Draft Revised Recovery Plan for the Rio Grande Silvery Minnow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notropis Girardi) and Peppered Chub (Macrhybopsis Tetranema)
Arkansas River Shiner and Peppered Chub SSA, October 2018 Species Status Assessment Report for the Arkansas River Shiner (Notropis girardi) and Peppered Chub (Macrhybopsis tetranema) Arkansas River shiner (bottom left) and peppered chub (top right - two fish) (Photo credit U.S. Fish and Wildlife Service) Arkansas River Shiner and Peppered Chub SSA, October 2018 Version 1.0a October 2018 U.S. Fish and Wildlife Service Region 2 Albuquerque, NM This document was prepared by Angela Anders, Jennifer Smith-Castro, Peter Burck (U.S. Fish and Wildlife Service (USFWS) – Southwest Regional Office) Robert Allen, Debra Bills, Omar Bocanegra, Sean Edwards, Valerie Morgan (USFWS –Arlington, Texas Field Office), Ken Collins, Patricia Echo-Hawk, Daniel Fenner, Jonathan Fisher, Laurence Levesque, Jonna Polk (USFWS – Oklahoma Field Office), Stephen Davenport (USFWS – New Mexico Fish and Wildlife Conservation Office), Mark Horner, Susan Millsap (USFWS – New Mexico Field Office), Jonathan JaKa (USFWS – Headquarters), Jason Luginbill, and Vernon Tabor (Kansas Field Office). Suggested reference: U.S. Fish and Wildlife Service. 2018. Species status assessment report for the Arkansas River shiner (Notropis girardi) and peppered chub (Macrhybopsis tetranema), version 1.0, with appendices. October 2018. Albuquerque, NM. 172 pp. Arkansas River Shiner and Peppered Chub SSA, October 2018 EXECUTIVE SUMMARY ES.1 INTRODUCTION (CHAPTER 1) The Arkansas River shiner (Notropis girardi) and peppered chub (Macrhybopsis tetranema) are restricted primarily to the contiguous river segments of the South Canadian River basin spanning eastern New Mexico downstream to eastern Oklahoma (although the peppered chub is less widespread). Both species have experienced substantial declines in distribution and abundance due to habitat destruction and modification from stream dewatering or depletion from diversion of surface water and groundwater pumping, construction of impoundments, and water quality degradation. -
Plains Minnow
Plains Minnow - Hybognathus placitus Abundance: Rare Status: NSS3 (Bb) NatureServe: G4 S3 Population Status: Some populations appear vulnerable where they occur in low abundance and are restricted from historical distribution. This species has been extirpated from the North Platte River basin and may also be gone from the Bighorn River basin. Other populations appear stable. Limiting Factor: Habitat: impoundments in major river drainages reduced population size and distribution presumably through loss of stream connectivity, reduced turbidity, altered temperature regimes, and flow regulation. Comment: NSS Ranks are reviewed and revised with each SWAP revision. No changes were made for this species in this revision. Introduction Historically, the distribution of the plains minnow was similar to the range of the western silvery minnow (Hybognathus argyritis), found in the Missouri River and middle Mississippi River drainages, but was more widespread in western tributaries of the Missouri river (Pflieger 1997). They are considered native to the Mississippi, Red, Arkansas, and Missouri River drainages and are found primarily from Montana and Wyoming east to Iowa (Weitzel 2002). In Wyoming, plains minnow have been reported in the Belle Fourche, Big Horn, Cheyenne, Little Missouri, and Powder river drainages (northeastern and northwestern Missouri aquatic habitats; Baxter and Stone 1995; Patton 1997; McGree et al. 2010). They are rare in some drainages, for example, McGree et al. (2010) caught two above Keyhole Reservoir, Patton (1997) found one above and one below Keyhole Reservoir, and Pindel (1997) reported one from near Devils Tower. Dooenbos also (1998) captured low numbers in South Dakota near the state line. No Hybognathus sp. -
Rio Grande Compact Commission Records, MS406, C
