Angle Measurement by Myron Berg Dickinson State University Abstract

Total Page:16

File Type:pdf, Size:1020Kb

Angle Measurement by Myron Berg Dickinson State University Abstract Angle Measurement By Myron Berg Dickinson State University abstract • This PowerPoint deck was created for a presentation. • I discuss some ways other than degrees or radians in which angles are measured • Instead of using a radius of 1 to create radians, I discusses the results of using 1 as the circumference or area of a circle to create an alternative unit of measure. Then I examined whether these units have any advantage, including greater simplicity, when compared to the values that result from radians. Goals • Provide background information for instruction about angle measurement • Cover some strategies for helping students understand radian measure Overview • History of angle measurements • Common methods used to measure angles today • Cyclical angles • Advantages of using radians to measure angles • Helping students remember angle measurement values The Unit Circle • Expecting it to be simple – but can be a struggle Angle measurement strategies Slope Examples of grade: Grade % not evenly spaced Degrees vs Grade 50 45 40 35 30 25 20 degrees 15 10 5 0 0 20 40 60 80 100 120 grade Angles formed by repeated bisection • 256 units would be closest to 360 Compass Points use 16 divisions Wind Directions Using a scale with 0 and 360 being north Degrees Circular Reasoning to describe Circles • Why is there 360 degrees in a circle? • Because 4 right angles make a circle, and each right angle is 90° • Why is there 90 degrees in a right angle? • Because there are 360 degrees in a circle and a right angle is ¼ of a circle 360° • Reason for using 360 is unknown • 365 days in a year could be explanation • Babylonians divided circle using the angle of an equilateral triangle, then subdivided that using their sexagesimal numeric system • They inherited sexagesimal from Sumerians, who developed it around 2000 B.C. • 360 has 24 divisors (1-10 except 7) • Also occurred in ancient India • Combination of both reasons (365 days and 60 as a useful number) may be possible • Babylonians used chords for trigonometry (1/60 of a radius used as a chord forms a degree) 60 minutes were used as divisions of a degree • 60 is the smallest number divisible by 1-6, 10, 12, 15, 20, and 30. • Analog clocks and globe divisions came from Babylonians • 60 was used to divide minutes into seconds for clocks and angles 12 hours • