U.S. Fusion Energy Sciences Program

Total Page:16

File Type:pdf, Size:1020Kb

U.S. Fusion Energy Sciences Program Office of Fusion U.S. Fusion Energy Sciences Program Excellent Science Energy in Support of Attractive Energy Sciences Presented to National Research Council Burning Plasma Assessment Committee By Dr. Anne Davies Associate Director for Fusion Energy Sciences Office of Science Department of Energy November 18, 2002 www.ofes.fusion.doe.gov Excellent Science in Support of Attractive Energy U.S. Fusion Energy Sciences Budget History 900 800 700 600 500 400 300 200 Fiscal Year Budget (FY 2002 $ in Millions) 100 0 72 73 74 75 76 7778 79 8081 8283 84 85 86 87 88 89 90 91 92 9394 95 96 97 98 99 00 01 02 03 Fiscal Year Restructuring of the U.S. Fusion Energy Sciences Program Most Innovative Attractive Present Alternate Fusion Energy Strategy Concepts Source Advanced Tokamaks Plasma Conventional Tokamak Fusion Science Science Previous Strategy Fusion Energy Technologies U.S. Fusion Energy Sciences Program Mission “Advance plasma science, fusion science, and fusion technology-- the knowledge base needed for an economically and environmentally attractive fusion energy source.” Policy Goals o Advance plasma science in pursuit of national science and technology goals o Develop fusion science, technology, and plasma confinement innovations as the central theme of the domestic program oPursue fusion energy science and technology as a partner in the international fusion effort 10 Implementing Principles o Science focus o Energy goal o Reliability as an international partner o Complementary to the international effort o Leadership in selected areas o Scientific excellence oFacility balance oImportance of a national laboratory for fusion science o Education and human resources o Diversity of participation U.S. Fusion Energy Sciences Program Response oFocused on innovation and science –Initiated plasma science program –Increased scientific productivity of existing facilities –Increased emphasis on exploring alternative concepts –Enhanced theory and modeling research o Shutdown and decommissioned TFTR to free up funds for growth in other efforts oEnhanced research on radiation-resistant materials oMaintained commitments to ITER until Congress directed U.S. withdrawal o Continue minimal inertial fusion energy program in coordination with Defense Program’s ICF program The underlying theme of the restructuring of the fusion program was to redirect it away from “the expensive development path to a fusion power plant to focus on the less costly critical basic science and technology foundations.” A Restructured Fusion Energy Sciences Program, FESAC, 1996 U.S. Magnetic Fusion Strategy (1991-1996) Tokamak Physics Design Construction Advanced Tokamak Experiment Experiments Tokamak Deuterium- Tritium Fusion Test Experiment Reactor International Activities Physics & Technology Engineering International Design and R&D Construction Thermonuclear Experiments Testing Experimental Reactor DEMO Materials Development Design Construction Irradiation of Materials Blanket Development Supporting Physics & Technology Primarily ITER and TPX Support Time 1990 2000 2010 2020 U.S. Fusion Energy Sciences Program Goals The present base program is configured to: o Contribute to the scientific and technical basis for a burning plasma experiment oProvide the U.S. with the knowledge and tools to participate in and benefit from a burning plasma experiments, and o Acquire the broad understanding of plasma science and technology needed to design an economical and environmentally attractive fusion power source (a very demanding goal) Four Thrust Areas are Required for Practical Magnetic Fusion Energy Burning Plasmas Fundamental Understanding Cost-Effective Fusion Configuration Optimization Energy Materials and Technology Areas defined by the Fusion Energy Sciences Advisory Committee. Scientific Understanding of Fusion Plasmas has Increased Dramatically Advanced Computing Plasma Measurements Simulation of turbulence in Fast imaging of plasma magnetic fusion plasma. turbulence. Goal: Practical fusion energy through high-quality science. Scientific Discovery Thru Advanced Computing Three Principal Projects Computation of Wave Terascale Atomic Physics Magnetic Reconnection Code Plasma Interactions Auburn, Rollins, ORNL U. Iowa, U. Chicago, U. Texas ORNL, PPPL, MIT, Lodestar, CompX Current J time=100 Wave Field 15 0.1966 0.1707 1.0 0.1448 0.1189 Ζ 0 0.0930 0.5 0.0671 0.0412 0.0 -15 0.0153 Substorm in the Magnetotail -0.5 -1.0 1.0 1.5 2.0 Two Pilot Projects R (m) Plasma Microturbulence Extended MHD Modeling LLNL, GA, PPPL, U. PPPL, SAIC, U. Wisconsin, NYU, Maryland, U. Texas, U. Colorado, MIT, Utah State U., U. Colorado, UCLA GA, LANL, U. Texas Major U.S. Magnetic Fusion Facilities National Spherical Torus Experiment General Princeton Atomics Plasma Physics Doublet III Laboratory Started Operations NSTX started In 1978 Operations in DIII-D Tokamak 1999 Massachusetts Institute of Technology C-MOD Started Operations in October 1991 Princeton National Compact Plasma Physics Stellarator Experiment Laboratory NCSX Fabrication: Alcator C-MOD FY 2003-2007 Major Fusion Facilities Operating Times 30 DIII-D C-MOD NSTX Full Utilization Level 25 21 21 21 20 17 17 17 16 15 15 Weeks 14 13 13 12 12 12 12 12 10 8 6 5 0 FY 1999 FY 2000 FY 2001 FY 2002 FY 2003 FY 2003 Approp. Pres. Req. Dec.FP Years 09/04/02 09/04/02 Enabling Technologies Program 100 GHz Gyrotron Tube (1MW power in 1 second pulse) for Plasma Heating and Control DiMES probe in DIII-D Pellet Injector in DIII-D provides data on plasma for Plasma Fueling material interactions Variations of the Toroidal Plasma Configuration Address Key Fusion Issues Compact Stellarator design Spherical Torus offers high fusion optimizes plasma stability and power density at low magnetic field. steady-state properties. Goal: Combine with ITER results for better fusion energy. The U.S. is Planning Two Compact Stellarators Different configuration and design approaches are used Compact Stellarators Allow Larger Plasmas Innovative Confinement Concepts CAT ‹ CTH Compact Auburn Torsatron becoming Compact Toroidal Hybrid HIT-II Auburn University, Auburn Alabama Helicity Injected Torus-II Experiment LDX University of Washington, Seattle SSPX Levitated Dipole Experiment Columbia University/Massachusetts Institute of Technology ET HSX Sustained Spheromak Electric Tokamak Helically Symmetric Experiment Plasma Experiment University of California, Los Angeles University of Wisconsin, Madison Lawrence Livermore National Laboratory Inertial Fusion Energy o Defense Programs conducting high energy density physics using OMEGA, and NIKE lasers; National Ignition Facility under construction; results are used by Science in designing energy producing targets oSC developing components for energy applications, especially accelerator-based driver and target chamber technologies o Developing international collaboration through bilateral agreements Inertial Fusion Energy Options Targets Fuel Capsule Fuel Capsule Driver Energy Indirect-drive Direct-drive Drivers Heavy Ions KrF Laser Diode Pumped Solid State Laser Inertial Fusion Energy Experimental Facilities Quadrupole Focusing Assembly for New Heavy Ion Beam Experiments (Under construction at Lawrence Berkeley National Lab) Multi-beam Liquid wall chamber Transport protection flow Experiment experiment Lawrence Berkeley Georgia Tech National Lab Nanoscience and New Designs are Advancing Fusion Materials and Technologies Molecular Dynamics calculation of atomic Simplified blanket designs allow high displacements due to neutron impact. electrical efficiency and low radioactivity. Goal: Convert fusion power to electricity with high efficiency and minimum radioactivity. Fusion Energy Sciences Budget FY 2003 FY 2003 Congressional Initial Financial Plan $257.3 M $248.5 M General General Housekeeping* Housekeeping* Plasma Plasma $16.7 $18.8 Science Science $9.1 $8.9 Tokamak Tokamak $82.5 Theory $89.5 $27.6 Theory $27.1 Enabling Enabling R&D R&D $33.1 $34.8 IFE $16.5 IFE NSTX $17.1 NSTX $33.1 $29.6 Other Magnetic NCSX Other Magnetic Alternates Alternates $11.8 NCSX $22.6 $22.3 Alternates Alternates$11.7 $81.3 $76.4 * Housekeeping includes SBIR/STTR, GPE/GPP, TSTA cleanup, D-Site