Kisbolygók És Üstökösök Fizikai Paramétereinek Meghatározása

Total Page:16

File Type:pdf, Size:1020Kb

Kisbolygók És Üstökösök Fizikai Paramétereinek Meghatározása SZEGEDI TUDOMÁNYEGYETEM,KÍSÉRLETI FIZIKAI TANSZÉK Kisbolygók és üstökösök fizikai paramétereinek meghatározása fotometriai módszerekkel (Doktori értekezés) Szerzo:˝ Szabó M. Gyula½ , okl. csillagász Témavezeto:˝ Dr. Szatmáry Károly½ , CSc, habil. egy. docens ¾ Konzulensek: Dr. Kiss L. László½ , PhD Dr. Ivezic´ Željko ¿ , PhD ½ Szegedi Tudományegyetem, Kísérleti Fizikai Tanszék és Csillagvizsgáló, Szeged ¾ University of Sydney, School of Physics, Sydney ¿ Princeton University, Department of Astronomy, Princeton Washington University, Department of Astronomy, Seattle Szeged, 2005. Tartalomjegyzék: 1. A Naprendszer apró égitestjei ........................................... 9 1.1. A kisbolygók fizikai tulajdonságai .............................. 9 1.2. Az üstökösök fizikai tulajdonságai ............................ 13 1.3. Átmeneti objektumok .......................................... 16 1.3.1. Nyitott kérdések ........................................... 17 2. Az alkalmazott eljárások .............................................. 18 2.1. Digitális képfeldolgozás ........................................ 18 2.1.1. Fotometria ................................................. 18 2.2. A fotometria hibaforrásai ...................................... 19 2.3. Kisbolygók fotometriai vizsgálata .............................. 20 2.4. Üstökösök fotometriai vizsgálata .............................. 23 2.4.1. Gáztermelés meghatározása apertúra-fotometriával .... 23 2.4.2. Portermelés meghatározása apertúra-fotometriával ..... 25 2.5. Az üstökös magjának fotometriája ............................ 26 2.5.1. Felületi fotometria ......................................... 28 2.6. Statisztikai módszerek ......................................... 29 2.6.1. Statisztikai minták ........................................ 29 2.6.2. Néhány alkalmazott statisztikus módszer ................ 31 2.7. Az SDSS MOC .................................................. 33 3. Kisbolygók fotometriai megfigyelése .................................. 36 3.1. Eredmények .................................................... 36 3.2. Következtetések (kisbolygó-fotometria) ........................ 51 3.3. Kisbolygók színváltozásának statisztikus vizsgálata ......... 52 3.3.1. A mérési hibák vizsgálata ................................. 53 3.3.2. A színindexek korrelált változásának vizsgálata ......... 54 3.3.3. A színváltozás független a mérettol˝ és a kisbolygó típusától .. 57 3.3.4. A színváltozások a különbözo˝ dinamikai családokban .. 61 3.3.5. Következtetések ............................................ 61 2 3.4. A Trójai kisbolygók statisztikus vizsgálata .................... 65 3.4.1. A Trójai kisbolygók színeloszlása ......................... 68 3.4.2. A szín–inklináció korrelációjának vizsgálata ............. 70 3.5. Következtetések (SDSS vizsgálatok) ........................... 72 4. Üstökösök fotometriája és felületi fotometriája ...................... 74 4.1. Távoli aktív üstökösök belso˝ kómájának tanulmányozása ... 74 4.2. Öt üstökös belso˝ kómájának részletes modellezése .......... 79 4.2.1. Összehasonlítás ........................................... 88 4.3. Következtetések (üstökösök fotometriája) ..................... 90 4.4. A CArA észlelohálózat˝ és archívum ............................ 92 4.4.1. A CArA elso˝ eredményeibol˝ ............................... 