Dynamic Histone Modifications Coordinate Transcription, Dna Repair and Recombination Across Distinct Metabolic States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chip Validated H4k5ac (Clone RM140) Antibody with Positive and Negative Primer Sets
www.chromatrap.com Clywedog Rd South Wrexham Industrial Estate Wrexham LL13 9XS, United Kingdom Tel: +44 (0) 1978 666239/40 Email: [email protected] ChIP Validated H4K5ac (Clone RM140) Antibody with Positive and Negative Primer Sets Catalogue no: 900029 Chromatrap®’s ChIP Validated H4K5ac Antibody with Positive Primer Set provides a complete set of tools to assist with a successful ChIP assay. Including: H4K5ac antibody, control rabbit IgG, and positive primer set. The ChIP Validated H4K5ac Antibody with Positive Primer Set is not suitable for use with non-human species. Background: Histone 4 (H4) is one of the five core histone proteins, comprising the protein component of chromatin. H4 is ubiquitous within chromosomes and can be found bound to most gene sequences throughout the genome. Acetylation of lysine 5 on histone 4 (H4K5ac) is associated with open chromatin and active gene transcription. H4K5ac has been shown to have roles in epigenetic bookmarking, a process where genetic information is passed onto daughter cells during cell division. A rabbit IgG is included in this Antibody Primer Set as a negative control for the ChIP experiment. The H4K5ac positive primer set recognises the promoter of the GAPDH gene, associated with active transcription and is a suitable target for this antibody. Suggested Usage: Component Suggested Dilution Figure H4K5ac 2:1 (antibody: chromatin) 1 Rabbit IgG 2:1 (antibody: chromatin) 1 Positive Primer Set Dilute from 4M (provided) to 1M working concentration Please note: Optimal dilutions should be determined by the user. These volumes are stated as guidelines only. Advancements in Epigenetics *This product is for research use only. -
Recurrent Herpes Simplex Virus Type 1 (HSV-1) Infection Modulates Neuronal Aging Marks in in Vitro and in Vivo Models
International Journal of Molecular Sciences Article Recurrent Herpes Simplex Virus Type 1 (HSV-1) Infection Modulates Neuronal Aging Marks in In Vitro and In Vivo Models Giorgia Napoletani 1 , Virginia Protto 1 , Maria Elena Marcocci 1 , Lucia Nencioni 1 , Anna Teresa Palamara 1,2,† and Giovanna De Chiara 3,*,† 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, 00185 Rome, Italy; [email protected] (G.N.); [email protected] (V.P.); [email protected] (M.E.M.); [email protected] (L.N.); [email protected] (A.T.P.) 2 Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy 3 Institute of Translational Pharmacology, National Research Council (CNR), 00133 Rome, Italy * Correspondence: [email protected] † Co-last authors. Abstract: Herpes simplex virus 1 (HSV-1) is a widespread neurotropic virus establishing a life-long latent infection in neurons with periodic reactivations. Recent studies linked HSV-1 to neurodegen- erative processes related to age-related disorders such as Alzheimer’s disease. Here, we explored whether recurrent HSV-1 infection might accelerate aging in neurons, focusing on peculiar marks of aged cells, such as the increase in histone H4 lysine (K) 16 acetylation (ac) (H4K16ac); the decrease Citation: Napoletani, G.; Protto, V.; of H3K56ac, and the modified expression of Sin3/HDAC1 and HIRA proteins. By exploiting both Marcocci, M.E.; Nencioni, L.; in vitro and in vivo models of recurrent HSV-1 infection, we found a significant increase in H4K16ac, Palamara, A.T.; De Chiara, G. -
Hst3 Is Turned Over by a Replication Stress-Responsive SCF Phospho
Hst3 is turned over by a replication stress-responsive SCFCdc4 phospho-degron Ellen R. Edenberga, Ajay A. Vashishtb, Benjamin R. Topacioa, James A. Wohlschlegelb, and David P. Toczyskia,1 aDepartment of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; and bDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095 Edited* by Stephen J. Elledge, Harvard Medical School, Boston, MA, and approved March 10, 2014 (received for review August 13, 2013) Hst3 is the histone deacetylase that removes histone H3K56 several E3 ubiquitin ligases to identify the one responsible for acetylation. H3K56 acetylation is a cell-cycle– and damage-regu- targeting Hst3 for degradation and found that Hst3 is partially lated chromatin marker, and proper regulation of H3K56 acetyla- stabilized at the nonpermissive temperature of temperature- tion is important for replication, genomic stability, chromatin sensitive mutants in CDC53 (the cullin scaffold for all SCF assembly, and the