Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician

Total Page:16

File Type:pdf, Size:1020Kb

Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician 148 Postgrad Med J 2001;77:148–156 REVIEWS Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet). Gram negative bacteria stain red (decolorised and then counterstained). No cell wall Spirochetes Mycoplasma Borrelia Ureaplasma Leptospira Spirillum organic solvents (box 1).3–5 Information derived Treponema from a Gram stain and several simple bio- Aerobic chemical tests can be enormous, often provid- Cocci Bacilli Coccobacilli ing a presumptive diagnosis and significantly Gram positive Gram negative Gram positive Gram negative Gram negative Enterobacteriaceae: influencing patient care. Unfortunately the Enterococcus Moraxella Arcanobacterium Citrobacter Bartonella training for correctly interpreting the Gram 6 Staphylococcus Neisseria Bacillus Edwardsiella Bordetella stain is disappearing. The goal of this article is Streptococcus Corynebacterium Enterobacter Brucella to review the utility of the clinical bacteriology Erysipelothrix Escherichia Campylobacter Gardnerella Hafnia Eikenella laboratory and discuss its role in the diagnosis Lactobacillus Klebsiella Franciscella of common clinical pathogens. Listeria Morganella Haemophilus Mycobacterium Proteus Helicobacter Gram stain basics Nocardia Providencia Kingella Salmonella The Gram stain classifies bacteria (fig 1) Serratia phenotypically based on diVerences in cell wall Shigella thickness with diVering glycosaminopeptide Yersinia and lipoprotein compositions: Gram positive bacteria have a peptidoglycan layer 10–15 Non-enterobacteriaceae: (Fermentative) times thicker than Gram negative bacteria. The Aeromonas cell wall, synonymous with the peptidoglycan Pasteurella layer, is a rigid framework of cross linked pep- Plesiomonas tidoglycan forming the outermost component Vibrio of the cell. The more complex Gram negative (Non-fermentative) bacteria also have an outer membrane beyond Acinetobacter the peptidoglycan layer that consists of li- Alcaligenes popolysaccharide (endotoxin), lipoprotein, and Burkholderia Flavobacterium phospholipids. In some Gram negative species Pseudomonas there also exists a periplasmic space between Stenotrophomonas Anaerobic the outer membrane and the inner cytoplasmic Cocci Bacilli membrane with â-lactamases that degrade Gram positive Gram negative Gram positive Gram negative â-lactam antibiotics. The present hypothesis for the mechanism of Peptococcus Veillonella Actinomyces Bacteroides the Gram stain states the cell wall acts as a Peptostreptococcus Bifidobacterium Fusobacterium Clostridium Porphyromonas physical permeability barrier restricting diVu- 7 Eubacterium Prevotella sion of the stain complex, and any micro- Propionibacterium organism with a cell wall able to retard the Figure 1 Classification of clinically significant bacteria by genus. eZux of the crystal violet-iodine complex www.postgradmedj.com Use of the diagnostic bacteriology laboratory 149 should be Gram positive. The mechanism fur- cells to stain Gram negatively. The age of the ther implies that solvent decolorisation causes culture also influences the degree of Gram significant damage to the cell surfaces of Gram positivity, with cells 48 hours old sometimes negative bacteria, and only limited damage to more Gram positive than younger cells.8 Gram positive bacteria. This suggests Gram Several bacteria are unable to be Gram negative bacteria are more “leaky”, causing stained for a variety of reasons. Mycobacteria these thin walled lipid-rich cells to lose their and nocardia have a high concentration of lip- crystal violet stain and appear red from the ids called mycolic acids in their cell walls and counterstain. Gram positive cells, thick walled are “acid-fast” because they resist decolorisa- and lipid-poor, appear blue from retaining the tion with an organic solvent. The spirochetes original crystal violet. (treponema, borrelia, leptospira, spirillum) are too thin and are best seen with darkfield Gram stain utility microscopy. Legionella, rickettsia, coxiella, Gram stain interpretation gives immediate ehrlichia, and chlamydiae are primarily intra- information regarding the presence or absence cellular and although possess outer and inner of bacterial disease and can guide initial membranes similar to Gram negative bacteria, antibiotic treatment. Additionally, epithelial lack a peptidoglycan layer to take up a Gram and inflammatory cells are stained in a Gram stain adequately. Mycoplasma and ureaplasma stain, thus providing information about the do not have a cell wall to absorb the stain. host immune response and quality of the specimen. A well prepared sample can show- Specific bacteria case the organism’s colour, size, shape, and GRAM POSITIVE COCCI arrangement, allowing cellular morphology to The two principal medically important genera further separate bacteria into four major are staphylococcus and streptococcus, ar- groups. Cocci are spherical or oval, bacilli are ranged in irregular grapelike clusters and rod-like or cylindrical, vibrios are comma-like chains, respectively (fig 2). The orientation and degree of attachment at the time of cell division or curved, and spirochetes are flexible (spirilla determines the type of arrangement: staphylo- if rigid) and helical. Additionally, coccobacilli cocci divide in three planes while streptococci are unusually short bacilli, and fusiform bacilli divide in only one plane. Enterococci are are bacilli with tapered ends. closely related to the streptococci yet are now known to be phylogenetically distinct and Limitations therefore comprise their own genus. The Several substances have been shown to convert enzyme catalase, which degrades hydrogen Gram staining results. Ultraviolet light, antibi- peroxide to oxygen and water, diVerentiates otics, prolonged heat fixation, crushing of catalase positive staphylococci from catalase unprotected cells on a slide, or autolysis by negative streptococci and enterococci. enzymes such as ribonucleases or lysozymes have all been shown to cause Gram positive STAPHYLOCOCCI Catalase Staphylococci are a major component of the normal human flora and the presence of Positive Negative coagulase, which accelerates the formation of a Staphylococcus fibrin clot from fibrinogen, diVerentiates the species. Although there are 29 species of Coagulase coagulase negative staphylococci, most clinical Positive Negative isolates are either Staphylococcus epidermidis or S aureus Novobicin Staphylococcus saprophyticus. Staphylococcus epi- dermidis is part of the normal skin flora. Sensitive Resistant Although often occurring as a contaminant in blood culture specimens, S epidermidis may S epidermidis S saprophyticus cause infection in neonates, the immunocom- promised, and in patients with an indwelling central line, shunt placement, or prosthetic implant. Staphylococcus saprophyticus occurs Streptococcus chiefly in the periurethral and urethral flora Haemolysis where it shows a tropism for urinary tract epi- Beta Alpha (or gamma) thelium and causes urinary tract infections in Bacitracin Optochin Bile esculin sexually active adolescent girls, second only to Escherichia coli in this age group.9 SensitiveResistant Sensitive Resistant Positive Negative Staphylococcus aureus is an important patho- S pyogenes S agalactiae S pneumoniae Viridans Nutrionally variant gen, causing skin infections, osteomyelitis, (most group C, G) group streptococcus pneumonia, and septicaemia. It is dis- 6.5% NaCl growth tinguished on the positive results of coagulase, Positive Negative mannitol fermentation, and deoxyribonuclease Enterococcus S bovis (group D) tests.10 Selective media, such as mannitol salt Growth in tellurite agar, may be used for isolating S aureus when screening for carriage in infection control Positive Negative investigations. In the last decade the prevalence E faecalis E faecium of resistance to penicillin G among isolates of S Figure 2 DiVerentiating aerobic Gram positive cocci. aureus and S epidermidis has consistently www.postgradmedj.com 150 Steinbach, Shetty exceeded 90%.11 Resistance to penicillin G is Capsular polysaccharides can be identified due to the production of â-lactamases under using an