94 5. Végso˝ következtetések ................................................. 96 6. Az értekezés tézisei .................................................... 97 7. Köszönetnyilvánítás .................................................. 100 Hivatkozások .......................................................... 101 Index ................................................................... 101 3 „Ha a természeti és a muvészi ˝ szépet összehasonlítjuk, azt kell mondanunk, hogy minden látszat ellenére a kett˝o közül a muvészi ˝ szép felfogása a könnyebb. (...) Ennek okát könnyen beláthatjuk, ha végiggondoljuk a természet esztétikai élve- zésének föntebb elemzett módozatait. Az egyik – a muvészetként ˝ való felfogás – legalább valamelyes muvészi ˝ érzéket kíván, ha nem is éppen muvészi ˝ képzettsé- get. A másik, a szentimentális természetélvezet, nem csekély érzelmi finomságot feltételez. (...) Hozzájárul ehhez még egy további nehézség. A természet jelenségei önmagukban beletartozván a legszélesebb értelemben vett érdekszférába, nagyon nehéz az embernek ezekt˝ol az érdekkapcsolatoktól annyira függetleníteni magát, hogy az esztétika másvilágába emelkedjék. (...) Egyszer egy igen okos és jólelku ˝ falusi öregasszonynak a figyelmét felhívtam a szebbnél szebb bíborszínekben játszó naplementi égre. «Igen, – felelte, – szél lesz holnap.» – «Igen, tudom, hogy ez azt jelenti, de nézze csak, milyen szépek ezek a felh˝ok!» – «Igen, –felelte, – bizony szél lesz.» – «De mondja, néni, nem látja maga, hogy ez milyen szép?» – «Dehogy nem, – felelte, – nagy szél lesz».” Sík Sándor Esztétika, II. 2. 4 Bevezetés Az asztrofizika gyorsan fejlod˝ o˝ korszakaiban mindig hangsúlyos figyelmet kapott a Naprendszer minél teljesebb megismerése. Kepler korától kezdve a XVIII. szá- zad végéig a csillagászati távolságmérés méterrúdjának, a Nap-Föld távolságnak a megmérése kapcsán került elotérbe˝ a Naprendszer kutatása. A XIX. század elsosorban˝ a muszerek ˝ fejlodésének˝ százada volt, a Naprendszer kutatásában ekkor – a jelentos˝ fölfedezések (Uránusz (1981), Neptunusz (1846), kisbolygók, trójai kisbolygók, késobb˝ a Plutó(1930) fölfedezése) mellett – viszonylagos jelen- toség˝ u ˝ eredmények születtek (a Titius–Bode-szabály igazolásának kísérlete, a bolygók lakottságára utaló bizonyítékok gyujtése). ˝ Legközelebb azurkorszak ˝ kezdetén indult gyors fejlodésnek˝ a Naprendszer megismerése; ez egyrészt a keringo˝ és leszálló bolygószondák révén vált lehetové,˝ másrészt azáltal, hogy a Föld körül keringo˝˝ urobszervatóriumok direkt (a musze- ˝ rekre gyakorolt hatás révén) és indirekt (pl. a Földre gyakorolt hatás megfigye- lésével) módon föltérképezték a Föld kozmikus környezetét. A fejlodés˝ harmadik oka, hogy a rádióobszervatóriumok és azurobszervatóriumok ˝ az eddig elérhetet- len hullámhosszakon mutatták meg a Naprendszer szerkezetét; elég itt csak az ekliptikai porkorong infravörös sugárzására, az üstökösök rádióspektrumának vizsgálataira, vagy az üstökösök röntgensugárzásának fölfedezésére gondolni. Naprendszerünk kutatása számos ponton kötodik˝ a mai asztrofizika gyorsan fejlod˝ o˝ ágaihoz is. A csillagkeletkezést és a fiatal csillagok életét csak akkor érthetjük meg teljesen, ha megismerjük az épp keletkezo˝ és a fiatal csillagok közvetlen környezetét. A kisbolygók és az üstökösök magukban orzik˝ a Naprend- szer kialakulásának, így egy egészen közelrol˝ megfigyelheto˝ csillagkeletkezésnek a lenyomatát. Éppen ezért a Naprendszer apró égitestjeinek kutatása az egyik legfontosabb alap a protoplanetáris korongok fejlodésének˝ és a bolygóképzodés-˝ nek a megértéséhez; és segít, hogy megértsük a bolygócsírák esetleges hatását a csillagkeletkezésre, a bolygók hatását a fiatal központi csillagra. A Nap fosorozat˝ elotti˝ állapotban, tehát mielott˝ a magjában a hidrogénfúzió beindult volna, egy porkorongba ágyazott fiatal csillag volt, amelynek energia- termelését a lassú gravitációs összehúzódás fedezte. Ez a fiatal, épp fosorozati˝ állapotúvá összehúzódó csillagok esetében hatékonyabb energiaforrás, mint a fúzió, ezért a Nap, a többi fiatal csillaghoz hasonlóan mai, fosorozati˝ állapotánál valamivel huvösebb, ˝ de sokkal nagyobb, végeredményben 10-szer–100-szor fé- nyesebb volt. Ebben az állapotban (T Tauri) a csillagból heves radiális csillagszél és poláris kifúvás áramlik kifelé, ami a porkorong nagy anyagvesztését okozza. A kis-közepes tömegu ˝ csillagok T Tauri fázisának hatását a mai Naprendszer- ben kitun ˝ oen˝ tanulmányozhatjuk. A T Tauri típusú Nap heves csillagszeleinek ¾ és/vagy a korai Naprendszer korongjában lévo˝ Ð gyors bomlásának hatását 5 aho-metamorf˝ kisbolygók (igneuos asteroid) és meteoritjainak kristályszerkeze- tében találjuk meg. A ho-metamorf˝ kisbolygók aránya lineárisan csökken 2,0 csillagászati egységtol˝ (100%) 3,5 csillagászati egységig (0%),aTTauri csillagok körül modellezett porkorongok homérséklet˝ gradiensével jó egyezésben (Gaffey, 1990, Herbert és mtsai, 1991). A kisbolygók redoxi-állapota magában orzi˝ an- nak az állapotnak az emlékét, amikor a kisbolygó utoljára volt egyensúlyban a Naprendszer osi˝ poranyagával; így pl. az E típusú kisbolygók szükségszeruen ˝ kisebb naptávolságban alakultak ki, mint a C típus (összhangban a mai elosz- lásukkal). A bolygók kialakulása elott˝ a porkorong anyagvesztésére (becslések szerint 60–80%) a Vesta típusú kisbolygók látszólag nagyon osi˝ bazaltja, ennek a Naprendszerben maradt mennyisége adhat fölso˝ korlátot (G93). A csillagfejlodés˝ késobbi˝ állapotában is meg lehet figyelni az apró égitestek esetleges hatását, így pl. utalhatunk a Csiga-ködben megfigyelt számos üstö- kösszeru ˝ globulára, amelyek a planetáris köd belso˝ pereme vidékén keringenek. Ezek elképzelhetoleg˝ egy korábbi külso˝ üstökösfelho˝ maradványai, bár lehet, hogy a planetáris köd szülocsillagának˝ naprendszeréhez korábban nem tartozó anyagcsomókkal állunk szemben (Huggins és mtsai, 2002). A fiatal Nap csillagfejlodésének˝ megismeréséhez kötodik˝ a másik gyorsan fej- lod˝ o˝ terület: az exobolygók kutatása. Milyen bolygórendszerek alakulnak ki a fiatal csillagok körül? Mennyire jellemzo,˝ hogy kis tömegu ˝ csillagok keletkezése- kor bolygórendszer is létrejöjjön? Ma már számos épp kialakuló naprendszert is ismerünk,
Recommended publications
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Supported by the European Commission
    Implementation Guide Supported by the European Commission ISBN 960 - 8339 - 14- 6 Eudoxos e-learning project Implementation Guide Eudoxos e-learning project is carried out within the framework of the SOCRATES / eLearning initiative and is co-financed by the European e Learning Commission. Designing Tomorrow's Education Contract Number: 2002-4085/001-001 EDU-ELEARN Copyright © 2003 by Ellinogermaniki Agogi, NCSR Demokritos and NOE Eudoxos All rights reserved. Reproduction or translation of any part of this work without the written permission of the copyright owners is unlawful. Request for permission or further information should be addressed to the copyright owners. Printed by EPINOIA S.A. ISBN 960 - 8339 - 14- 6 Eudoxos e-learning project Implementation Guide Editors: Scientific Infrastructure: Sofoklis Sotiriou NOE (National Observatory of Education) “Eudoxos”, Nicholas Andrikopoulos Ainos Mountain, Kefallinia Island, Greece. Pedagogical Institute, Greek Ministry of Education. Prefecture of Kefallinia and Ithaki. Contributors: National Centre for Scientific Research, Demokritos Management Center Innsbruck George Fanourakis (Scientific Coordinator) Friedrich Scheuermann Nikolaos Solomos Petros Georgopoulos BG und BRG Schwechat Theodoros Geralis Peter Eisenbarth Katerina Zaxariadou Manfred Lohr Anastasia Pappa Markus Artner Christoph Laimer Ellinogermaniki Agogi Stavros Savvas Istituto Tecnico Industriale Statale Pininfarina Emmanuel Apostolakis Claudio Ferrero Omiros Korakianitis Giustino Cau University of Athens, Pedagogical Department
    [Show full text]
  • Creation and Application of Routines for Determining Physical Properties of Asteroids and Exoplanets from Low Signal-To-Noise Data Sets
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 Creation and Application of Routines for Determining Physical Properties of Asteroids and Exoplanets from Low Signal-To-Noise Data Sets Nathaniel Lust University of Central Florida Part of the Astrophysics and Astronomy Commons, and the Physics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Lust, Nathaniel, "Creation and Application of Routines for Determining Physical Properties of Asteroids and Exoplanets from Low Signal-To-Noise Data Sets" (2014). Electronic Theses and Dissertations, 2004-2019. 4635. https://stars.library.ucf.edu/etd/4635 CREATION AND APPLICATION OF ROUTINES FOR DETERMINING PHYSICAL PROPERTIES OF ASTEROIDS AND EXOPLANETS FROM LOW SIGNAL-TO-NOISE DATA-SETS by NATE B LUST B.S. University of Central Florida, 2007 A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics in the Department of Physics in the College of Sciences at the University of Central Florida Orlando, Florida Fall Term 2014 Major Professor: Daniel Britt © 2014 Nate B Lust ii ABSTRACT Astronomy is a data heavy field driven by observations of remote sources reflecting or emitting light. These signals are transient in nature, which makes it very important to fully utilize every observation.
    [Show full text]
  • Updated on 1 September 2018
    20813 Aakashshah 12608 Aesop 17225 Alanschorn 266 Aline 31901 Amitscheer 30788 Angekauffmann 2341 Aoluta 23325 Arroyo 15838 Auclair 24649 Balaklava 26557 Aakritijain 446 Aeternitas 20341 Alanstack 8651 Alineraynal 39678 Ammannito 11911 Angel 19701 Aomori 33179 Arsenewenger 9117 Aude 16116 Balakrishnan 28698 Aakshi 132 Aethra 21330 Alanwhitman 214136 Alinghi 871 Amneris 28822 Angelabarker 3810 Aoraki 29995 Arshavsky 184535 Audouze 3749 Balam 28828 Aalamiharandi 1064 Aethusa 2500 Alascattalo 108140 Alir 2437 Amnestia 129151 Angelaboggs 4094 Aoshima 404 Arsinoe 4238 Audrey 27381 Balasingam 33181 Aalokpatwa 1142 Aetolia 19148 Alaska 14225 Alisahamilton 32062 Amolpunjabi 274137 Angelaglinos 3400 Aotearoa 7212 Artaxerxes 31677 Audreyglende 20821 Balasridhar 677 Aaltje 22993 Aferrari 200069 Alastor 2526 Alisary 1221 Amor 16132 Angelakim 9886 Aoyagi 113951 Artdavidsen 20004 Audrey-Lucienne 26634 Balasubramanian 2676 Aarhus 15467 Aflorsch 702 Alauda 27091 Alisonbick 58214 Amorim 30031 Angelakong 11258 Aoyama 44455 Artdula 14252 Audreymeyer 2242 Balaton 129100 Aaronammons 1187 Afra 5576 Albanese 7517 Alisondoane 8721 AMOS 22064 Angelalewis 18639 Aoyunzhiyuanzhe 1956 Artek 133007 Audreysimmons 9289 Balau 22656 Aaronburrows 1193 Africa 111468 Alba Regia 21558 Alisonliu 2948 Amosov 9428 Angelalouise 90022 Apache Point 11010 Artemieva 75564 Audubon 214081 Balavoine 25677 Aaronenten 6391 Africano 31468 Albastaki 16023 Alisonyee 198 Ampella 25402 Angelanorse 134130 Apaczai 105 Artemis 9908 Aue 114991 Balazs 11451 Aarongolden 3326 Agafonikov 10051 Albee
