Population and Ecological Genetics Course Code

Total Page:16

File Type:pdf, Size:1020Kb

Population and Ecological Genetics Course Code TITLE OF THE COURSE: Population and Ecological Genetics Course code: BIO3028 Course group: C Faculty: Natural Science Study program: Biology and Genetics Level: Bachelor Semester: Spring ECTS credits: 5 Language of instruction English Course lecturer/s: J.Radzijevskaja, L.Griciuvienė The course explores the main ecological and evolutionary mechanisms that influence the genetic structure of populations. It covers the theory of natural selection, the basis of heredity and variation, population structure and genetics, and mechanisms of speciation, population size changes, migration and hybridization and other ecological processes. The first half of the course will deal with the impact of mutations, gene drift, gene flow and selection, on the genetic Short course description: structure of populations. Also, the main conception of range of molecular techniques, and the associated statistical tools available for identifying genetic variation within and among populations will be presented. The second half of course deals with populational genetics within ecological context. Lectures and practical works will provide a conceptual link between courses focused on genetics and molecular biology and courses focused on whole organisms and their ecology. 1.Introduction to population and ecological genetics. Population morphological, ecological and genetic characteristics. Phenotypic Variation in Natural Populations. 2.Genetic Variation in Natural Populations. Genetic variability. Course content: Genetic variability parameters: polymorphism, heterozygosity, allelic richness, effective number of alleles. Estimation of genetic variability. Genetic markers. 3.Estimation of genotype and allele frequencies. 4.Random Mating Populations: Hardy–Weinberg Principle . Hardy–Weinberg proportions. Testing for Hardy–Weinberg proportions. 5.Nonrandom matting. Inbreeding. Inbreeding Depression. Pedigree analysis. Estimation of inbreeding coefficient F. 6.Mechanisms of evolutionary change: forces of Evolution. Mutation. 7.Mechanisms of evolutionary change: Genetic drift. Population bottleneck. Founder effect. 8. Effective population size. 9. Mechanisms of evolutionary change: Natural Selection. Fitness. Modes of natural selection. Heterozygous advantage (overdominance). Frequency-dependent selection. Heterosis. 10.Mechanisms of evolutionary change: Population subdivision. Quantifying population subdivision. Population differentiation. F-statistics. 11.Mechanisms of evolutionary change: Migration. Gene flow. Quantifying gene flow. 12.Four evolutional forces. The interaction among evolutionary forces. 13.Quantitative Genetics. Heritability. Quantitative trait loci (QTLs). 14.Applied Ecological Genetics I. 15.Applied Ecological Genetics II. Grading and evaluating student Mid-term exam - 20 %; practical work – 30 % and final work in class and/or at the final exam - 50 % of the total assessment. exam: 1.Conner J. K, Hartl D. L. A primer of ecological genetics, 2007. 2.F. W. Allendorf, G. H. Luikart, S. N. Aitken. Conservation Required reading and and the Genetics of Populations, 2nd Edition. 2012. additional study material 3. Graham B. Selection: the mechanism of evolution (2nd ed.), 2008. 4.Study material provided by lecturers. Additional information (if applicable) .
Recommended publications
  • Qrup: 127E; Fənn: Ecological Genetics İmtahan Sualları (2021-Ci Il, Tədris Yükü (Saat) Cəmi: 90 Saat; Mühazirə 45 Saat; Məşğələ 45 Saat)
    Bakı Dövlət Universiteti Biologiya fakültəsi; Qrup: 127E; Fənn: Ecological genetics İmtahan sualları (2021-ci il, tədris yükü (saat) cəmi: 90 saat; mühazirə 45 saat; məşğələ 45 saat) 1. The subject of Ecological genetics, its main problems 2. The theoretical and practical problems of Ecological genetics 3. Brief history of Ecological genetics 4. The investigation methods of Ecological genetics 5. Conception of adaptation, adaptive reaction norm 6. The role of modifications and genotypic variations in adaptation 7. Different types of adaptations 8. Ontogenetic and phylogenetic adaptations 9. Population-species adaptations and adaptations in biogeocenosis 10. Adaptive traits of biological systems: plasticity, flexibility, stability, homeostasis, genetic homeostasis and canalization 11. Genetic diversity, its types; significance of conservation of genetic diversity 12. Genetic erosion, its causes and results 13. Genetic effects of population fragmentation, population size, inbreeding and gene flow 14. Population bottleneck and fonder effect 15. Conservation methods of genetic diversity 16. Evolution as a consequence of changes in alleles and allele frequencies in populations over time 17. Factors affecting allele frequencies and genetic equilibrium in populations 18. Genetic nature of adaptive reactions 19. Role of heterozygosity and polymorphism in adaptation 20. Explaining the high level of genetic variation in populations 21. Detecting genetic variation by artificial selection and genetic markers 22. Polymerase chain reaction (PCR); its steps, limits, types and applications 23. Integration of adaptive reactions 24. Role of supergenes and gene-complexes in adaptation 25. Heterostyly, its role in adaptation 26. Genetic regulation mechanisms of adaptive traits 27. Effects of environmental factors on gene expression in prokaryotes; the operon model of regulation 28.