Recommended publications
  • Characterization of the Interaction Between R. Conorii and Human
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 4-5-2018 Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis Abigail Inez Fish Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Bacteria Commons, Bacteriology Commons, Biology Commons, Immunology of Infectious Disease Commons, and the Pathogenic Microbiology Commons Recommended Citation Fish, Abigail Inez, "Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis" (2018). LSU Doctoral Dissertations. 4566. https://digitalcommons.lsu.edu/gradschool_dissertations/4566 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF THE INTERACTION BETWEEN R. CONORII AND HUMAN HOST VITRONECTIN IN RICKETTSIAL PATHOGENESIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Biomedical and Veterinary Medical Sciences Through the Department of Pathobiological Sciences by Abigail Inez
    [Show full text]
  • Biofire Blood Culture Identification System (BCID) Fact Sheet
    BioFire Blood Culture Identification System (BCID) Fact Sheet What is BioFire BioFire BCID is a multiplex polymerase chain reaction (PCR) test designed to BCID? identify 24 different microorganism targets and three antibiotic resistance genes from positive blood culture bottles. What is the purpose The purpose of BCID is to rapidly identify common microorganisms and of BCID? antibiotic resistance genes from positive blood cultures so that antimicrobial therapy can be quickly optimized by the physician and the antibiotic stewardship pharmacist. It is anticipated that this will result in improved patient outcomes, decreased length of stay, improved antibiotic stewardship, and decreased costs. When will BCID be BCID is performed on all initially positive blood cultures after the gram stain is routinely performed and reported. performed? When will BCID not For blood cultures on the same patient that subsequently become positive with be routinely a microorganism showing the same morphology as the initial positive blood performed? culture, BCID will not be performed. BCID will not be performed on positive blood cultures with gram positive bacilli unless Listeria is suspected. BCID will not be performed on blood culture bottles > 8 hours after becoming positive. BCID will not be performed between 10PM-7AM on weekdays and 2PM-7AM on weekends. BCID will not be performed for clinics that have specifically opted out of testing. How soon will BCID After the blood culture becomes positive and the gram stain is performed and results be available? reported, the bottle will be sent to the core Microbiology lab by routine courier. BCID testing will then be performed. It is anticipated that total turnaround time will generally be 2-3 hours after the gram stain is reported.
    [Show full text]
  • Goals of This Review Testable Concepts Fundamentals: Host
    41a –Infections in the Neutropenic Cancer Patient and Hematopoietic Stem Cell Recipients Speaker: Kieren Marr, MD Disclosures of Financial Relationships with Relevant Commercial Interests • Consultant – Amplyx, Cidara, Merck and Company, Infections in the Neutropenic Cancer Patient and Sfunga Therapeutics Hematopoietic Stem Cell Recipients • Ownership Interests – MycoMed Technologies Kieren Marr, MD Professor of Medicine and Oncology John Hopkins University School of Medicine Director, Transplant and Oncology Infectious Diseases John Hopkins University School of Medicine Goals of This Review Testable Concepts • Immune compromised people develop “typical” • Think about the patient infections and those specific to their underlying risks – How does underlying disease impact risks? • Focus here on testable complications specific to the • Think about the treatment received host – What type of immune suppression? – Types of immune – suppressing drugs and diseases • Think about infections breaking through preventative – Recognition of specific “neutropenic syndromes” therapies • Skin lesions – A good context to test resistance and differentials • Invasive fungal infections • Think about common non‐infectious syndromes • Neutropenic colitis Fundamentals: Host Immune Risks Classic Immunologic risks • Immune defects associated with underlying • Neutropenia malignancy (and prior therapies) – Prolonged (>10 days) and profound (< 500 cells / mm3) – AML and myelodysplastic syndromes (MDS) associated with high risks for severe bacterial and fungal •
    [Show full text]
  • Health: Epidemiology Subchapter 41A
    CHAPTER 41 – HEALTH: EPIDEMIOLOGY SUBCHAPTER 41A – COMMUNICABLE DISEASE CONTROL SECTION .0100 – REPORTING OF COMMUNICABLE DISEASES 10A NCAC 41A .0101 REPORTABLE DISEASES AND CONDITIONS (a) The following named diseases and conditions are declared to be dangerous to the public health and are hereby made reportable within the time period specified after the disease or condition is reasonably suspected to exist: (1) acquired immune deficiency syndrome (AIDS) - 24 hours; (2) anthrax - immediately; (3) botulism - immediately; (4) brucellosis - 7 days; (5) campylobacter infection - 24 hours; (6) chancroid - 24 hours; (7) chikungunya virus infection - 24 hours; (8) chlamydial infection (laboratory confirmed) - 7 days; (9) cholera - 24 hours; (10) Creutzfeldt-Jakob disease - 7 days; (11) cryptosporidiosis - 24 hours; (12) cyclosporiasis - 24 hours; (13) dengue - 7 days; (14) diphtheria - 24 hours; (15) Escherichia coli, shiga toxin-producing - 24 hours; (16) ehrlichiosis - 7 days; (17) encephalitis, arboviral - 7 days; (18) foodborne disease, including Clostridium perfringens, staphylococcal, Bacillus cereus, and other and unknown causes - 24 hours; (19) gonorrhea - 24 hours; (20) granuloma inguinale - 24 hours; (21) Haemophilus influenzae, invasive disease - 24 hours; (22) Hantavirus infection - 7 days; (23) Hemolytic-uremic syndrome – 24 hours; (24) Hemorrhagic fever virus infection - immediately; (25) hepatitis A - 24 hours; (26) hepatitis B - 24 hours; (27) hepatitis B carriage - 7 days; (28) hepatitis C, acute - 7 days; (29) human immunodeficiency
    [Show full text]
  • Pdfs/ Ommended That Initial Cultures Focus on Common Pathogens, Pscmanual/9Pscssicurrent.Pdf)
    Clinical Infectious Diseases IDSA GUIDELINE A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya J. Michael Miller,1 Matthew J. Binnicker,2 Sheldon Campbell,3 Karen C. Carroll,4 Kimberle C. Chapin,5 Peter H. Gilligan,6 Mark D. Gonzalez,7 Robert C. Jerris,7 Sue C. Kehl,8 Robin Patel,2 Bobbi S. Pritt,2 Sandra S. Richter,9 Barbara Robinson-Dunn,10 Joseph D. Schwartzman,11 James W. Snyder,12 Sam Telford III,13 Elitza S. Theel,2 Richard B. Thomson Jr,14 Melvin P. Weinstein,15 and Joseph D. Yao2 1Microbiology Technical Services, LLC, Dunwoody, Georgia; 2Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; 3Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; 5Department of Pathology, Rhode Island Hospital, Providence; 6Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill; 7Department of Pathology, Children’s Healthcare of Atlanta, Georgia; 8Medical College of Wisconsin, Milwaukee; 9Department of Laboratory Medicine, Cleveland Clinic, Ohio; 10Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan; 11Dartmouth- Hitchcock Medical Center, Lebanon, New Hampshire; 12Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; 13Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts; 14Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois; and 15Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey Contents Introduction and Executive Summary I.
    [Show full text]
  • Section 13. Laboratory Considerations
    Section 13. Laboratory Considerations Table of Contents 13.1 Overview and General Guidance 13.2 Specimen Labeling 13.3 Procedures for Specimens That Cannot be Evaluated 13.4 Use of LDMS 13.5 Documentation 13.6 Urine Testing 13.6.1 Specimen Collection 13.6.2 Pregnancy Testing 13.6.3 Chlamydia and Gonorrhea Testing 13.6.4 Urine Culture 13.7 Blood Testing 13.7.1 Specimen Collection and Initial Processing 13.7.2 HIV Testing 13.7.3 Syphilis Testing 13.7.4 Hematology Testing 13.7.5 Serum Chemistries 13.7.6 Plasma Storage 13.7.7 CD4+ T Cell Count 13.7.8 HIV RNA PCR 13.7.9 HIV DNA PCR 13.8 Testing of Vaginal and Cervical Specimens 13.8.1 Vaginal pH 13.8.2 Wet Mount for Candidiasis and BV 13.8.3 Rapid Test for Trichomoniasis 13.8.4 Vaginal Gram Stain 13.8.5 Papanicolaou (Pap) Test 13.8.6 Self-Administered Vaginal Swabs for PK and biomarker testing 13.8.7 Endocervical Swabs for Biomarker Analysis 13.8.8 Intra-Vaginal Ring Storage 13.8.9 Herpes Lesion Testing Table 13-1 Volume Guide for Plasma Storage Appendix 13-1 Overview of Laboratory Testing Locations, Specimens, and Methods for MTN-020 Appendix 13-2 MTN-020 Lab Specimen Processing Guidelines Appendix 13-3 LDMS Specimen Management Guide to Logging in MTN-020 Specimens Appendix 13-4 MTN-020 HIV Testing Algorithms Appendix 13-5 MTN Network Lab HIV Query Form Appendix 13-6 LDMS Tracking Sheets This section contains information on the laboratory procedures performed in MTN-020.
    [Show full text]
  • A Streamlined Method for Transposon Mutagenesis of Rickettsia Parkeri
    bioRxiv preprint doi: https://doi.org/10.1101/277160; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A streamlined method for transposon mutagenesis of 2 Rickettsia parkeri yields numerous mutations that 3 impact infection 4 5 Rebecca L. Lamason1,#a,*, Natasha M. Kafai1,#b, and Matthew D. Welch1* 6 7 8 1 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 9 CA 10 #a Current address: Department of Biology, Massachusetts Institute of Technology, 11 Cambridge, MA 12 #b Current address: Medical Scientist Training Program, Washington University in St. 13 Louis School of Medicine, St. Louis, MO 14 15 16 17 18 * Co-corresponding authors 19 E-mail: [email protected], [email protected] 20 1 bioRxiv preprint doi: https://doi.org/10.1101/277160; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 21 Abstract 22 The rickettsiae are obligate intracellular alphaproteobacteria that exhibit a complex 23 infectious life cycle in both arthropod and mammalian hosts. As obligate intracellular 24 bacteria, Rickettsia are highly adapted to living inside a variety of host cells, including 25 vascular endothelial cells during mammalian infection. Although it is assumed that the 26 rickettsiae produce numerous virulence factors that usurp or disrupt various host cell 27 pathways, they have been challenging to genetically manipulate to identify the key 28 bacterial factors that contribute to infection.
    [Show full text]
  • Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician
    148 Postgrad Med J 2001;77:148–156 REVIEWS Postgrad Med J: first published as 10.1136/pmj.77.905.148 on 1 March 2001. Downloaded from Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet).
    [Show full text]
  • Syphilis Diagnosis: Three Cases with Increasing Treponemal Test Result After Therapy
    Acta Derm Venereol 2014; 94: 323–324 SHORT COMMUNICATION Syphilis Diagnosis: Three Cases with Increasing Treponemal Test Result after Therapy Henrik O. Larsson1*, Annika Johnsson2 and Anders Bredberg1 Departments of 1Medical Microbiology, and 2Dermatology and Venereology, Skane University Hospital, Lund University, Jan Waldenströms gata 59, SE- 205 02 Malmö, Sweden. *E-mail: [email protected] Accepted May 4, 2013 Epub ahead of print Oct 3, 2013 Serology is a main tool for syphilis diagnostic work used (the Captia Syphilis-Enzywell Treponema IgG and IgM, (1–3). According to a recent survey performed by the respectively, EIA from Diesse, Monteriggioni, Italy); the IgG method uses antigen-coated wells and IgM is determined by U.S. Centers for Disease Control and Prevention (CDC) capture technique; a value over 1.0 is considered to be reactive 56% of infectious disease specialists responded that they (7). Particle agglutination was done at serum dilution 80 with send a rapid plasma reagin (RPR) test to the laboratory no quantitation of the result (TPPA, Fujirebio, Tokyo, Japan). and treat presumptively for syphilis (if result is negative 18% repeat the RPR testing before treating the patient, and 17% treat only if RPR is positive) (4). However, a RESULTS clearly positive reaction may be missing at the first visit Case 1 was tested twice, at 6 days before and 112 of patients with active syphilis (5). Non-treponemal test days after treatment start (Fig. 1, upper panel). The (e.g. RPR and Venereal Disease Research Laboratory treponemal screening value is rising from 4 to a highly (VDRL)) reactivity is known to decrease in response to reactive value of 14, while the non-treponemal VDRL therapy, in contrast to the typically life-long persistence titre decreases from a weak 1 to negativity.
    [Show full text]
  • Medical Bacteriology
    LECTURE NOTES Degree and Diploma Programs For Environmental Health Students Medical Bacteriology Abilo Tadesse, Meseret Alem University of Gondar In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education September 2006 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2006 by Abilo Tadesse, Meseret Alem All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE Text book on Medical Bacteriology for Medical Laboratory Technology students are not available as need, so this lecture note will alleviate the acute shortage of text books and reference materials on medical bacteriology.
    [Show full text]
  • The Approved List of Biological Agents Advisory Committee on Dangerous Pathogens Health and Safety Executive
    The Approved List of biological agents Advisory Committee on Dangerous Pathogens Health and Safety Executive © Crown copyright 2021 First published 2000 Second edition 2004 Third edition 2013 Fourth edition 2021 You may reuse this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view the licence visit www.nationalarchives.gov.uk/doc/ open-government-licence/, write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email [email protected]. Some images and illustrations may not be owned by the Crown so cannot be reproduced without permission of the copyright owner. Enquiries should be sent to [email protected]. The Control of Substances Hazardous to Health Regulations 2002 refer to an ‘approved classification of a biological agent’, which means the classification of that agent approved by the Health and Safety Executive (HSE). This list is approved by HSE for that purpose. This edition of the Approved List has effect from 12 July 2021. On that date the previous edition of the list approved by the Health and Safety Executive on the 1 July 2013 will cease to have effect. This list will be reviewed periodically, the next review is due in February 2022. The Advisory Committee on Dangerous Pathogens (ACDP) prepares the Approved List included in this publication. ACDP advises HSE, and Ministers for the Department of Health and Social Care and the Department for the Environment, Food & Rural Affairs and their counterparts under devolution in Scotland, Wales & Northern Ireland, as required, on all aspects of hazards and risks to workers and others from exposure to pathogens.
    [Show full text]
  • Rapid Syphilis Testing Protocol Wisconsin Department of Health Services STD Control Program
    Rapid Syphilis Testing Protocol Wisconsin Department of Health Services STD Control Program P-01832 June 2017 Table of Contents Bureau of Communicable Diseases (BCD) Staff Contact List ........................................................................ 3 Common Acronyms and Terms ..................................................................................................................... 4 Introduction and Background ....................................................................................................................... 5 Syphilis FAQ ................................................................................................................................................... 6 Rapid Syphilis Testing Algorithm ................................................................................................................... 9 Program Requirements ............................................................................................................................... 10 Agency Flow of Services .............................................................................................................................. 15 Rapid Syphilis Testing in Nontraditional or Outreach Settings ................................................................... 15 Syphilis Risk Assessment with Rapid Tests ................................................................................................. 17 Syphilis Health Check Testing Kit ...............................................................................................................
    [Show full text]