cells, which express no detectable phosphorylation of the product of the retinoblastoma cyclin D2. Induced expression of cyclin D2 resulted in susceptibility gene, pRB (Hunter and Pines, 1994; increases in cyclin E expression, pRB phosphorylation Sherr, 1994).
    [Show full text]
  • P27 and P21 Collaborate in the Regulation of Transcription By
    6860–6873 Nucleic Acids Research, 2015, Vol. 43, No. 14 Published online 13 June 2015 doi: 10.1093/nar/gkv593 p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin–Cdk complexes on the promoters of target genes Serena Orlando1, Edurne Gallastegui1, Arnaud Besson2,3,4, Gabriel Abril1, Rosa Aligue´ 1, Maria Jesus Pujol1 and Oriol Bachs1,* 1Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, 08036-Barcelona, Spain, 2INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France, 3Universite´ de Toulouse, Toulouse, France and 4CNRS ERL5294, Toulouse, France Received December 22, 2014; Revised May 20, 2015; Accepted May 23, 2015 ABSTRACT through Cdk20 (2). Many members of this family, includ- ing Cdk4, Cdk6, Cdk2 and Cdk1, are involved in cell-cycle Transcriptional repressor complexes containing regulation (3). Cdk4, Cdk6 and Cdk2 regulate progression p130 and E2F4 regulate the expression of genes in- through the G1 phase although additionally, Cdk2 also reg- volved in DNA replication. During the G1 phase of ulates S phase. Finally, Cdk1 regulates mitosis. Binding the cell cycle, sequential phosphorylation of p130 of Cdks to specific cyclins confers a functional specializa- by cyclin-dependent kinases (Cdks) disrupts these tion to each complex (3). In response to mitogenic stim- complexes allowing gene expression. The Cdk in- uli, the synthesis of the D-type cyclins is induced in early– Kip1 hibitor and tumor suppressor p27 associates with mid G1 phase. These cyclins associate with Cdk4 and Cdk6, p130 and E2F4 by its carboxyl domain on the pro- forming complexes that phosphorylate and inactivate mem- moters of target genes but its role in the regulation bers of the retinoblastoma family of pocket proteins (pRb, of transcription remains unclear.
    [Show full text]
  • CDKN2A and CDKN2B Methylation in Coronary Heart Disease Cases and Controls
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 14: 6093-6098, 2016 CDKN2A and CDKN2B methylation in coronary heart disease cases and controls JINYAN ZHONG1,2*, XIAOYING CHEN3*, HUADAN YE3, NAN WU1,3, XIAOMIN CHEN1 and SHIWEI DUAN3 1Cardiology Center, Ningbo First Hospital, Ningbo University; 2Department of Cardiology, Ningbo Second Hospital, Ningbo, Zhejiang 315010; 3Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China Received May 27, 2016; Accepted March 24, 2017 DOI: 10.3892/etm.2017.5310 Abstract. The aim of the present study was to investigate frequencies were significantly associated with age, and there the association between cyclin-dependent kinase inhibitor was a gender dimorphism in CDKN2B methylation. 2A (CDKN2A) and cyclin-dependent kinase inhibitor 2B (CDKN2B) methylation, and coronary heart disease (CHD), Introduction and to explore the interaction between methylation status and CHD clinical characteristics in Han Chinese patients. A total Coronary heart disease (CHD) is a complex chronic disease of 189 CHD (96 males, 93 females) and 190 well-matched that is caused by an imbalance between blood supply and non-CHD controls (96 males, 94 females) were recruited for demand in myocardium. Various environmental and genetic the study. Methylation-specific polymerase chain reaction factors are known to contribute to onset and development of technology was used to examine gene promoter methylation CHD (1). As of 2010, CHD was the leading cause of mortality status. Comparisons of methylation frequencies between CHD globally, resulting in over 7 million cases of mortality (2). and non-CHD patients were carried out using the Chi-square Therefore, association studies for CHD biomarkers have been test.