caretaking at PPPL, HBCU, Education, Outreach, ORNL Move, and Reserves Fusion Energy Sciences Funding Distribution FY 2003 Initial Fin Plan $248.5M Institution Types Functions Laboratory Universities 47% 28% Facility Operations Science 28% 55% Enabling Industry R&D 22% Other* 15% Small Business 3% Innovative Research 2% *NIST/NSF/NAS/AF Undesignated U.S. MFE Program Leaders Envision a Plan to Put Fusion on the Grid Integrated DEMO(s) Development ITER (int’l) 1 GWe Materials Testing IMFIF (int’l) Component Testing CTF (int’l?) Small net electricity? Non-nuclear Technology Test Facilities Tok PE’s S/C Tok PE(s) (non-U.S.) ST PoP’s 1st New PE Configuration RFP PoP’s Optimization 2nd New PE CS PoP S/C Stellarator PE’s (non-U.S.) CE’s ~ 2 New PoP’s 3rd New PE? 2000 2010 2020 2030 2040 2050 2060 2001 Being reviewed by FESAC.
Recommended publications
  • LA-8700-C N O Proceedings of the Third Symposium on the Physics
    LA-8700-C n Conference Proceedings of the Third Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program Held at the Los Alamos National Laboratory Los Alamos, New Mexico December 2—4, 1980 c "(0 O a> 9 n& anna t LOS ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos. New Mexico 87545 An Affirmative Aution/f-qual Opportunity Fmployei This report was not edited by the Technical Information staff. This work was supported by the US Depart- ment of Energy, Office of Fusion Energy. DISCLAIM) R This report WJJ prepared as jn JLUOUIH of work sponsored by jn agency of ihc Untied Slates (.ovcrn- rneni Neither the United Suit's (iovci.iment nor anv a^cmy thereof, nor any HI theu employees, makes Jn> warranty, express or in,Hied, o( assumes any legal liability 01 responsibility for the jn-ur- aty. completeness, or usefulness of any information, apparatus, product, 01 process disiiosed, or rep- resents thai its use would not infringe privately owned rights. Reference herein to any specifu- com- mercial product process, or service by tradr name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommcniidlK>n, or favoring by the United Stales Government or any agency thereof. The views and opinions of authors expressed herein do not nec- essarily state 01 reflect those nf llic United Stales Government or any agency thereof. UfJITED STATES DEPARTMENT OF ENERGY CONTRACT W-7405-ENG. 36 LA-8700-C Conference UC-20 issued: March 1981 Proceedings of the Third Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program Heki at the Los Alamos National Laboratory Los Alamos, New Mexico Decamber 2—4, 1980 Compiled by Richard E.
    [Show full text]
  • Paper Session III-A - Space Transportation Options for the 21St Century
    The Space Congress® Proceedings 1999 (36th) Countdown to the Millennium Apr 29th, 1:00 PM Paper Session III-A - Space Transportation Options for the 21st Century George Schmidt NASA Marshall Space Flight Center Mike Houts NASA Marshall Space Flight Center Harold Gerrish NASA Marshall Space Flight Center Jim Martin NASA Marshall Space Flight Center Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Schmidt, George; Houts, Mike; Gerrish, Harold; and Martin, Jim, "Paper Session III-A - Space Transportation Options for the 21st Century" (1999). The Space Congress® Proceedings. 8. https://commons.erau.edu/space-congress-proceedings/proceedings-1999-36th/april-29-1999/8 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Space Transportation Options for the 21'1 Century George Schmidt, Mike Houts, Harold Gerrish, Jim Martin #ASA ;//ors/Jo// Spoce ll!g/JI CMler Abstract As NASA's designated Center of Excellence in Space Propulsion, Marshall Space Flight Center (MSFC) recently established the Propulsion Research and Technology Division (PRTD), an organization responsible for the theoretical and experimental study of advanced propulsion concepts and technologies. Although the scope of the division is broad, the mission is quite focused - to demonstrate the critical propulsion functions and technologies underpinning the transportation systems and spacecraft needed to achieve NASA's Grand Vision for exploration, commercial development and ultimately human settlement of space.
    [Show full text]
  • Snowflake Divertor Studies in DIII-D and NSTX Aimed at the Power
    40th EPS Conference on Plasma Physics (EPS 2013) Europhysics Conference Abstracts Vol. 37D Espoo, Finland 1 - 5 July 2013 Part 1 of 2 ISBN: 978-1-63266-310-8 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2013) by the European Physical Society (EPS) All rights reserved. Printed by Curran Associates, Inc. (2014) For permission requests, please contact the European Physical Society (EPS) at the address below. European Physical Society (EPS) 6 Rue des Freres Lumoere F-68060 Mulhouse Cedex France Phone: 33 389 32 94 40 Fax: 33 389 32 94 49 [email protected] Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: [email protected] Web: www.proceedings.com 40th EPS Conference on Plasma Physics 1 - 5 July 2013 Espoo, Finland Snowflake Divertor Studies in O2.101 Soukhanovskii, V.A. DIII-D and NSTX Aimed at the Power Exhaust Solution for the Tokamak Lang, P.T., Bernert, M., Burckhart, A., Casali, L., Fischer, R., Pellet as tool for high density O2.102 Kardaun, O., Kocsis, G., Maraschek, M., Mlynek, A., Ploeckl, B., operation and ELM control in Reich, M., Francois, R., Schweinzer, J., Sieglin, B., Suttrop, W., ASDEX Upgrade Szepesi, T., Tardini, G., Wolfrum, E., Zohm, H., Team, A. Modelling of the O2.103 Panayotis, S. erosion/deposition pattern on the Tore Supra Toroidal Pumped Limiter Non-inductive Plasma Current Start-up in NSTX Raman, R., Jarboe, T.R., Jardin, S.C., Kessel, C.E., Mueller, D., using Transient CHI and O2.104 Nelson, B.A., Poli, F., Gerhardt, S., Kaye, S.M., Menard, J.E., Ono, subsequent Non-inductive M., Soukhanovskii, V.
    [Show full text]
  • Energetic Beam Ion Transport in LHD the Distribution of Energetic Beam Ions Is Measured by Fast Neutral Particle Analysis Using a Natural Dia- Mond Detector in LHD
    Published by Fusion Energy Division, Oak Ridge National Laboratory Building 9201-2 P.O. Box 2009 Oak Ridge, TN 37831-8071, USA Editor: James A. Rome Issue 69 May 2000 E-Mail: [email protected] Phone (865) 574-1306 Fax: (865) 576-5793 On the Web at http://www.ornl.gov/fed/stelnews Greifswald Branch of IPP moves into new building In early April, about 120 employees of the Max-Planck- Institut für Plasmaphysik (IPP), Greifswald Branch, moved into their new building on the outskirts of the old university town. Up to this time the staff of the Stellarator Theory, Wendelstein 7-X Construction, and Experimental Plasma Physics divisions as well as Administration, Tech- nical Services, and the Computer Center had worked in rented offices at two different locations. Now everybody works under one roof — a roof in the shape of a wave (see Fig. 1), symbolizing the waves on the Baltic Sea. Fig. 2. After unpacking their boxes, the staff of IPP Greif- About 300 persons will work in this new branch institute swald gathered on the galleries above the institute’s “main by the start of the Wendelstein 7-X (W7-X) experiment, road” for an informal opening ceremony on 3 April 2000. scheduled for 2006. This experiment is the successor to the W7-AS stellarator in Garching, with a goal of demon- strating that the advanced stellarator concept, developed at In this issue . IPP, is suitable as a fusion reactor. Even before W7-X has Greifswald Branch of IPP moves into new its first plasma, a smaller, classical stellarator will run in building Greifswald.
    [Show full text]
  • 130 Electrical Energy Innovations
    130 Electrical Energy Innovations Gary Vesperman (Author) Advisor to Sky Train Corporation www.skytraincorp.com 588 Lake Huron Lane Boulder City, NV 89005-1018 702-435-7947 [email protected] www.padrak.com/vesperman TABLE OF CONTENTS Title Page INTRODUCTION ............................................................................................................. 1 BRIEF SUMMARIES ....................................................................................................... 2 LARGE GENERATORS ............................................................................................... 13 Hydro-Magnetic Dynamo ............................................................................................ 13 Focus Fusion ............................................................................................................... 19 BlackLight Power’s Hydrino Generator ..................................................................... 19 IPMS Thorium Energy Accumulator .......................................................................... 22 Thorium Power Pack ................................................................................................... 22 Magneto-Gravitational Converter (Searl Effect Generator) ..................................... 23 Davis Tidal Turbine ..................................................................................................... 25 Magnatron – Light-Activated Cold Fusion Magnetic Motor ..................................... 26 Wireless Power and Free Energy from Ambient
    [Show full text]
  • Equilibrium Evaluation for Wendelstein 7-X Experiment Programs in the First Divertor Phase T
    Equilibrium evaluation for Wendelstein 7-X experiment programs in the first divertor phase T. Andreeva1*, J. A. Alonso2, S. Bozhenkov1, C. Brandt1, M. Endler1, G. Fuchert1, J. Geiger1, M. Grahl1, T. Klinger1, M. Krychowiak1, A. Langenberg1, S. Lazerson3, U. Neuner1, K. Rahbarnia1, N. Pablant3, A. Pavone1, J. Schilling1, J. Schmitt4, H. Thomsen1, Y. Turkin1 and the W7-X Team 1Max-Planck-Institute for Plasma Physics, Wendelsteinstraße 1, 17491 Greifswald, Germany 2Laboratorio Nacional de Fusión, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain 3Princeton Plasma Physics Laboratory, Princeton NJ, 08543, USA 4Auburn University, Department of Physics, Auburn AL, 36849, USA Wendelstein 7-X (W7-X) is a modular advanced stellarator, which successfully went into operation in December 2015 at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany, and continued to thrive at the experimental campaign with the first divertor phase in August-December 2017. The nested magnetic surfaces in W7-X are created by a system of 3-D toroidally discrete coils, providing both toroidal and poloidal field components, and designed with the aim to create optimum equilibrium properties. The optimization criteria included the high quality of vacuum magnetic surfaces, good finite beta equilibrium and MHD-stability properties as well as a substantial reduction of the neoclassical transport and bootstrap current in comparison to classical stellarators. Equilibrium calculations, devoted to the analysis of the experiment programs dedicated to measure the bootstrap current, were performed with help of the Variational Moments Equilibrium Code, available as Wendelstein 7-X web service. Pressure profiles based on experimental data served as an input for calculations.
    [Show full text]
  • Poster Session #1
    Innovative Confinement Concepts Workshop and US-Japan Workshop on the Improvement in the Confinement of Compact Torus Plasmas Poster Session: Tuesday and Thursday 1:00 and 5:00 p.m. and Wednesday at 4:30 p.m. Poster # Author Title Studies of helicity-driven MHD relaxation and its control by rotating magnetic IP.001 Masayoshi Nagata field on HIST IP.002 Gennady Fiksel Transport of momentum by tearing modes in the MST RFP C60-Fullerene Hyper-Velocity High-Density Plasma Jets for MIF and Disruption IP.003 Ioan Bogatu Mitigation IP.004 Amiya Sen The First Basic Experiment on the Production and Identification of ETG Modes IP.005 Scott Wilks Fast Ignition Using Electron-Positron Jets Vladimir IP.006 Svidzinski Plasma confinement by rotating magnetic field in toroidal geometry IP.007 John Sarff A Hybrid Inductive Scenario for a Nearly Steady-State Reversed Field Pinch IP.008 John Slough Got Tritium? IP.009 Charles Hartman Fast z-pinch compression of small-radius, cylindrical liner IP.010 Michel Laberge Experimental results for an acoustic driver for MTF IP.011 Piero Martin Overview of RFX-mod results IP.012 Sadao Masamune MHD Properties of Low-Aspect Ratio RFP in RELAX IP.013 Brian Nelson Recent Results from the Steady-Inductive Helicity Injected Torus (HIT-SI) IP.014 David Anderson Transport in a Quasisymmetric Plasma: Results from HSX IP.015 Thomas Pedersen Studies of non-neutral plasmas in the CNT stellarator IP.016 Harry Mclean Final Results from the SSPX Spheromak Program IP.017 Bick Hooper Visualizing magnetic reconnection in the SSPX
    [Show full text]
  • Characterizing Magnetized Plasmas with Dynamic Mode Decomposition
    Characterizing Magnetized Plasmas with Dynamic Mode Decomposition A. A. Kaptanoglu1, K. D. Morgan2, C. J. Hansen3;4, S. L. Brunton5 1 Department of Physics, University of Washington, Seattle, WA 98195, United States 2 CTFusion Inc., Seattle, WA 98195, United States 3 Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195, United States 4 Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, United States 5 Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, United States Abstract Accurate and efficient plasma models are essential to understand and control experimen- tal devices. Existing magnetohydrodynamic or kinetic models are nonlinear, computationally intensive, and can be difficult to interpret, while often only approximating the true dynam- ics. In this work, data-driven techniques recently developed in the field of fluid dynamics are leveraged to develop interpretable reduced-order models of plasmas that strike a balance between accuracy and efficiency. In particular, dynamic mode decomposition (DMD) is used to extract spatio-temporal magnetic coherent structures from the experimental and simulation datasets of the HIT-SI experiment. Three-dimensional magnetic surface probes from the HIT-SI experiment are analyzed, along with companion simulations with synthetic internal magnetic probes. A number of leading variants of the DMD algorithm are compared, including the sparsity-promoting and optimized DMD. Optimized DMD results in the highest overall pre- diction accuracy, while sparsity-promoting DMD yields physically interpretable models that avoid overfitting. These DMD algorithms uncover several coherent magnetic modes that pro- vide new physical insights into the inner plasma structure. These modes were subsequently used to discover a previously unobserved three-dimensional structure in the simulation, rotat- ing at the second injector harmonic.
    [Show full text]
  • The Fairy Tale of Nuclear Fusion L
    The Fairy Tale of Nuclear Fusion L. J. Reinders The Fairy Tale of Nuclear Fusion 123 L. J. Reinders Panningen, The Netherlands ISBN 978-3-030-64343-0 ISBN 978-3-030-64344-7 (eBook) https://doi.org/10.1007/978-3-030-64344-7 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland When you are studying any matter or considering any philosophy, ask yourself only what are the facts and what is the truth that the facts bear out.