response to and recovery from DNA damage. ligases) and CDC4 (encoding an essential F-box protein) (Fig. Understanding the regulation of enzymes that regulate H3K56 1A). Inactivation of SCFCdc4 also stabilized Hst3 after treatment acetylation is of great interest, because the loss of H3K56 acetyla- B HST3 with hydroxyurea (HU) to induce replication stress (Fig. 1 ). tion leads to genomic instability. is controlled at both the Cdc4 transcriptional and posttranscriptional level. Here, we show that SCF recognizes its substrates through a phospho-degron – Hst3 is targeted for turnover by the ubiquitin ligase SCFCdc4 (20 22). To understand how Hst3 was targeted for turnover both after phosphorylation of a multisite degron. -
Watanabe S, Resch M, Lilyestrom W, Clark N
NIH Public Access Author Manuscript Biochim Biophys Acta. Author manuscript; available in PMC 2010 November 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Biochim Biophys Acta. 2010 ; 1799(5-6): 480±486. doi:10.1016/j.bbagrm.2010.01.009. Structural characterization of H3K56Q nucleosomes and nucleosomal arrays Shinya Watanabe1,*, Michael Resch2,*, Wayne Lilyestrom2, Nicholas Clark2, Jeffrey C. Hansen2, Craig Peterson1, and Karolin Luger2,3 1 Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St.; Worcester, Massachusetts 01605 2 Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870 3 Howard Hughes Medical Institute Abstract The posttranslational modification of histones is a key mechanism for the modulation of DNA accessibility. Acetylated lysine 56 in histone H3 is associated with nucleosome assembly during replication and DNA repair, and is thus likely to predominate in regions of chromatin containing nucleosome free regions. Here we show by x-ray crystallography that mutation of H3 lysine 56 to glutamine (to mimic acetylation) or glutamate (to cause a charge reversal) has no detectable effects on the structure of the nucleosome. At the level of higher order chromatin structure, the K to Q substitution has no effect on the folding of model nucleosomal arrays in cis, regardless of the degree of nucleosome density. In contrast, defects in array-array interactions in trans (‘oligomerization’) are selectively observed for mutant H3 lysine 56 arrays that contain nucleosome free regions. Our data suggests that H3K56 acetylation is one of the molecular mechanisms employed to keep chromatin with nucleosome free regions accessible to the DNA replication and repair machinery. -
Role of Hmof-Dependent Histone H4 Lysine 16 Acetylation in the Maintenance of TMS1/ASC Gene Activity
Research Article Role of hMOF-Dependent Histone H4 Lysine 16 Acetylation in the Maintenance of TMS1/ASC Gene Activity Priya Kapoor-Vazirani, Jacob D. Kagey, Doris R. Powell, and Paula M. Vertino Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, Georgia Abstract occurring aberrantly during carcinogenesis, is associated with gene Epigenetic silencing of tumor suppressor genes in human inactivation (4). Histone modifications can also act synergistically cancers is associated with aberrant methylation of promoter or antagonistically to define the transcription state of genes. region CpG islands and local alterations in histone mod- Acetylation of histones H3 and H4 is associated with transcrip- ifications. However, the mechanisms that drive these events tionally active promoters and an open chromatin configuration (5). remain unclear. Here, we establish an important role for Both dimethylation and trimethylation of histone H3 lysine 4 histone H4 lysine 16 acetylation (H4K16Ac) and the histone (H3K4me2and H3K4me3) have been linked to actively transcribing acetyltransferase hMOF in the regulation of TMS1/ASC,a genes, although recent studies indicate that CpG island–associated proapoptotic gene that undergoes epigenetic silencing in promoters are marked by H3K4me2regardless of the transcrip- human cancers. In the unmethylated and active state, the tional status (6, 7). In contrast, methylation of histone H3 lysine 9 TMS1 CpG island is spanned by positioned nucleosomes and and 27 are associated with transcriptionally inactive promoters and marked by histone H3K4 methylation. H4K16Ac was uniquely condensed closed chromatin (8, 9). Interplay between histone localized to two sharp peaks that flanked the unmethylated modifications and DNA methylation defines the transcriptional CpG island and corresponded to strongly positioned nucle- potential of a particular chromatin domain. -