    [Show full text]
  • Evolution Ofsenescence Under Positive Pleiotropy?
    Why organisms age: Evolution ofsenescence under positive pleiotropy? Alexei A. Maklako, Locke Rowe and Urban Friberg Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Alexei A. Maklako, Locke Rowe and Urban Friberg, Why organisms age: Evolution ofsenescence under positive pleiotropy?, 2015, Bioessays, (37), 7, 802-807. http://dx.doi.org/10.1002/bies.201500025 Copyright: Wiley-VCH Verlag http://www.wiley-vch.de/publish/en/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-117545 1 Why organisms age: Evolution of senescence under positive pleiotropy? Alexei A. Maklakov1, Locke Rowe2 and Urban Friberg3,4 1Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 2 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3G5, Canada 3Ageing Research Group, Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 4IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden Corresponding author: Maklakov, A.A. ([email protected]) Keywords: Aging, life-history evolution, mutation accumulation, positive pleiotropy senescence 2 Abstract Two classic theories maintain that aging evolves either because of alleles whose deleterious effects are confined to late life or because of alleles with broad pleiotropic effects that increase early-life fitness at the expense of late-life fitness. However, empirical studies often reveal positive pleiotropy for fitness across age classes, and recent evidence suggests that selection on early-life fitness can decelerate aging and increase lifespan, thereby casting doubt on the current consensus.
    [Show full text]
  • 3 Further Challenges
    3 Further Challenges Hamilton’s claim of the inevitability of senescence can be disproved even within his own framework. Furthermore, his framework has sev- eral limitations. In this chapter theoretical and empirical issues that weaken his approach as the main explanation for the evolution of senes- cence will be discussed. Building on Medawar [126] and Williams [212], Hamilton wrote the pioneering first chapter on the moulding of senes- cence. I draw two main conclusions. • First, Hamilton’s basic notion – that the age-pattern of mortality is an inverse function of the age-pattern of his indicator – is wrong. For both his indicator and the other indicators in Table 2.1 the relationship between the indicator and mortality is so complicated that sophisticated modeling is required. • Second, several theoretical arguments as well as the bulk of em- pirical findings suggest that mutation accumulation is of secondary importance in molding the age-trajectories of mortality across the varied species of life. The primary force appears to be adaptation, i.e. the concept that patterns of aging are a byproduct of optimiza- tion of trade-offs. Hence, deep understanding of the evolution of aging requires optimization modeling. 3.1 General Problem with All Indicators Because his indicator declines with age, Hamilton deduced that mor- tality must increase with age. The relationship between his indicator of selection pressure and the age-pattern of mortality is not a simple one, however. During development his indicator is constant, while mortality, 36 3 Further Challenges for many and perhaps all species, is falling. At post-reproductive ages his indicator is zero, while mortality, at least in humans, rises and then slowly levels off.
    [Show full text]
  • Evolutionary Genetics
    Evolutionary Genetics Ruben C. Arslan & Lars Penke Institute of Psychology Georg August University Göttingen Forthcoming in D. M. Buss (Ed.), Handbook of Evolutionary Psychology (2nd ed.). New York: Wiley. September 17, 2014 Corresponding author: Ruben C. Arslan Georg August University Göttingen Biological Personality Psychology and Psychological Assessment Georg Elias Müller Institute of Psychology Goßlerstr. 14 37073 Göttingen, Germany Tel.: +49 551 3920704 Email: [email protected] 1 Introduction When Charles Darwin developed the theory of evolution, he knew nothing about genetics. Hence, one of its biggest weaknesses was that Darwin had to base it on crude ideas of inheritance. Around the same time, Gregor Mendel discovered the laws of inheritance, but the scientific community initially failed to appreciate his work’s importance. It was only in the 1930’s that Dobzhansky, Fisher, Haldane, Wright, Mayr and others unified genetics and the theory of evolution in the ‘modern synthesis’. Still, the modern synthesis was built on a basic understanding of genetics, with genes merely being particulate inherited information. The basics of molecular genetics, like the structure of DNA, were not discovered until the 1950’s. When modern evolutionary psychology emerged from ethology and sociobiology in the late 1980’s, it had a strong emphasis on human universals, borne from both the assumption that complex adaptations are monomorphic (or sexually dimorphic) and have to go back to at least the last common ancestor of all humans, and the methodological proximity to experimental cognitive psychology, which tends to treat individual differences as statistical noise. As a consequence, genetic differences between people were marginalized in evolutionary psychology (Tooby & Cosmides, 1990).
    [Show full text]
  • Review Questions Meiosis
    Review Questions Meiosis 1. Asexual reproduction versus sexual reproduction: which is better? Asexual reproduction is much more efficient than sexual reproduction in a number of ways. An organism doesn’t have to find a mate. An organism donates 100% of its’ genetic material to its offspring (with sex, only 50% end up in the offspring). All members of a population can produce offspring, not just females, enabling asexual organisms to out-reproduce sexual rivals. 2. So why is there sex? Why are there boys? If females can reproduce easier and more efficiently asexually, then why bother with males? Sex is good for evolution because it creates genetic variety. All organisms depend on mutations for genetic variation. Sex takes these preexisting traits (created by mutations) and shuffles them into new combinations (genetic recombination). For example, if we wanted a rice plant that was fast-growing but also had a high yield, we would have to wait a long time for a fast-growing rice to undergo a mutation that would also make it highly productive. An easy way to combine these two desirable traits is through sexually reproduction. By breeding a fast-growing variety with a high-yielding variety, we can create offspring with both traits. In an asexual organism, all the offspring are genetically identical to the parent (unless there was a mutation) and genetically identically to each other. Sexual reproduction creates offspring that are genetically different from the parents and genetically different from their siblings. In a stable environment, asexual reproduction may work just fine. However, most ecosystems are dynamic places.
    [Show full text]
  • Ecological Genetics of Freshwater Fish: a Short Review of the Genotype–Phenotype Connection
    Animal Biodiversity and Conservation 34.2 (2011) Review309 Ecological genetics of freshwater fish: a short review of the genotype–phenotype connection O. Vidal & J. L. García–Marín Vidal, O. & García–Marín, J. L., 2011. Ecological genetics of freshwater fish: a short review of the genotype– phenotype connection. Animal Biodiversity and Conservation, 34.2: 309–317. Abstract Ecological genetics of freshwater fish: a short review of the genotype–phenotype connection.— Molecular eco- logy or ecological genetics is an expanding application of population genetics which has flourished in the last two decades but it is dominated by systematic and phylogeographic studies, with relatively little emphasis on the study of the genetic basis of the process of adaptation to different ecological conditions. The relationship between genotype and adaptive phenotypes is weak because populations are often difficult to quantify and experiments are logistically challenging or unfeasible. Interestingly, in freshwater fish, studies to characterize the genetic architecture of adaptive traits are not as rare as in other vertebrate groups. In this review, we summarize the few cases where the relationship between the ecology and genetics of freshwater fish is more developed, namely the relationship between genetic markers and ecological phenotypes. Key words: Ecological genetics, Molecular ecology, Genotype–phenotype relationship, Adaptation, Landscape genetics, Species introduction. Resumen Genética ecológica de los peces de agua dulce: una breve revisión de la conexión genotipo–fenotipo.— La ecología molecular o la genética ecológica es una aplicación de la genética de poblaciones que durante las dos últimas décadas ha sufrido un proceso de expansión. Sin embargo, en la ecología molecular predominan los estudios sistemáticos y filogeográficos, con relativamente poco énfasis en el análisis de la base genética del proceso de adaptación a diferentes condiciones ecológicas.