    [Show full text]
  • Summary: EXS, EXW, ICC Abhijit Sen
    Summary: EXS, EXW, ICC Abhijit Sen 25th IAEA Fusion Energy Conference St. Petersburg, 13-18 October, 2014 Thanks to all authors and overview speakers who sent slides Special thanks to C. Greenfield, P. Kaw, H. Yamada Sen, EXS+EXW+ICC Summary 25th IAEA FEC 1 13-18 Oct., 2014 Outline Topic Number of Papers MagneLc Confinement Expts: Stability (EXS) 56 MagneLc Confinement Expts: Waves (EXW) 54 Innovave Confinement Concepts (ICC) 15 Subtopics for EXS & EXW (guided by ITER priority needs) • Disrup8ons/Runaways (control, miLgaon, predicLon) • ELMS (control, miLgaon) & 3D physics • Waves and Energec Parcles • MHD instabili8es (nonlinear interac8ons, control) • Current Drive & RF Hea8ng Sen, EXS+EXW+ICC Summary 25th IAEA FEC 2 13-18 Oct., 2014 DisrupDons / Runaways – a major concern for ITER operaDon EX/P3-18, Campbell Main Issues • UncertainLes associated with disrupLon loads that can impact the structural integrity of the machine • How to limit the number of disrupLons to protect machine life • DisrupLon avoidance /control • Disrupon predicon • Need for a reliable disrupLon miLgaon system (thermal, current and runaway miLgaon) – input required before final design review 2017 • Many gaps in physics basis and a lack of fundamental understanding Sen, EXS+EXW+ICC Summary 25th IAEA FEC 3 13-18 Oct., 2014 Disrup8on Research has Increased and Become More Focused since the 2012 FEC • Predicon and avoidance ü Both empirical and theory-based • Halo currents – measurements and modeling ü Exploraon of various techniques for disrupLon avoidance • Characterizaon
    [Show full text]
  • Evolutionary Development of an Ignited Toroidal Fusion Reactor
    Proceedings of ITC/ISHW2007 Evolutionary development of an ignited toroidal fusion reactor M. Zarnstorff, J. H. Harrisa, D. T. Anderson, S. Knowltonc, J. F. Lyona Princeton Plasma Physics Laboratory, USA Oak Ridge National Laboratorya, USA University of Wisconsinb, USA Auburn Universityc e-mail: [email protected] The tokamak, with its axisymmetric field configuration and induced plasma current, has been the primary vehicle for studying the physics of toroidal plasma confinement, and can be used effectively to explore burning fusion plasmas. The stellarator has traditionally been seen as a contrasting alternative to the tokamak, substituting external non-symmetric helical fields for the plasma current to form nested magnetic surfaces. However, as we move forward towards a reactor in which a high-pressure plasma must be stably sustained for weeks or more, the tokamak configuration is evolving. The axially symmetric tokamak develops unstable, non-symmetric helical perturbations whose suppression requires the imposition of multiple helical control fields and/or carefully programmed local heating. Continuous, toroidally asymmetric sources of current drive and momentum input are required to maintain the plasma in an enhanced confinement regime: the steady-state power required for these can exceed that used initially to raise the plasma to fusion temperatures. All these maintenance schemes require active feedback control. Recent advances in toroidal physics understanding and computation techniques allow these essential sustainment functions to be carried out using a carefully shaped 3-D stellarator field in place of the numerous active schemes. The rotational transform required to make magnetic surfaces together with the shaping required to maintain plasma stability come directly from the structure of the DC magnetic field itself.
    [Show full text]
  • PPPL News Summer03
    VOL. 7, NO. 3 • SUMMER 2003 New Stellarator Project Underway An Interview with Hutch Neilson n April 1, the National Compact Stellarator Experiment (NCSX) was officially granted Project status by the U.S. ODepartment of Energy. A successful Conceptual Design Review, which focused on physics, was held in May, 2002. A Preliminary Design Review, which will examine engineering design, as well as cost and schedule issues, is scheduled for this October. Contracts have been awarded for the fabrication of prototype components to begin in January. The new machine will be built at PPPL's C-Site, with first plasma scheduled for June of 2007. Recently, Hotline staff interviewed NCSX Project Head Hutch Neilson to learn about this exciting new venture. How did you first become interested in stellarators? power supplies, diagnostics, plasma heating systems, and so on, and pulling everything together to achieve the first I became interested in stellarators in the early 1980’s when plasma milestone. I was at Oak Ridge National Laboratory (ORNL). We built a stellarator called the Advanced Toroidal Facility (ATF). What interested me about stellarator physics was the three- I was responsible for preparing the ancillary systems, the dimensional structure of the magnetic field and the plasma shape. The cross-sectional shape of a 3-D plasma depends on where the torus is sliced, while the cross-sectional shape of a tokamak, a 2-D torus, is always the same. Consequently, stellarator physicists have three degrees of freedom to tailor the plasma shape for good performance. There are only two degrees of freedom in a tokamak.
    [Show full text]