Histone Crosstalk Between H3s10ph and H4k16ac Generates a Histone Code That Mediates Transcription Elongation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Histone Crosstalk between H3S10ph and H4K16ac Generates a Histone Code that Mediates Transcription Elongation Alessio Zippo,1 Riccardo Serafini,1 Marina Rocchigiani,1 Susanna Pennacchini,1 Anna Krepelova,1 and Salvatore Oliviero1,* 1Dipartimento di Biologia Molecolare Universita` di Siena, Via Fiorentina 1, 53100 Siena, Italy *Correspondence: [email protected] DOI 10.1016/j.cell.2009.07.031 SUMMARY which generates a different binding platform for the further recruitment of proteins that regulate gene expression. The phosphorylation of the serine 10 at histone H3 In Drosophila it has been shown that H3S10ph is required for has been shown to be important for transcriptional the recruitment of the positive transcription elongation factor activation. Here, we report the molecular mechanism b (P-TEFb) on the heat shock genes (Ivaldi et al., 2007) although through which H3S10ph triggers transcript elonga- these results have been challenged (Cai et al., 2008). tion of the FOSL1 gene. Serum stimulation induces In mammalian cells, nucleosome phosphorylation localized at the PIM1 kinase to phosphorylate the preacetylated promoters has been directly linked with transcriptional activa- tion. It has been shown that H3S10ph enhances the recruitment histone H3 at the FOSL1 enhancer. The adaptor of GCN5, which acetylates K14 on the same histone tail (Agalioti protein 14-3-3 binds the phosphorylated nucleo- et al., 2002; Cheung et al., 2000). Steroid hormone induces the some and recruits the histone acetyltransferase transcriptional activation of the MMLTV promoter by activating MOF, which triggers the acetylation of histone H4 MSK1 that phosphorylates H3S10, leading to HP1g displace- at lysine 16 (H4K16ac). -
16-0352 Technical Data Sheet
Nucleosome, Recombinant Human, H4K5ac dNuc, Biotinylated Catalog No. 16-0352 Lot No. 21147003-61 Pack Size 50 µg Product Description: Mononucleosomes assembled from recombinant human histones expressed in E. coli (two each of histones H2A, H2B, H3 and H4; accession numbers: H2A-P04908; H2B-O60814; H3.1-P68431; H4-P62805) wrapped by 147 base pairs of 601 positioning sequence DNA. Histone H4 (created by a proprietary synthetic method) is N-terminally acetylated and contains acetyl-lysine at position 5. The nucleosome is the basic subunit of chromatin. The 147 bp 601 sequence, identified by Lowary and Widom, has high affinity for histone octamers and is useful for nucleosome assembly. The DNA contains a 5’ biotin-TEG group. Western Blot Data: Western Analysis of Nucleosome, Recombinant Human, H4K5ac. Top Panel: Unmodified H4 Formulation: (Lane 1) and H4K5ac containing nucleosomes (Lane 2) were probed with an anti-H4K5ac antibody and analyzed via ECL Nucleosome, Recombinant Human, H4K5ac (27.3 µg protein readout. Only the H4K5ac sample produced a detectable weight, 50 µg total weight) in 50 µL of 10 mM Tris HCl pH 7.5, signal. Bottom Panel: Detail from Coomassie stained gel 25 mM NaCl, 1 mM EDTA, 2 mM DTT, 20% glycerol. Molarity = showing unmodified H4 nucleosome (Lane 1) and H4K5ac 5 μM. MW = 200,027.9 Da. nucleosome (Lane 2). Storage and Stability: Stable for six months at -80°C from date of receipt. For best results, aliquot and avoid multiple freeze/thaws. Application Notes: H4K5ac dNuc is highly purified and suitable for a variety of applications, including use as a substrate in enzymatic assays or for effector protein binding experiments. -
HIRA Orchestrates a Dynamic Chromatin Landscape in Senescence and Is Required for Suppression of Neoplasia
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia Taranjit Singh Rai,1,2,3 John J. Cole,1,2,5 David M. Nelson,1,2,5 Dina Dikovskaya,1,2 William J. Faller,1 Maria Grazia Vizioli,1,2 Rachael N. Hewitt,1,2 Orchi Anannya,1 Tony McBryan,1,2 Indrani Manoharan,1,2 John van Tuyn,1,2 Nicholas Morrice,1 Nikolay A. Pchelintsev,1,2 Andre Ivanov,1,2,4 Claire Brock,1,2 Mark E. Drotar,1,2 Colin Nixon,1 William Clark,1 Owen J. Sansom,1 Kurt I. Anderson,1 Ayala King,1 Karen Blyth,1 and Peter D. Adams1,2 1Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; 2Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom; 3Institute of Biomedical and Environmental Health Research, University of West of Scotland, Paisley PA1 2BE, United Kingdom Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. -
Molecular Mechanisms Regulating Lifespan and Environmental Stress Responses Saya Kishimoto1,2, Masaharu Uno1,2 and Eisuke Nishida1,2*
