The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves

Total Page:16

File Type:pdf, Size:1020Kb

The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 321 (2004) 59–72 www.elsevier.com/locate/tcs The generalized Weil pairing and the discrete logarithm problem on elliptic curves Theodoulos Garefalakis Department of Mathematics, University of Toronto, Ont., Canada M5S 3G3 Received 5 August 2002; received in revised form 2 May 2003; accepted 1 June 2003 Abstract We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in ÿnite ÿelds. We show that the new pairing can be computed e2ciently for curves with trace of Frobenius congruent to 2 modulo the order of the base point. This leads to an e2cient reduction for this class of curves. The reduction is as simple to construct as that of Menezes et al. (IEEE Trans. Inform. Theory, 39, 1993), and is provably equivalent to that of Frey and Ruck7 (Math. Comput. 62 (206) (1994) 865). c 2003 Elsevier B.V. All rights reserved. Keywords: Elliptic curves; Cryptography; Discrete Logarithm Problem 1. Introduction Since the seminal paper of Di2e and Hellman [11], the discrete logarithm prob- lem (DLP) has become a central problem in algorithmic number theory, with direct implications in cryptography. For arbitrary ÿnite groups the problem is deÿned as fol- lows: Given a ÿnite group G, a base point g ∈ G and a point y ∈g ÿnd the smallest non-negative integer ‘ such that y = g‘. In their paper, Di2e and Hellman proposed a method for key agreement, whose security required that DLP be hard for the group (Z=p)∗ of integers modulo a prime p. This is the multiplicative group of the ÿnite ÿeld Fp. Considering an arbitrary ÿnite ÿeld Fq instead, the method can almost trivially be extended to work in the multiplicative group of Fq, where q is a prime power. The security of the protocol now requires DLP to be hard in this group. E-mail address: [email protected] (T. Garefalakis). 0304-3975/$ - see front matter c 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2003.06.002 60 T. Garefalakis / Theoretical Computer Science 321 (2004) 59–72 The result of the eHorts of a number of researchers was the development of the index calculus method [1,3,7,15,19,22] and later the number ÿeld sieve and the function ÿeld sieve [2,4,10,16]. The methods are designed to compute discrete logarithms in any ÿnite ÿeld, and are particularly e2cient for ÿnite ÿelds of the form Fq with q = p a prime, or q = pn with p a small prime and n large. In both these cases, the above methods run in subexponential time: the index calculus method in time exp((c1 + o(1))(log q)1=2(log log q)1=2), and the number ÿeld and function ÿeld sieves in time 1=3 2=3 exp((c2 + o(1))(log q) (log log q) ), where c1 and c2 are small constants. The above developments, led Miller [21] and Koblitz [18] to consider alternative groups, where the group operation can be e2ciently computed, but the DLP is hard. Their proposal was the group of points of an elliptic curve E over a ÿnite ÿeld Fq, denoted E(Fq). Traditionally, the group operation here is denoted additively. Thus the elliptic curve discrete logarithm problem (ECDLP) is deÿned as follows: Given an elliptic curve E=Fq, a base point P ∈ E(Fq) and a point Q ∈P ÿnd the smallest non- negative integer ‘ such that Q = ‘ · P. ECDLP in general remains of exponential time complexity to this day. However, it was the work of Menezes et al. [20] that showed that not all elliptic curves oHer the same level of security. The authors used the well-known Weil pairing, em, to translate ∗ the ECDLP from E(Fq) to the DLP in an extension ÿeld Fqk , which can subsequently be solved using one of the subexponential methods discussed earlier (MOV reduction). A necessary condition for it to be e2cient is the existence a small integer k such that (1) E[m] ⊆ E(Fqk ); where m =#P, (2) m | qk − 1. The authors were able to prove that for supersingular curves both conditions hold for k66. Subsequently, Frey and Ruck7 [13] proposed another reduction, based on the Tate pairing m. The advantage of this method is that m(P; S)isanmth root of unity for an easily computable point S (in most interesting cases S = P). Then the