    [Show full text]
  • Role for Cyclin D1 in UVC-Induced and P53-Mediated Apoptosis
    Cell Death and Differentiation (1999) 6, 565 ± 569 ã 1999 Stockton Press All rights reserved 13509047/99 $12.00 http://www.stockton-press.co.uk/cdd Role for cyclin D1 in UVC-induced and p53-mediated apoptosis Hirofumi Hiyama1 and Steven A. Reeves*,1 irradiation of human fibroblasts is mediated by the p53- induced cyclin/cdk inhibitor, p21.3 Cell cycle progression 1 Molecular Neuro-Oncology, Neuroscience Center, Neurosurgical Services, through the G1/S boundary is controlled by G1 cyclins, Massachusetts General Hospital and Harvard Medical School, Boston, including D and E type cyclins and their cyclin-dependent Massachusetts 02129, USA kinases (cdk), whose phosphorylation of the retinoblastoma * corresponding author: Steven A. Reeves, Molecular Neuro-Oncology, gene product (pRB) causes a dissociation of the pRB and Neuroscience Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA. tel.: (617) 726-5510; fax: (617) 726-5079; E2F-1 interaction, and subsequent activation of E2F- e-mail: [email protected] mediated transcription. As an universal inhibitor of cdks, p21 can inhibit phosphorylation of pRB and allow for G1 arrest.4 Recent studies have shown that overexpression of cyclin Received 13.10.98; revised 19.03.99; accepted 23.03.99 D1 in serum-starved cell types can induce apoptosis.5 Edited by T. Cotter Interestingly, the induction of the cell death program was found to be associated with an increase in cyclin D1- dependent kinase activity.6 Moreover, in cells that contain Abstract wild-type p53, the overexpression of E2F-1 leads to S- 7 DNA damaging agents such as ultraviolet (UV) induce cell phase entry and p53-dependent apoptosis.
    [Show full text]
  • Epigenetic Silencing of CDKN1A and CDKN2B by SNHG1 Promotes The
    Li et al. Cell Death and Disease (2020) 11:823 https://doi.org/10.1038/s41419-020-03031-6 Cell Death & Disease ARTICLE Open Access Epigenetic silencing of CDKN1A and CDKN2B by SNHG1 promotes the cell cycle, migration and epithelial-mesenchymal transition progression of hepatocellular carcinoma Bei Li1,AngLi2, Zhen You 1,JingchangXu1 and Sha Zhu3 Abstract Enhanced SNHG1 (small nucleolar RNA host gene 1) expression has been found to play a critical role in the initiation and progression of hepatocellular carcinoma (HCC) with its detailed mechanism largely unknown. In this study, we show that SNHG1 promotes the HCC progression through epigenetically silencing CDKN1A and CDKN2B in the nucleus, and competing with CDK4 mRNA for binding miR-140-5p in the cytoplasm. Using bioinformatics analyses, we found hepatocarcinogenesis is particularly associated with dysregulated expression of SNHG1 and activation of the cell cycle pathway. SNHG1 was upregulated in HCC tissues and cells, and its knockdown significantly inhibited HCC cell cycle, growth, metastasis, and epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Chromatin immunoprecipitation and RNA immunoprecipitation assays demonstrate that SNHG1 inhibit the transcription of CDKN1A and CDKN2B through enhancing EZH2 mediated-H3K27me3 in the promoter of CDKN1A and CDKN2B, thus resulting in the de-repression of the cell cycle. Dual-luciferase assay and RNA pulldown revealed that SNHG1 promotes 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; the expression of CDK4 by competitively binding to miR-140-5p. In conclusion, we propose that SNHG1 formed a regulatory network to confer an oncogenic function in HCC and SNHG1 may serve as a potential target for HCC diagnosis and treatment.
    [Show full text]
  • Requirement for Cyclin D3 in Germinal Center Formation and Function
    Cell Research (2010) :1-16. © 2010 IBCB, SIBS, CAS All rights reserved 1001-0602/10 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr Requirement for cyclin D3 in germinal center formation and function Jonathan U Peled1, J Jessica Yu1, Jeganathan Venkatesh2, Enguang Bi1, B Belinda Ding1, 5, Melissa Krupski-Downs1, Rita Shaknovich3, Piotr Sicinski4, Betty Diamond2, Matthew D Scharff1, B Hilda Ye1 1Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; 2The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; 3Depart- ments of Medicine and Pathology, Weill Cornell College of Medicine, New York, NY 10021, USA; 4Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA Germinal centers (GC) of secondary lymphoid tissues are critical to mounting a high-affinity humoral immune response. B cells within the GC undergo rapid clonal expansion and selection while diversifying their antibody genes. Although it is generally believed that GC B cells employ a unique proliferative program to accommodate these pro- cesses, little is known about how the GC-associated cell cycle is orchestrated. The D-type cyclins constitute an im- portant component of the cell cycle engine that enables the cells to respond to physiological changes. Cell type- and developmental stage-specific roles of D-type cyclins have been described but the cyclin D requirement during GC reaction has not been addressed. In this study, we report that cyclin D3 is largely dispensable for proliferation and Ig class switching of in vitro activated B cells.