    [Show full text]
  • Methods Used in Medical and Population Genetics
    AT-A-GLANCE Methods Used in Medical and Population Genetics Over a decade ago, scientists completed the sequenc- stand the functional effects of those genetic varia- ing of the human genome and laid out a “parts list” tions, especially with regard to human illness. for life. This Herculean task was a huge advance Historically, it has been difficult to pinpoint the genes toward transforming medicine through genomic that underlie common diseases because the impact of insight, but the effort didn’t reveal the role of each of each DNA variant is often quite small. To bring these those parts in human health and disease. By studying subtle disease risk factors to light, scientists conduct natural genetic variation among people, whether in a “association studies” on a great number of people, to small family or a large, diverse population, researchers identify variants that are found more often in people today can gain insight into the function of genes and with a trait or disease than those without. This genetic variation in human biology, illuminate the approach requires powerful analytical and statistical genetic roots of disease, and potentially discover new methods, many developed at the Broad Institute and therapeutic avenues. shared openly with researchers around the world. Scientists in the Broad Institute of MIT and Harvard’s However, correlation — in the form of association Program in Medical and Population Genetics primarily — does not equal causation. After identifying the DNA study common, complex diseases for which many changes associated with a trait, scientists can then genes contribute to risk of an individual getting the develop and apply phenotypic assays, or experimental disease, such as type 2 diabetes, heart disease, and measurements, often in large-scale screening studies, inflammatory bowel disease.
    [Show full text]
  • Genetic Variation in Subdivided Populations and Conservation Genetics
    Heredity 57 (1986) 189—198 The Genetical Society of Great Britain Received 19 November 1985 Geneticvariation in subdivided populations and conservation genetics Sirkka-Liisa Varvio*, University of Texas Health Science Center at Ranajit Chakraborty and Masatoshi Nei Houston, Center for Demographic and Population Genetics, P.O. Box 20334, Houston, Texas 77225 The genetic differentiation of populations is usually studied by using the equilibrium theory of Wright's infinite island model. In practice, however, populations are not always in equilibrium, and the number of subpopulations is often very small. To get some insight into the dynamics of genetic differentiation of these populations, numerical computations are conducted about the expected gene diversities within and between subpopulations by using the finite island model. It is shown that the equilibrium values of gene diversities (H and H) and the coefficient of genetic differentiation (G) depend on the pattern of population subdivision as well as on migration and that the GST value is always smaller than that for the infinite island model. When the number of migrants per subpopulation per generation is greater than 1, the equilibrium values of H and HT are close to those for panmictic populations, as noted by previous authors. However, the values of H, HT, and GST in transient populations depend on the pattern of population subdivision, and it may take a long time for them to reach the 95 per cent range of the equilibrium values. The implications of the results obtained for the conservation of genetic variability in small populations are discussed. It is argued that any single principle should not be imposed as a general guideline for the management of small populations.
    [Show full text]
  • IB 162 Ecological Genetics University of California, Berkeley Department of Integrative Biology (4 Units)
    Ecological Genetics Integrative Biology 162 IB 162 Ecological Genetics University of California, Berkeley Department of Integrative Biology (4 units) Course Description: This course presents modern approaches to studying evolution in natural populations, which requires both ecology and genetics. We will study quantitative and molecular causes of inheritance of ecologically important traits and their evolution. We will use simple mathematical models to predict evolution in natural populations. This course will help you build a conceptual framework for understanding biology. "Nothing in biology makes sense except in the light of evolution." . Theodosius Dobzhansky (1970) Genetics of the Evolutionary Process Format: There are lecture and discussion sessions. Lectures will focus primarily on broad concepts and ideas. Weekly discussion sections will help you master ideas and give you practice in reading and analyzing primary scientific literature. Lectures: TBD Discussions: TBD Goals: 1. Students will understand how genes and environments interact to produce phenotypes, including biological fitness, and influence which alleles are passed on to the next generation. 2. Mathematical models make our assumptions explicit. We will develop and apply simple mathematical models for studying evolution in natural populations. 3. Students will improve their ability to ask questions and answer them using scientific methods. 4. Students will gain factual knowledge of terms and concepts used to study evolution in natural populations. Instructors and their contact information. TBD Office hours are the best way to get help and feedback. If you have a complicated question, are struggling to understand something, or want to dive deeper, come to office hours of the professor or the GSI. Grade Breakdown Activity (see below for details) Points Discussion section quizzes (5 @ 2 pts.