only requirement for the reduction to go through is that m | qk − 1 for a small k. Clearly, this is a less restrictive condition. In fact, one cannot avoid this condition, as any isomorphism from k P to a subgroup of Fqk implies that #P = m|q − 1. Later, Harasawa et al. [17] attempted to generalize the method of Menezes, Okamoto, and Vanstone to apply to a larger class of elliptic curves. Their generalization appeared to be very limited. The main reason is that no e2cient method is known to ÿnd a point S ∈ E[m] such that em(P; S) is a primitive mth root of unity, if E is non-supersingular. The purpose of this paper is to bridge the gap between the MOV reduction and the Frey–Ruck7 reduction. We start from a well-known generalization of the Weil pairing, e (see [6, p. 45, 23, p. 107]). The construction of the pairing is as simple as that of the Weil pairing, but has the nice property of the (more involved) Tate pairing, namely e (P; P) is a suitable primitive root of unity. We show how to construct a group isomorphism between P and r, where r =#P is a prime, and r is the group of rth roots of unity. Our construction applies to elliptic curves E=Fq such that r|q−1, i.e., aq ≡ 2 (mod r). For the cases of interest in cryptography, the order r of P is T. Garefalakis / Theoretical Computer Science 321 (2004) 59–72 61 √ very close to the order of E(Fq) (and certainly greater than 2 q). Then, the condition r|q − 1 is equivalent to aq = 2. We note that our construction can be generalized to work for r|qk −1 for any k¿1. If the degree of the extension k is reasonably small, the resulting reduction is e2cient. We want to stress that the reduction presented in this work is not a new attack to elliptic curve cryptosystems. It is an alternative, elementary construction of the reduction of Frey and Ruck.7 The paper is structured as follows. In Section 2, we review the construction of the generalized Weil pairing e parameterized by an isogeny , and state the properties that will be used later. In Section 3, we specialize the isogeny to 1 − , where is the Frobenius endomorphism. In Section 4, we consider curves with trace of Frobenius aq = 2, and show how to ÿnd a point P , such that e (P; P ) is a primitive rth root of unity. In Section 5, we give an algorithm to compute the pairing in the case of interest. It turns out that for Q ∈P, the value e (Q; P) is the multiplicative inverse of the value r(Q; P) of the Tate pairing used by Frey and Ruck.7 Finally, in Section 6 we show how to obtain a reduction in the more general case aq ≡ 2 (mod r). 2. The pairing In this section, we review a generalization of the Weil pairing. As for the rest of the paper, p is prime, and q = pk . Let E be an elliptic curve over Fq. Also let : E → E be a non-zero endomorphism of E, and denote its dual by ˆ. Let T ∈ ker( ˆ)—such a point exists, since ˆ is onto. We denote by m the degree of . Then, the divisor D = m(T) − m(O) is principal. Let O fT ∈ Fq(E) be a function such that div(fT )=m(T) − m(O): We consider now the divisor of fT ◦ . ∗ ∗ div(fT ◦ ) = div( fT )= div(fT) = m( ∗(T) − ∗(O)); the last equality being true by the deÿnition of ∗ (Z-linearity). We note that ∗ ∗ (T) − (O)= e (P)(P) − e (R)(R) P=T R=O = degi (T + R) − (R) ; R=O where T = T. Here we used the fact that is an isogeny, and therefore e (P) does not depend on P, and equals to degi( ). The last line of the derivation shows that the divisor is principal, since it has degree zero, and it sums to ˆ ˆ [degi ] T = [deg ]T = ◦ (T )= T = O: R=O 62 T. Garefalakis / Theoretical Computer Science 321 (2004) 59–72 O So it must be the divisor of some function gT ∈ Fq(E). Thus, m (fT ◦ )=m div(gT ) = div(gT ); which implies that m gT = fT ◦ : (1) gT is deÿned up to a multiplicative constant of course. Let now S ∈ ker( ), and X any O point of E(Fq). m m gT (X + S) = fT ( X + S)=fT ( X )=fT ◦ X = gT (X ) : We deÿne the pairing ˆ e : ker( ) × ker( ) → m as gT (X + S) e (S; T)= : (2) gT (X ) The above deÿnition does not depend on the choice of X . Indeed, if S denotes the translation by S map S : E → E X → X + S then we can write e (S; T)as gT ◦ S e (S; T)= (X ); gT and the function gT ◦ S =gT is constant.
Recommended publications
  • Easy Decision Diffie-Hellman Groups
    EASY DECISION-DIFFIE-HELLMAN GROUPS STEVEN D. GALBRAITH AND VICTOR ROTGER Abstract. The decision-Di±e-Hellman problem (DDH) is a central compu- tational problem in cryptography. It is already known that the Weil and Tate pairings can be used to solve many DDH problems on elliptic curves. A natural question is whether all DDH problems are easy on supersingular curves. To answer this question it is necessary to have suitable distortion maps. Verheul states that such maps exist, and this paper gives an algorithm to construct them. The paper therefore shows that all DDH problems on the supersingular elliptic curves used in practice are easy. We also discuss the issue of which DDH problems on ordinary curves are easy. 1. Introduction It is well-known that the Weil and Tate pairings make many decision-Di±e- Hellman (DDH) problems on elliptic curves easy. This observation is behind ex- citing new developments in pairing-based cryptography. This paper studies the question of which DDH problems are easy and which are not necessarily easy. First we recall some de¯nitions. Decision Di±e-Hellman problem (DDH): Let G be a cyclic group of prime order r written additively. The DDH problem is to distinguish the two distributions in G4 D1 = f(P; aP; bP; abP ): P 2 G; 0 · a; b < rg and D2 = f(P; aP; bP; cP ): P 2 G; 0 · a; b; c < rg: 4 Here D1 is the set of valid Di±e-Hellman-tuples and D2 = G . By `distinguish' we mean there is an algorithm which takes as input an element of G4 and outputs \valid" or \invalid", such that if the input is chosen with probability 1/2 from each of D1 and D2 ¡ D1 then the output is correct with probability signi¯cantly more than 1/2.
    [Show full text]
  • The Tate Pairing for Abelian Varieties Over Finite Fields
    Journal de Th´eoriedes Nombres de Bordeaux 00 (XXXX), 000{000 The Tate pairing for Abelian varieties over finite fields par Peter BRUIN Resum´ e.´ Nous d´ecrivons un accouplement arithm´etiqueassoci´e `aune isogenie entre vari´et´esab´eliennessur un corps fini. Nous montrons qu'il g´en´eralisel'accouplement de Frey et R¨uck, ainsi donnant une d´emonstrationbr`eve de la perfection de ce dernier. Abstract. In this expository note, we describe an arithmetic pairing associated to an isogeny between Abelian varieties over a finite field. We show that it generalises the Frey{R¨uck pairing, thereby giving a short proof of the perfectness of the latter. 1. Introduction Throughout this note, k denotes a finite field of q elements, and k¯ denotes an algebraic closure of k. If n is a positive integer, then µn denotes the group of n-th roots of unity in k¯×. Let C be a complete, smooth, geometrically connected curve over k, let J be the Jacobian variety of C, and let n be a divisor of q − 1. In [1], Frey and R¨uck defined a perfect pairing f ; gn : J[n](k) × J(k)=nJ(k) −! µn(k) as follows: if D and E are divisors on C with disjoint supports and f is a non-zero rational function with divisor nD, then (q−1)=n f[D]; [E] mod nJ(k)gn = f(E) ; where Y nx X f(E) = f(x) if E = nxx: x2C(k¯) x2C(k¯) Remark. We have composed the map as defined in [1] with the isomor- × × n phism k =(k ) ! µn(k) that raises elements to the power (q − 1)=n.
    [Show full text]
  • On the Implementation of Pairing-Based Cryptosystems a Dissertation Submitted to the Department of Computer Science and the Comm
    ON THE IMPLEMENTATION OF PAIRING-BASED CRYPTOSYSTEMS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ben Lynn June 2007 c Copyright by Ben Lynn 2007 All Rights Reserved ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dan Boneh Principal Advisor I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. John Mitchell I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Xavier Boyen Approved for the University Committee on Graduate Studies. iii Abstract Pairing-based cryptography has become a highly active research area. We define bilinear maps, or pairings, and show how they give rise to cryptosystems with new functionality. There is only one known mathematical setting where desirable pairings exist: hyperellip- tic curves. We focus on elliptic curves, which are the simplest case, and also the only curves used in practice. All existing implementations of pairing-based cryptosystems are built with elliptic curves. Accordingly, we provide a brief overview of elliptic curves, and functions known as the Tate and Weil pairings from which cryptographic pairings are derived. We describe several methods for obtaining curves that yield Tate and Weil pairings that are efficiently computable yet are still cryptographically secure.