Guide to MS 406 Rio Grande Compact Commission records 1939-1968 3 linear feet Processed by Eva Ross, 2009 and edited by Claudia Rivers, 2012 Transferred to the UTEP Library by the Texas State Library and Archives Commission as part of the Texas Regional Historical Resources Depository Program. TSLAC accession number 1999/193 Citation: Rio Grande Compact Commission records, 1939-1968, MS406, C.L. Sonnichsen Special Collections Department. The University of Texas at El Paso Library. C.L. Sonnichsen Special Collections Department University of Texas at El Paso MS406 Historical Sketch: Formed as a result of the interstate compact signed by the states of Colorado, New Mexico and Texas in 1938 and approved by Congress, the Texas commission’s goal is to implement the compact by assuring the equitable apportioning of waters from the Rio Grande Basin. Past Commissioners include Frank B. Clayton, Julian P. Harrison, J. E. Quaid, Louis A. Scott, and Joe Hanson. Commissioner as of June, 2012 is Patrick Gordon. Arrangement: No series description has been determined. The files include rules and minutes, correspondence, project reports, water deliveries, Colorado debits, and stream gaging stations. Arrangement is roughly chronological within each grouping of folders. Scope and Content Notes: Contains correspondence, reports, tables, maps, and photographs that reflect the activities of the Texas office of the Rio Grande Compact Commission. Provenance Statement: Picked up by Special Collections staff from the Rio Grande Compact Commission office in El Paso at the request of Commissioner Joe Hanson in August 1999 from Tammy Beeman, his secretary. The official transfer reads “non-current files of historical interest” and was approved by Chris LaPlante, State Archivist. -
The History of the Rio Grande Compact of 1938
The Rio Grande Compact: Douglas R. Littlefield received his bache- Its the Law! lors degree from Brown University, a masters degree from the University of Maryland and a Ph.D. from the University of California, Los Angeles in 1987. His doc- toral dissertation was entitled, Interstate The History of the Water Conflicts, Compromises, and Com- Rio Grande pacts: The Rio Grande, 1880-1938. Doug Compact heads Littlefield Historical Research in of 1938 Oakland, California. He is a research histo- rian and consultant for many projects throughout the nation. Currently he also is providing consulting services to the U.S. Department of Justice, Salt River Project in Arizona, Nebraska Department of Water Resources, and the City of Las Cruces. From 1984-1986, Doug consulted for the Legal Counsel, New Mexico Office of the State Engineer, on the history of Rio Grande water rights and interstate apportionment disputes between New Mexico and Texas for use in El Paso v. Reynolds. account for its extraordinary irrelevancy, Boyd charged, by concluding that it was written by a The History of the congenital idiot, borrowed for such purpose from the nearest asylum for the insane. Rio Grande Compact Boyds remarks may have been intemperate, but nevertheless, they amply illustrate how heated of 1938 the struggle for the rivers water supplies had become even as early as the turn of the century. And Boyds outrage stemmed only from battles Good morning. I thought Id start this off on over water on the limited reach of the Rio Grande an upbeat note with the following historical extending just from southern New Mexicos commentary: Mesilla Valley to areas further downstream near Mentally and morally depraved. -
Western Silvery Minnow Hybognathus Argyritis
COSEWIC Assessment and Update Status Report on the Western Silvery Minnow Hybognathus argyritis in Canada ENDANGERED 2008 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2008. COSEWIC assessment and update status report on the western silvery minnow Hybognathus argyritis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 38 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report: COSEWIC. 2001. COSEWIC assessment and update status report on the western silvery minnow Hybognathus argyritis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 14 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Houston, J.J.P. 1997. COSEWIC status report on the western silvery minnow Hybognathus argyritis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 14 pp. Production note: COSEWIC would like to acknowledge M.K. Lowdon, D.A. Watkinson, and W.G. Franzin for writing the update status report on the western silvery minnow, Hybognathus argyritis in Canada, prepared under contract with Environment Canada, overseen and edited by R. Campbell and C. Renaud, COSEWIC Freshwater Fishes Specialist Subcommittee Co-Chairs. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le méné d’argent de l’Ouest (Hybognathus argyritis) au Canada. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Rio Grande Compact Commission Report