    [Show full text]
  • How Important Are Structural Variants for Speciation?
    G C A T T A C G G C A T genes Review How Important Are Structural Variants for Speciation? Linyi Zhang 1,*, Radka Reifová 2, Zuzana Halenková 2 and Zachariah Gompert 1 1 Department of Biology, Utah State University, Logan, UT 84322, USA; [email protected] 2 Department of Zoology, Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (R.R.); [email protected] (Z.H.) * Correspondence: [email protected] Abstract: Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribu- tion of structural variants to reproductive isolation between species—and the underlying mechanism by which structural variants most often contribute to speciation—remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation. Citation: Zhang, L.; Reifová, R.; Keywords: reproductive isolation; hybridization; suppressed recombination Halenková, Z.; Gompert, Z.
    [Show full text]
  • Genetic Variation and Molecular Evolution
    1 Genetic Variation and Molecular Evolution Werner Arber Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland 1 Introduction 3 2 Principles of Molecular Evolution 4 2.1 Evolutionary Roles of Genetic Variation, Natural Selection, and Isolation 4 2.2 Molecular Mechanisms of the Generation of Genetic Variation 6 3 Genetic Variation in Bacteria 7 4 Local Changes in the DNA Sequences 8 5 Intragenomic DNA Rearrangements 9 5.1 Site-specific DNA Inversion at Secondary Crossover Sites 10 5.2 Transposition of Mobile Genetic Elements 11 6 DNA Acquisition 12 7 The Three Natural Strategies Generating Genetic Variations Contribute Differently to the Evolutionary Process 13 8 Evolution Genes and Their Own Second-order Selection 15 9 Arguments for a General Relevance of the Theory of Molecular Evolution for All Living Organisms 16 10 Conceptual Aspects of the Theory of Molecular Evolution 17 10.1 Pertinent Scientific Questions 17 2 Genetic Variation and Molecular Evolution 10.2 Philosophical Values of the Knowledge on Molecular Evolution 18 10.3 Aspects Relating to Practical Applications of Scientific Knowledge on Molecular Evolution 20 Bibliography 21 Books and Reviews 21 Primary Literature 21 Keywords Biological Evolution A nondirected, dynamic process of diversification resulting from the steady interplay between spontaneous mutagenesis and natural selection. DNA Rearrangement Results from mostly enzyme-mediated recombination processes, which can be intra- or intermolecular. Evolution Gene Itsproteinproductactsasageneratorofgenetic variations and/or as a modulator of the frequency of genetic variations. Gene Acquisition Results from horizontal transfer of genetic information from a donor cell to a receptor cell. With bacteria, this can occur in transformation, conjugation, or phage-mediated transduction.
    [Show full text]
  • Role of Sexual Imprinting in Assortative Mating and Premating Isolation in Darwin’S Finches
    Role of sexual imprinting in assortative mating and premating isolation in Darwin’s finches Peter R. Granta,1 and B. Rosemary Granta aDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544 Contributed by Peter R. Grant, September 11, 2018 (sent for review August 8, 2018; reviewed by Darren Irwin and Carel ten Cate) Global biodiversity is being degraded at an unprecedented rate, as shown by the numerous examples of introgressive hybridiza- so it is important to preserve the potential for future specia- tion between recently formed species (reviewed in refs. 10–13). tion. Providing for the future requires understanding speciation Important questions that need to be addressed are how the as a contemporary ecological process. Phylogenetically young barrier is constructed, how it evolved, why it occasionally leaks, adaptive radiations are a good choice for detailed study because and how gene exchange affects the evolution of the respective diversification is ongoing. A key question is how incipient species populations (14). Paradoxically, the breakdown of reproductive become reproductively isolated from each other. Barriers to gene isolation may be especially informative in answering questions exchange have been investigated experimentally in the laboratory about how it was established by exposing candidate traits that and in the field, but little information exists from the quantitative constitute the normally effective barrier to interbreeding (15– study of mating patterns in nature. Although the degree to which 17). Further insights can then be gained by conducting experi- genetic variation underlying mate-preference learning is un- ments on the genetic and experiential basis of mate choice and known, we provide evidence that two species of Darwin’s finches preferences of closely related species (16, 18–22).
    [Show full text]