    [Show full text]
  • An Introduction to Pairing-Based Cryptography
    An Introduction to Pairing-Based Cryptography Alfred Menezes Abstract. Bilinear pairings have been used to design ingenious protocols for such tasks as one-round three-party key agreement, identity-based encryption, and aggregate signatures. Suitable bilinear pairings can be constructed from the Tate pairing for specially chosen elliptic curves. This article gives an introduction to the protocols, Tate pairing computation, and curve selection. 1. Introduction The discrete logarithm problem (DLP) has been extensively studied since the discovery of public-key cryptography in 1975. Recall that the DLP in an additively- written group G = P of order n is the problem, given P and Q, of finding the integer x [0,n 1]h suchi that Q = xP . The DLP is believed to be intractable for certain∈ (carefully− chosen) groups including the multiplicative group of a finite field, and the group of points on an elliptic curve defined over a finite field. The closely related Diffie-Hellman problem (DHP) is the problem, given P , aP and bP , of finding abP . It is easy to see that the DHP reduces in polynomial time to the DLP. It is generally assumed, and has been proven in some cases (e.g., see [10, 38]), that the DLP reduces in polynomial time to the DHP. The assumed intractability of the DHP is the basis for the security of the Diffie- Hellman key agreement protocol [20] illustrated in Figure 1. The objective of this protocol is to allow Alice and Bob to establish a shared secret by communicating over a channel that is being monitored by an eavesdropper Eve.
    [Show full text]
  • 24 Divisors and the Weil Pairing
    18.783 Elliptic Curves Spring 2015 Lecture #24 05/07/2015 24 Divisors and the Weil pairing In this lecture we address a new topic, the Weil Pairing, which has many practical and theoretical applications. In order to define the Weil pairing we first need to expand our discussion of the function field of a curve from Lecture 5. This requires a few basic results from commutative algebra and algebraic geometry that we will not take the time to prove (most of what we need it is summarized in the first two chapters of [5]). 24.1 Valuations on the function field of a curve Let C=k be a smooth projective curve defined by a homogeneous polynomial f(x; y; z) = 0 that (as always) we assume is irreducible over k¯.1 In order to simplify the presentation, we are going to assume in this section that k = k¯ is algebraically closed, but we will note in remarks along the way how to handle non-algebraically closed (but still perfect) fields. In Lecture 5 we defined the function field k(C) as the field of rational functions g=h, where g; h 2 k[x; y; z] are homogeneous polynomials of the same degree with h 62 (f), modulo the equivalence relation g1 g2 ∼ () g1h2 − g2h1 2 (f): h1 h2 1 Alternatively, we can view the function g=h as a rational map (g : h) from C to P . The fact that C is a smooth curve implies that this rational map is actually a morphism, meaning that it is defined at every point P 2 C(k¯); this was stated in Theorem 5.10 which we will prove below.
    [Show full text]
  • Constructing Pairing-Friendly Hyperelliptic Curves Using Weil Restriction
    CONSTRUCTING PAIRING-FRIENDLY HYPERELLIPTIC CURVES USING WEIL RESTRICTION DAVID MANDELL FREEMAN1 AND TAKAKAZU SATOH2 Abstract. A pairing-friendly curve is a curve over a finite field whose Ja- cobian has small embedding degree with respect to a large prime-order sub- group. In this paper we construct pairing-friendly genus 2 curves over finite fields Fq whose Jacobians are ordinary and simple, but not absolutely simple. We show that constructing such curves is equivalent to constructing elliptic curves over Fq that become pairing-friendly over a finite extension of Fq. Our main proof technique is Weil restriction of elliptic curves. We describe adap- tations of the Cocks-Pinch and Brezing-Weng methods that produce genus 2 curves with the desired properties. Our examples include a parametric fam- ily of genus 2 curves whose Jacobians have the smallest recorded ρ-value for simple, non-supersingular abelian surfaces. 1. Introduction Let q be a prime power and Fq be a finite field of q elements. In this paper we study two types of abelian varieties: • Elliptic curves E, defined over Fqd , with j(E) 2 Fq. • Genus 2 curves C, defined over Fq, whose Jacobians are isogenous over Fqd to a product of two isomorphic elliptic curves defined over Fq. Both types of abelian varieties have recently been proposed for use in cryptography. In the first case, Galbraith, Lin, and Scott [17] showed that arithmetic operations on certain elliptic curves E as above can be up to 30% faster than arithmetic on generic elliptic curves over prime fields. In the second case, Satoh [32] showed that point counting on Jacobians of certain genus 2 curves C as above can be performed much faster than point counting on Jacobians of generic genus 2 curves.