3 RIO GRANDE COMPACT COMMISSION REPORT RIO GRANDE COMPACT The State of Colorado, the State of New Mexico, and the State of Texas, desiring to remove all causes of present and future controversy among these States and between citizens of one of these States and citizens of another State with respect to the use of the waters of the Rio Grande above Fort Quitman, Texas, and being moved by considerations of interstate comity, and for the purpose of effecting an equitable apportionment of such waters, have resolved to conclude a Compact for the attainment of these purposes, and to that end, through their respective Governors, have named as their respective Commissioners: For the State of Colorado M. C. Hinderlider For the State of New Mexico Thomas M. McClure For the State of Texas Frank B. Clayton who, after negotiations participated in by S. O. Harper, appointed by the President as the representative of the United States of America, have agreed upon the following articles, to- wit: ARTICLE I (a) The State of Colorado, the State of New Mexico, the State of Texas, and the United States of America, are hereinafter designated “Colorado,” “New Mexico,” “Texas,” and the “United States,” respectively. (b) “The Commission” means the agency created by this Compact for the administration thereof. (c) The term “Rio Grande Basin” means all of the territory drained by the Rio Grande and its tributaries in Colorado, in New Mexico, and in Texas above Fort Quitman, including the Closed Basin in Colorado. (d) The “Closed Basin” means that part of the Rio Grande Basin in Colorado where the streams drain into the San Luis Lakes and adjacent territory, and do not normally contribute to the flow of the Rio Grande. -
Recovery Strategy for the Western Silvery Minnow (Hybognathus Argyritis) in Canada
Species at Risk Act Recovery Strategy Series Recovery Strategy for the Western Silvery Minnow (Hypognathus argyritis) in Canada Western Silvery Minnow February 2008 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003 and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened, or extirpated species is arrested or reversed and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets goals and objectives and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency, and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk. Sections 37–46 of SARA (http://www.sararegistry.gc.ca/the_act/) outline both the required content and the process for developing recovery strategies published in this series. -
Fishtraits: a Database on Ecological and Life-History Traits of Freshwater
FishTraits database Traits References Allen, D. M., W. S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of saltmarsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42(1)37-50. [multiple species] Anderson, K. A., P. M. Rosenblum, and B. G. Whiteside. 1998. Controlled spawning of Longnose darters. The Progressive Fish-Culturist 60:137-145. [678] Barber, W. E., D. C. Williams, and W. L. Minckley. 1970. Biology of the Gila Spikedace, Meda fulgida, in Arizona. Copeia 1970(1):9-18. [485] Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, WI. Belk, M. C., J. B. Johnson, K. W. Wilson, M. E. Smith, and D. D. Houston. 2005. Variation in intrinsic individual growth rate among populations of leatherside chub (Snyderichthys copei Jordan & Gilbert): adaptation to temperature or length of growing season? Ecology of Freshwater Fish 14:177-184. [349] Bonner, T. H., J. M. Watson, and C. S. Williams. 2006. Threatened fishes of the world: Cyprinella proserpina Girard, 1857 (Cyprinidae). Environmental Biology of Fishes. In Press. [133] Bonnevier, K., K. Lindstrom, and C. St. Mary. 2003. Parental care and mate attraction in the Florida flagfish, Jordanella floridae. Behavorial Ecology and Sociobiology 53:358-363. [410] Bortone, S. A. 1989. Notropis melanostomus, a new speices of Cyprinid fish from the Blackwater-Yellow River drainage of northwest Florida. Copeia 1989(3):737-741. [575] Boschung, H.T., and R. L. Mayden. 2004. Fishes of Alabama. Smithsonian Books, Washington. [multiple species] 1 FishTraits database Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes. -
Species Status Assessment Report for the Sharpnose Shiner (Notropis Oxyrhynchus) and Smalleye Shiner (N