    [Show full text]
  • Applying Machine Learning to Asteroid Classification Utilizing Spectroscopically Derived Spectrophotometry Kathleen Jacinda Mcintyre
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2019 Applying Machine Learning To Asteroid Classification Utilizing Spectroscopically Derived Spectrophotometry Kathleen Jacinda Mcintyre Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Mcintyre, Kathleen Jacinda, "Applying Machine Learning To Asteroid Classification Utilizing Spectroscopically Derived Spectrophotometry" (2019). Theses and Dissertations. 2474. https://commons.und.edu/theses/2474 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. APPLYING MACHINE LEARNING TO ASTEROID CLASSIFICATION UTILIZING SPECTROSCOPICALLY DERIVED SPECTROPHOTOMETRY by Kathleen Jacinda McIntyre Bachelor oF Science, University oF Florida, 2011 Bachelor oF Arts, University oF Florida, 2011 A Thesis Submitted to the Graduate Faculty of the University oF North Dakota in partial fulfillment oF the reQuirements for the degree oF Master oF Science Grand Forks, North Dakota May 2019 ii PERMISSION Title ApPlying Machine Learning to Asteroid ClassiFication Utilizing SPectroscoPically Derived SPectroPhotometry DePartment Space Studies Degree Master oF Science In Presenting this thesis in Partial fulfillment of the reQuirements for a graduate degree From the University of North Dakota, I agree that the library of this University shall make it Freely available For insPection. I Further agree that permission For extensive copying For scholarly purposes may be granted by the professor Who suPervised my thesis Work, or in his absence, by the ChairPerson of the department of the dean of the School of Graduate Studies.
    [Show full text]
  • The Minor Planet Bulletin, We Feel Safe in Al., 1989)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 43, NUMBER 3, A.D. 2016 JULY-SEPTEMBER 199. PHOTOMETRIC OBSERVATIONS OF ASTEROIDS star, and asteroid were determined by measuring a 5x5 pixel 3829 GUNMA, 6173 JIMWESTPHAL, AND sample centered on the asteroid or star. This corresponds to a 9.75 (41588) 2000 SC46 by 9.75 arcsec box centered upon the object. When possible, the same comparison star and check star were used on consecutive Kenneth Zeigler nights of observation. The coordinates of the asteroid were George West High School obtained from the online Lowell Asteroid Services (2016). To 1013 Houston Street compensate for the effect on the asteroid’s visual magnitude due to George West, TX 78022 USA ever changing distances from the Sun and Earth, Eq. 1 was used to [email protected] vertically align the photometric data points from different nights when constructing the composite lightcurve: Bryce Hanshaw 2 2 2 2 George West High School Δmag = –2.5 log((E2 /E1 ) (r2 /r1 )) (1) George West, TX USA where Δm is the magnitude correction between night 1 and 2, E1 (Received: 2016 April 5 Revised: 2016 April 7) and E2 are the Earth-asteroid distances on nights 1 and 2, and r1 and r2 are the Sun-asteroid distances on nights 1 and 2. CCD photometric observations of three main-belt 3829 Gunma was observed on 2016 March 3-5. Weather asteroids conducted from the George West ISD Mobile conditions on March 3 and 5 were not particularly favorable and so Observatory are described.