    [Show full text]
  • Polarizations and the Weil Pairing
    Chapter XI. Polarizations and Weil pairings. In the study of higher dimensional varieties and their moduli, one often considers polarized varieties. Here a polarization is usually defined as the class of an ample line bundle modulo a suitable equivalence relation, such as algebraic or homological equivalence. If X is an abelian variety then, as we have seen in (7.24), the class of an ample bundle L modulo algebraic equiv- alence carries the same information as the associated homomorphism λ = ϕ : X Xt.And L → it is in fact this homomorphism that we shall put in the foreground. One reason for this is that λ usually has somewhat better arithmetic properties; for instance, it may be defined over a smaller field than any line bundle representing it. The positivity of an ample bundle shall later be translated into the positivity of the Rosati involution associated to λ; this is an important result that shall be given in the next chapter. The first Chern class of L only depends on L modulo algebraic equivalence, and we therefore expect that it can be expressed directly in terms of the associated homomorphism λ = ϕL.This is indeed the case. As we have seen before (cf. ??), the #-adic cohomology of X can be described in more elementary terms via the Tate-#-module. The class c1(L) then takes the form of an alternating pairing Eλ: T X T X Z (1), usually referred to as the Riemann form of L (or " " × " → " of λ). It is obtained, by a limit procedure, from pairings eλ: X[n] X[n] µ , called the Weil n × → n pairing.
    [Show full text]
  • Open Problems in Pairings
    Open Problems in Pairings Tanja Lange Department of Mathematics and Computer Science Eindhoven University of Technology [email protected] TanjaLange OpenProblemsinPairings–p.1 Protocols TanjaLange OpenProblemsinPairings–p.2 Security Assumptions – DL systems All systems assume that the Discrete Logarithm Problem (DLP) is hard to solve, i.e. given P and PA = [sA]P it is hard to find sA. The Computational Diffie-Hellman Problem (CDHP) is the problem given P , PA = [sA]P , and PB = [sB]P compute [sAsB]P . The Decisional Diffie-Hellman Problem (DDHP) is the problem given P , PA = [sA]P , PB = [sB]P and R = [r]P decide whether R = [sAsB]P . TanjaLange OpenProblemsinPairings–p.3 Pairings Let (G1, ), (G2, ) and (GT , ) be cyclic groups of prime order ℓ and⊕ let ⊕ · e : G G G 1 × 2 → T be a an efficiently computable map satisfying e(P Q, R′) = e(P, R′)e(Q, R′) ⊕ e(P, R′ S′) = e(P, R′)e(P,S′) ⊕ The map is non-degenerate in the first argument, i.e. if e(P, R′)=1 for all R′ G for some P then P is the ∈ 2 identity in G1 Then e is called a bilinear map or pairing.This implies ′ ′ ′ e([a]P, R ) = e(P, [a]R ) = e(P, R )a. In protocol papers often G1 = G2 (keyword “distortion map”). TanjaLange OpenProblemsinPairings–p.4 Consequences I Pairings allow to transfer the DLP in G1 to a DLP in GT . ′ ′ Let P G2 be such that e(P, P ) =1, ∈ 6 Given DLP P, PA = [sA]P compute ′ ′ ′ ′ sA sA g = e(P, P ) and h = e(PA, P ) = e([sA]P, P ) = e(P, P ) = g .
    [Show full text]
  • The Tate Pairing Via Elliptic Nets
    The Tate Pairing via Elliptic Nets Katherine E. Stange Brown University, Providence, RI 02912, USA Abstract. We derive a new algorithm for computing the Tate pairing on an elliptic curve over a finite field. The algorithm uses a generali- sation of elliptic divisibility sequences known as elliptic nets, which are n maps from Z to a ring that satisfy a certain recurrence relation. We explain how an elliptic net is associated to an elliptic curve and reflects its group structure. Then we give a formula for the Tate pairing in terms of values of the net. Using the recurrence relation we can calculate these values in linear time. Computing the Tate pairing is the bottleneck to efficient pairing-based cryptography. The new algorithm has time com- plexity comparable to Miller’s algorithm, and should yield to further optimisation. Key words: Tate pairing, elliptic curve, elliptic divisibility sequence, elliptic net, Miller’s algorithm, pairing-based cryptography. 1 Introduction The use of pairings in elliptic curve cryptography was originally suggested as a means of reducing the discrete logarithm problem on an elliptic curve to the discrete logarithm problem on a finite field [1, 2], but considerable excitement and research has since been generated by public-key cryptographic applications such as Sakai, Ohgishi and Kasahara’s key agreement and signature schemes [3], Joux’s tri-partite Diffie-Hellman key exchange [4], and Boneh and Franklin’s identity-based encryption scheme [5]. Good overviews of the research include [6, 7], while a very up-to-date research bibliography can be found at [8]. The bottleneck to pairing-based cryptographic implementations is the costly computation of the pairing, which is most frequently the Tate or Weil pairing, the former usually being more efficient.