    [Show full text]
  • Infrequent Methylation of CDKN2A(Mts1p16) and Rare Mutation of Both CDKN2A and CDKN2B(Mts2ip15) in Primary Astrocytic Tumours
    British Joumal of Cancer (1997) 75(1), 2-8 © 1997 Cancer Research Campaign Infrequent methylation of CDKN2A(MTS1p16) and rare mutation of both CDKN2A and CDKN2B(MTS2Ip15) in primary astrocytic tumours EE Schmidt, K Ichimura, KR Messerle, HM Goike and VP Collins Institute for Oncology and Pathology, Division of Tumour Pathology, and Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Hospital, S-171 76 Stockholm, Sweden Summary In a series of 46 glioblastomas, 16 anaplastic astrocytomas and eight astrocytomas, all tumours retaining one or both alleles of CDKN2A (48 tumours) and CDKN2B (49 tumours) were subjected to sequence analysis (entire coding region and splice acceptor and donor sites). One glioblastoma with hemizygous deletion of CDKN2A showed a missense mutation in exon 2 (codon 83) that would result in the substitution of tyrosine for histidine in the protein. None of the tumours retaining alleles of CDKN2B showed mutations of this gene. Glioblastomas with retention of both alleles of CDKN2A (14 tumours) and CDKN2B (16 tumours) expressed transcripts for these genes. In contrast, 7/13 glioblastomas with hemizygous deletions of CDKN2A and 8/11 glioblastomas with hemizygous deletions of CDKN2B showed no or weak expression. Anaplastic astrocytomas and astrocytomas showed a considerable variation in the expression of both genes, regardless of whether they retained one or two copies of the genes. The methylation status of the 5' CpG island of the CDKN2A gene was studied in all 15 tumours retaining only one allele of CDKN2A as well as in the six tumours showing no significant expression of transcript despite their retaining both CDKN2A alleles.
    [Show full text]
  • Cyclin D1 Amplification Is Independent of P16 Inactivation in Head And
    Oncogene (1999) 18, 3541 ± 3545 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $12.00 http://www.stockton-press.co.uk/onc Cyclin D1 ampli®cation is independent of p16 inactivation in head and neck squamous cell carcinoma K Okami1,3, AL Reed1, P Cairns1, WM Koch1, WH Westra2, S Wehage1, J Jen1 and D Sidransky*,1 1Department of OtolaryngologyÐHead & Neck Surgery, Division of Head and Neck Cancer Research, Johns Hopkins University School of Medicine, 818 Ross Research Building, 720 Rutland Avenue, Baltimore, Maryland, MD 21205-2196, USA; 2Department of Pathology, 7181 Meyer Building, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, Maryland, MD 21287, USA; 3Department of Otolaryngology, Yamaguchi University, Ube 755, Japan Progression through the G1 phase of the cell cycle is kinase (cdk) 4 complexes. This cdk4 phosphorylation mediated by phosphorylation of the retinoblastoma activity is negatively regulated by the tumor suppressor protein (pRb) resulting in the release of essential gene p16 (a CDK inhibitor), and positively by cyclin transcription factors such as E2F-1. The phosphorylation D1. Each individual component of this p16-cyclin D1- of pRb is regulated positively by cyclin D1/CDK4 and Rb pathway is commonly targeted in various malig- negatively by CDK inhibitors, such as p16 (CDKN2/ nancies (Weinberg, 1995; Sherr, 1996). We previously MTS-1/INK4A). The p16 /cyclin D1/Rb pathway plays reported a high frequency (83%) of p16 inactivation in a critical role in tumorigenesis and many tumor types human HNSCC (Reed et al., 1996) and less frequent display a high frequency of inactivation of at least one inactivation (13%) of pRb (Yoo et al., 1994).