Species Status Assessment Report For the Sharpnose Shiner (Notropis oxyrhynchus) And Smalleye Shiner (N. buccula) Prepared by the Arlington, Texas Ecological Services Field Office U.S. Fish and Wildlife Service Date of last revision: June 10, 2014 EXECUTIVE SUMMARY This species status assessment reports the results of the comprehensive status review for the sharpnose shiner (Notropis oxyrhynchus) and smalleye shiner (N. buccula) and provides a thorough account of the species’ overall viability and, conversely, extinction risk. Sharpnose and smalleye shiners are small minnows currently restricted to the contiguous river segments of the upper Brazos River basin in north-central Texas. In conducting our status assessment we first considered what the two shiners need to ensure viability. We generally define viability as the ability of the species to persist over the long term and, conversely, to avoid extinction. We then evaluated whether those needs currently exist and the repercussions to the species when those needs are missing, diminished, or inaccessible. We next consider the factors that are causing the species to lack what it needs, included historical, current, and future factors. Finally, considering the information reviewed, we evaluated the current status and future viability of the species in terms of resiliency, redundancy, and representation. Resiliency is the ability of the species to withstand stochastic events and, in the case of the shiners, is best measured by the extent of suitable habitat in terms of stream length. Redundancy is the ability of a species to withstand catastrophic events by spreading the risk and can be measured through the duplication and distribution of resilient populations across its range. -
Water, Natural Resources, and the Urban Landscape 42 Chapter Two
CHAPTER TWO WATER: A LIMITING FACTOR D E C I S I O N - M A K E R S FIELD CONFERENCE 2009 The Albuquerque Region 40 CHAPTER TWO The diversion dam on the Rio Grande just south of the Alameda bridge. EISEY H DRIEL © A DECISION-MAKERS FIELD GUIDE 2009 WATER: A LIMITING FACTOR 41 Water Supply Limitations in the Albuquerque Area Deborah L. Hathaway, S. S. Papadopulos & Associates, Inc. ater: the limiting factor. Albuquerque residents This water supply is highly variable from year to year Wand their political leaders are familiar with but in part can be stored by the Middle Rio Grande this concept, as are urban planners and developers. Conservancy District (MRGCD) at El Vado Reservoir. Water is a high-profile hurdle that confronts urban Native surface water represented by upstream inflow at development and attracts uncountable legal and the Otowi gage (with adjustment for upstream storage engineering efforts. Legions of attorneys and engineers and imported water) is subject to apportionment under make careers of developing “innovative” schemes the Rio Grande Compact, which caps native surface to surmount the water supply hurdle, and although water inflow available for depletion in New Mexico. these may be time-consuming and expensive, seldom Native surface water comprises the bulk of water used does lack of water impede a strongly motivated and for agriculture in the Albuquerque area and is diverted well-financed development plan. “Finding water” often into MRGCD canals at Angostura. Further north and results in a water transfer, for example, a shift of water south within the Albuquerque Basin, water for irriga- from agricultural to urban uses. -
2. Action Area: Overview of Project Components and Water Operations 2.1 Action Area
Joint Biological Assessment Part I – Water Management 2. Action Area: Overview of Project Components and Water Operations 2.1 Action Area The project area is the area where Reclamation’s and the non-Federal entities’ proposed actions occur, while the action area is defined as “all areas to be affected directly or indirectly by the Federal action and not merely the immediate area involved in the action” (50 Code of Federal Regulations [CFR] 402.02). For this BA, the project area and action area are considered to be the same. The action area for this consultation includes Heron Reservoir and Willow Creek downstream from Heron Dam, the Rio Chama downstream from the confluence with Willow Creek, and in the Rio Grande from the Velarde downstream to San Marcial above the full reservoir pool of Elephant Butte Reservoir (figure 1). The lateral extent of the action area generally is defined by the riverside drains and associated levees located to the east and west of the main stem of the river. In situations where levees do not exist on either or both sides, the lateral extents are confined by the historical flood plain (geological constraints, such as terraces and rock outcroppings or anthropogenic constraints, such as irrigation facilities). The river mile (RM) designations used in this document are those included in the 2002 controlled aerial photography. Caballo Dam is considered RM 0, and mile designations increase in an upstream direction. 2.2 Overview of Project Components This section provides background on the SJC Project and the MRG Project, which is necessary to identify the nature and limitations of both Reclamation’s discretionary actions and non-Federal actions.