    [Show full text]
  • The Weil Pairing on Elliptic Curves Over C
    The Weil pairing on elliptic curves over C Steven D. Galbraith September 13, 2005 Abstract To help motivate the Weil pairing, we discuss it in the context of elliptic curves over the field of complex numbers. 1 Introduction At the workshop on “Pairings in Cryptography” in Dublin, Breno de Medeiros suggested that it might be useful to explain or motivate pairings by considering the point of view of elliptic curves over C. The aim of this note is to describe pairings in this setting. The hope is that this might help readers understand why certain properties of pairings naturally arise. We also comment on some limitations of this point of view. This note will not be submitted anywhere, it is just for the edification of the community. Any comments are very welcome. 2 Elliptic curves over C Almost every textbook on elliptic curves (e.g., [6]) contains a discussion of ellip- tic curves over C. All we need to use is that an elliptic curve E can be written as C/h1, τi where τ ∈ C is a complex number with imaginary part Im(τ) > 0. Here h1, τi is the lattice {n + mτ : n, m ∈ Z}. Every point of E = C/h1, τi can be represented as a + bτ where 0 ≤ a, b < 1. The group law is simply (a+bτ)+(c+dτ) = (a+c)+(b+d)τ modulo h1, τi and the identity element is 0. Clearly, n(a + bτ) = (na) + (nb)τ modulo h1, τi. The connection with Weierstrass equations is given by the Weierstrass ℘-function. We don’t need to discuss that here.
    [Show full text]
  • Lecture 2: Abelian Varieties the Subject of Abelian Varieties Is Vast
    Lecture 2: Abelian varieties The subject of abelian varieties is vast. In these notes we will hit some highlights of the theory, stressing examples and intuition rather than proofs (due to lack of time, among other reasons). We will note analogies with the more concrete case of elliptic curves (as in [Si]), as well as places where elliptic curves provide a poor guide for what to expect. In addition, we will use the complex-analytic theory and the example of Jacobians as sources of inspiration and examples to illustrate general results. For arithmetic purposes it is essential to allow the ground field to be of arbitrary characteristic (e.g., finite fields), and not algebraically closed. At the end, we explain Chabauty's clever argument that proves the Mordell conjecture for curves of genus g ≥ 2 whose Jacobian has Mordell{Weil rank less than g. In later lectures we will bootstrap from the case of individual abelian varieties to \families" of abelian varieties, or as we will call them, abelian schemes. This concept, along with related notions such as \good reduction" and \semistable reduction" will be an essential ingredient in Faltings' method. But for this lecture we restrict attention to the more concrete setting of a single fixed abelian variety over a field. Nonetheless, the later need for a mature theory of families over a parameter space of mixed-characteristic (even for the special case of modular curves over Z(p), required to make sense of \reduction mod p" for modular curves) forces us to allow arbitrary ground fields, including imperfect ones like Fp(t), as those always show up at generic points of special fibers when the parameter space has positive-dimensional fibers in each characteristic, as will happen in nearly all examples of moduli spaces that arise in Faltings' work and throughout arithmetic geometry.
    [Show full text]
  • 24 Divisors and the Weil Pairing
    18.783 Elliptic Curves Spring 2017 Lecture #24 05/10/2017 24 Divisors and the Weil pairing In this lecture we address a completely new topic, the Weil Pairing, which has many practical and theoretical applications. In order to define the Weil pairing we first need to expand our discussion of the function field of a curve from Lecture 5. This requires a few basic results from commutative algebra and algebraic geometry that we will not take the time to prove; almost everything we need it is summarized in the first two chapters of Silverman’s book [6], which I recommend reviewing if you have not seen this material before. 24.1 Valuations on the function field of a curve Let C=k be a smooth projective curve defined by a homogeneous polynomial fC (x; y; z) = 0 that (as always) we assume is irreducible over k¯.1 In order to simplify the presentation, we are going to assume in this section that k = k¯ is algebraically closed, but we will note in remarks along the way how to handle non-algebraically closed (but still perfect) fields. In Lecture 5 we defined the function field k(C) as the field of rational functions g=h, where g; h 2 k[x; y; z] are homogeneous polynomials of the same degree with h 62 (fC ), modulo the equivalence relation g1 g2 ∼ () g1h2 − g2h1 2 (fC ): h1 h2 1 Alternatively, we can view the function g=h as a rational map (g : h) from C to P . Our assumption that C is smooth implies that this rational map is actually a morphism, meaning that it is defined at every point P 2 C(k¯); this was stated as Theorem 5.10 and we will 1 prove it below.
    [Show full text]