    [Show full text]
  • Download Full Issue
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 47, NUMBER 1, A.D. 2020 JANUARY-MARCH 1. SECTION NEWS: COLLABORATIVE ASTEROID PHOTOMETRY FOR STAFFING CHANGES FOR ASTEROID 2051 CHANG THE MINOR PLANET BULLETIN Alessandro Marchini Frederick Pilcher Astronomical Observatory, DSFTA - University of Siena (K54) Minor Planets Section Recorder Via Roma 56, 53100 - Siena, ITALY [email protected] [email protected] One staffing change and one staffing addition for The Minor Planet Bulletin are announced effective with this issue. Riccardo Papini, Massimo Banfi, Fabio Salvaggio Wild Boar Remote Observatory (K49) MPB Distributor Derald Nye is now retired from his 37 years of San Casciano in Val di Pesa (FI), ITALY service to the Minor Planets Bulletin. Derald stepped in to service at the time the MPB made its transition from the original Editor Melissa N. Hayes-Gehrke, Eric Yates and Section founder, Richard G. Hodgson. As Derald reflected in Department of Astronomy, University of Maryland a short essay written in MPB 40, page 53 (2013), the Distributor College Park, MD, USA 20740 position was the longest job he ever held, having retired from being a programmer for 30 years with IBM. (Work for IBM (Received: 2019 October 15) included programming for the space program.) At its peak, Derald was managing nearly 200 subscriptions. That number dropped to Photometric observations of this main-belt asteroid were the dozen or so libraries maintaining a permanent collection conducted in order to determine its rotation period. The following the MPB transitioning to becoming an on-line electronic authors found a synodic rotation period of 12.013 ± journal with limited printing.
    [Show full text]
  • Binary Asteroid Parameters
    BINARY ASTEROID PARAMETERS ′ Asteroid/satellite Dp Ds/Dp Ds Perp Pers Perorb a a/Dp ρp a 22 Kalliope/ Linus 170 0.213 36 4.1482 86.16 1065 6.3 2.5 2.910 45 Eugenia/ Petit–Prince 195 0.036 7.0 5.6991 114.38 1184 6.1 1.1 2.724 87 Sylvia/ Romulus 256 0.063 16 5.1836 87.59 1356 5.3 1.5 3.493 90 Antiope/ S/2000 1 86.7 0.955 82.8 16.5051 16.5051 16.5051 171 1.97 1.26 3.154 107 Camilla/ S/2001 1 206 0.050 10 4.8439 89.04 1235 6.0 1.9 3.495 121 Hermione/ S/2002 1 (205) 0.066 (14) 5.5513 61.97 768 (3.7) (1.1) 3.448 130 Elektra/ S/2003 1 179 0.026 4.7 5.225 (94.1) (1252) (7.0) (3.0) 3.124 243 Ida/ Dactyl 28.1 0.048 1.34 4.6336 2.7 2.860 283 Emma/ S/2003 1 145 0.079 11 6.888 80.74 596 4.1 0.8 3.046 379 Huenna/ S/2003 1 90 0.078 7.0 (7.022) 1939 3400 38 1.2 3.136 617 Patroclus/ Menoetius 101 0.92 93 (102.8) 102.8 680 6.7 1.3 5.218 624 Hektor/ Skamandrios 220 0.05 11 6.92051 (1700) (8) 5.242 762 Pulcova 133 0.16 21 5.839 96 810 6.1 1.9 3.157 809 Lundia 6.9 0.89 6.1 15.418 15.418 15.418 (15) (2.2) (2.0) 2.283 854 Frostia 5.7 0.98 6 (37.711) (37.711) 37.711 (24) (4.1) (2.0) 2.368 939 Isberga 10.56 0.29 3.1 2.9173 26.8 (28) (2.6) (2.0) 2.246 1052 Belgica 9.8 (0.36) (3.5) 2.7097 47.26 (38) (3.9) (2.0) 2.236 1089 Tama 9.1 0.9 8 (16.4461) (16.4461) 16.4461 (21) (2.3) (2.0) 2.214 1139 Atami 5 0.8 4.0 (27.45) (27.45) 27.45 (15) (3.1) (2.0) 1.947 1313 Berna 9.5 0.97 9.2 (25.464) (25.464) 25.464 (30) (3.1) (2.0) 2.656 1338 Duponta 7.7 0.24 1.8 3.85453 17.5680 (15) (2.0) (2.0) 2.264 1453 Fennia 6.33 0.28 1.8 4.4121 (23.1) 23.00351 (16) (2.6) (2.0) 1.897 1509
    [Show full text]
  • The Minor Planet Bulletin 40 (2013) 125 CS3 Observations on Jan 13 and 14 Were Made with a 0.35-M Schmidt-Cassegrain and SBIG ST-9XE