    [Show full text]
  • Immunohistochemical Evaluation of P63 and Cyclin D1 in Oral Squamous Cell Carcinoma and Leukoplakia
    https://doi.org/10.5125/jkaoms.2017.43.5.324 ORIGINAL ARTICLE pISSN 2234-7550·eISSN 2234-5930 Immunohistochemical evaluation of p63 and cyclin D1 in oral squamous cell carcinoma and leukoplakia Sunit B. Patel1, Bhari S. Manjunatha2, Vandana Shah3, Nishit Soni4, Rakesh Sutariya5 1Department of Oral Pathology, Ahmedabad Dental College, Ahmedabad, India, 2Department of Oral Biology, Basic Dental Sciences, Faculty of Dentistry, Al-Huwaiyah, Taif University, Taif, Kingdom of Saudi Arabia, 3Department of Oral Pathology, K.M.Shah Dental College, Vadodara, 4Department of Oral Pathology, Karnavati School of Dentistry, Gandhinagar, 5Department of Oral Pathology, Vaidik Dental College, Daman, India Abstract (J Korean Assoc Oral Maxillofac Surg 2017;43:324-330) Objectives: There are only a limited number of studies on cyclin D1 and p63 expression in oral squamous cell carcinoma (OSCC) and leukoplakia. This study compared cyclin D1 and p63 expression in leukoplakia and OSCC to investigate the possible correlation of both markers with grade of dys- plasia and histological grade of OSCC. Materials and Methods: The study included a total of 60 cases, of which 30 were diagnosed with OSCC and 30 with leukoplakia, that were evalu- ated immunohistochemically for p63 and cyclin D1 expression. Protein expression was correlated based on grades of dysplasia and OSCC. Results: Out of 30 cases of OSCC, 23 cases (76.7%) were cyclin D1 positive and 30 cases (100%) were p63 positive. Out of 30 cases of leukoplakia, 21 cases (70.0%) were cyclin D1 positive and 30 (100%) were p63 positive (P<0.05). Conclusion: The overall expression of cyclin D1 and p63 correlated with tumor differentiation, and increases were correlated with poor histological grades, from well-differentiated to poorly-differentiated SCC.
    [Show full text]
  • A Variant at 9P21.3 Functionally Implicates CDKN2B in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia Aetiology
    UCSF UC San Francisco Previously Published Works Title A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology. Permalink https://escholarship.org/uc/item/3bz9m1pp Journal Nature communications, 7(1) ISSN 2041-1723 Authors Hungate, Eric A Vora, Sapana R Gamazon, Eric R et al. Publication Date 2016-02-12 DOI 10.1038/ncomms10635 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 23 Apr 2015 | Accepted 7 Jan 2016 | Published 12 Feb 2016 DOI: 10.1038/ncomms10635 OPEN A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology Eric A. Hungate1,*, Sapana R. Vora2,*, Eric R. Gamazon3,4, Takaya Moriyama5, Timothy Best2, Imge Hulur6, Younghee Lee3, Tiffany-Jane Evans7, Eva Ellinghaus8, Martin Stanulla9,Je´remie Rudant10,11, Laurent Orsi10,11, Jacqueline Clavel10,11,12, Elizabeth Milne13, Rodney J. Scott7,14, Ching-Hon Pui15, Nancy J. Cox3, Mignon L. Loh16, Jun J. Yang5, Andrew D. Skol1 & Kenan Onel1 Paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) is the most common cancer of childhood, yet little is known about BCP-ALL predisposition. In this study, in 2,187 cases of European ancestry and 5,543 controls, we discover and replicate a locus indexed by À 15 rs77728904 at 9p21.3 associated with BCP-ALL susceptibility (Pcombined ¼ 3.32 Â 10 , OR ¼ 1.72) and independent from rs3731217, the previously reported ALL-associated variant in this region. Of correlated SNPs tagged by this locus, only rs662463 is significant in African Americans, suggesting it is a plausible causative variant.
    [Show full text]
  • Supplemental Table S1 (A): Microarray Datasets Characteristics
    Supplemental table S1 (A): Microarray datasets characteristics Title Summary Samples Literature ref. GEO ref. Acquisition of granule Gene expression profiling of 27 (1) GSE 11859 neuron precursor identity cerebellar tumors generated and Hedgehog‐induced from various early and late medulloblastoma in mice. stage CNS progenitor cells Medulloblastomas derived Study of mouse 5 (2) GSE 7212 from Cxcr6 mutant mice medulloblastoma in response respond to treatment with to inhibitor of Smoothened a Smoothened inhibitor Expression profiles of Identification of distinct classes 10 (3) GSE 9299 mouse medulloblastoma of up‐regulated or down‐ 339 & 340 regulated genes during Hh dependent tumorigenesis Genetic alterations in Identification of differently 10 (4) GSE 6463 mouse medulloblastomas expressed genes among CGNPs 339 & and generation of tumors and CGNPs transfected with 340 from cerebellar granule retroviruses that express nmyc neuron precursors or cyclin‐d1 Patched heterozygous Analysis of granule cell 14 (5) GSE 2426 model of medulloblastoma precursors, pre‐neoplastic cells, GDS1110 and tumor cells 1. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh‐induced medulloblastoma. Cancer Cell 2008;14:123‐134. 2. Sasai K, Romer JT, Kimura H, Eberhart DE, Rice DS, Curran T. Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor. Cancer Res 2007;67:3871‐3877. 3. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 2006;66:10171‐10178.
    [Show full text]