Kishimoto et al. Inflammation and Regeneration (2018) 38:22 Inflammation and Regeneration https://doi.org/10.1186/s41232-018-0080-y REVIEW Open Access Molecular mechanisms regulating lifespan and environmental stress responses Saya Kishimoto1,2, Masaharu Uno1,2 and Eisuke Nishida1,2* Abstract Throughout life, organisms are subjected to a variety of environmental perturbations, including temperature, nutrient conditions, and chemical agents. Exposure to external signals induces diverse changes in the physiological conditions of organisms. Genetically identical individuals exhibit highly phenotypic variations, which suggest that environmental variations among individuals can affect their phenotypes in a cumulative and inhomogeneous manner. The organismal phenotypes mediated by environmental conditions involve development, metabolic pathways, fertility, pathological processes, and even lifespan. It is clear that genetic factors influence the lifespan of organisms. Likewise, it is now increasingly recognized that environmental factors also have a large impact on the regulation of aging. Multiple studies have reported on the contribution of epigenetic signatures to the long-lasting phenotypic effects induced by environmental signals. Nevertheless, the mechanism of how environmental stimuli induce epigenetic changes at specific loci, which ultimately elicit phenotypic variations, is still largely unknown. Intriguingly, in some cases, the altered phenotypes associated with epigenetic changes could be stably passed on to the next generations. In this review, we discuss the environmental regulation of organismal viability, that is, longevity and stress resistance, and the relationship between this regulation and epigenetic factors, focusing on studies in the nematode C. elegans. Keywords: Aging, Lifespan extension, Environmental factor, Stress response, Epigenetics, Transgenerational inheritance Background actively controlled process that is conserved across spe- Aging is an inevitable event for most living organisms cies, from yeast to mammals. -
Transcription Shapes Genome-Wide Histone Acetylation Patterns
ARTICLE https://doi.org/10.1038/s41467-020-20543-z OPEN Transcription shapes genome-wide histone acetylation patterns Benjamin J. E. Martin 1, Julie Brind’Amour 2, Anastasia Kuzmin1, Kristoffer N. Jensen2, Zhen Cheng Liu1, ✉ Matthew Lorincz 2 & LeAnn J. Howe 1 Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. 1234567890():,; Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post- recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases. 1 Department of Biochemistry and Molecular Biology, Life Sciences Institute, Molecular -
Histone Deacetylase Inhibitors Globally
Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation SUBJECT AREAS: BIOCHEMISTRY Without Affecting H3 Lysine 56 CELL BIOLOGY MOLECULAR BIOLOGY Acetylation PROTEOMICS Paul Drogaris1,4*, Vale´rie Villeneuve1,5*, Christelle Pomie`s1, Eun-Hye Lee1,Ve´ronique Bourdeau2, E´ric Bonneil1, Gerardo Ferbeyre2, Alain Verreault1,3 & Pierre Thibault1,4 Received 25 October 2011 1Institute for Research in Immunology and Cancer (IRIC), Universite´ de Montre´al (QC), Canada, 2Department of Biochemistry, Accepted Universite´ de Montre´al (QC), Canada, 3Department of Pathology and Cell Biology, Universite´ de Montre´al (QC), Canada, 4Department 20 December 2011 of Chemistry, Universite´ de Montre´al (QC), Canada, 5Department of Molecular Biology, Universite´ de Montre´al (QC), Canada. Published 12 January 2012 Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone Correspondence and H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine requests for materials 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that should be addressed to H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to P.T. (pierre.thibault@ H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of umontreal.ca) or A.V. HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against (alain.verreault@ H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56. -
The Prenucleosome, a Stable Conformational Isomer of the Nucleosome
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press The prenucleosome, a stable conformational isomer of the nucleosome Jia Fei,1 Sharon E. Torigoe,1 Christopher R. Brown,2 Mai T. Khuong,1 George A. Kassavetis,1 Hinrich Boeger,2 and James T. Kadonaga1 1Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA Chromatin comprises nucleosomes as well as nonnucleosomal histone–DNA particles. Prenucleosomes are rapidly formed histone–DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone–DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable confor- mational isomer of the nucleosome, is related to nonnucleosomal histone–DNA species in the cell.