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 40, NUMBER 3, A.D. 2013 JULY-SEPTEMBER 119. SOMETHING OLD, SOMETHINGS NEW: figure shows the lightcurve after removing the rotation of the THREE BINARY DISCOVERIES primary, thus revealing the mutual events and other features due to FROM THE PALMER DIVIDE OBSERVATORY the satellite. The latter often includes an upward bowing between the events, indicating an elongated satellite that is tidally-locked to Brian D. Warner its orbital period. Palmer Divide Observatory 17995 Bakers Farm Rd., Colorado Springs, CO 80908 4383 Suruga. Observations of 4383 Suruga were made from 2013 [email protected] Feb 2-13. Initial observations were made with a 0.35-m Schmidt- Cassegrain and Finger Lakes FLI-1001E CCD camera. When (Received: 10 March) indications of a satellite were seen in those first data sets, the target was moved to a 0.5-m Ritchey-Chretien with FLI-1001E to improve the signal-to-noise ratio. Data on the order of 0.01-0.02 Analysis of new CCD photometric observations in early mag are usually required for reliable detections of mutual events 2013 of the Vestoid asteroid 4383 Suruga and Hungaria (occultations and/or eclipses) caused by a satellite. asteroid (53432) 1999 UT55 showed that the two are binary systems. A review of data from 2005 for the The results of the analysis are shown in Figures 1-3. The period of Hungaria asteroid 4440 Tchantches indicates that the the primary is 3.4068 ± 0.0003 h with an amplitude of 0.14 ± 0.01 original analysis probably overlooked a satellite.
    [Show full text]
  • The Minor Planet Bulletin Reporting the Present Publication
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 42, NUMBER 1, A.D. 2015 JANUARY-MARCH 1. NIR MINOR PLANET PHOTOMETRY FROM BURLEITH 359 Georgia. The observed rotation is in close agreement with OBSERVATORY: 2014 FEBRUARY – JUNE Lagerkvist (1978). Richard E. Schmidt 462 Eriphyla. The observing sessions of duration 3.5 hours on Burleith Observatory (I13) 2014 Feb 22 and 3.3 hours on 2014 March 16 appear to indicate 1810 35th St NW that the true rotation period is twice that found by Behrend (2006). Washington, DC 20007 [email protected] 595 Polyxena. The observed rotation is in close agreement with Piironen et al. (1998). (Received: 19 August Revised: 5 September) 616 Elly. Alvarez-Candal et al.(2004) found a period of 5.301 h. Rotation periods were obtained for ten minor planets 782 Montefiore. These observations confirm the period of based on near-IR CCD observations made in 2014 at the Wisniewski et al. (1997). urban Burleith Observatory, Washington, DC. 953 Painleva. At Mv = 14 and amplitude 0.05 mag, a low confidence in these results should be assumed. Ditteon and In the city of Washington, DC, increasing light pollution brought Hawkins (2007) found no period over two nights. on by the installation of “decorative” street lights has severely limited opportunities for minor planet photometry. In 2014 a test 1019 Strackea. A member of the high-inclination (i = 27°) selection of bright minor planets of both high and low amplitude Hungaria group, Strackea has been an object of much interest of were chosen to study the feasibility of differential photometry in late.
    [Show full text]
  • Appendix a Luna and Telescopes
    Appendix A Luna and Telescopes Exploring Luna’s surface is one of the easiest things to do in this book. You have a few options when you do this. It has the advan- tage of being the only moon visible to the naked eyes. (You might be able to just see the Galilean moons, but you would hardly be able to do anything beyond just see them.) So the next step is to consider an instrument. Be aware, this is not a general purpose guide. If you want one, look at the local library or bookseller for a copy of “NightWatch” as the book is excellent, has a sturdy plastic spiral for easy hands- free use and will serve you in more ways than just binoculars for many years to come. That being said all my recommendations in this chapter are for viewing ONLY OUR MOON. Most other moons will be pinpricks, so if you can see them at all you did the best you could. If you also wish to view nebula, galaxies, birds, be rude to your neighbors, and so forth, do your homework. Binoculars The first option is to go with binoculars. These come in a variety of sizes, which is listed as two numbers. The first is magnification and the second is aperture size (in mm). Common sizes include 7 × 35, 7 × 42, 8 × 40, 9 × 50 or even 10 × 50. For dim object you will want the bigger sizes, but the moon is not a dim object. Even a 7 × 35 will produce some pretty spectacular views.
    [Show full text]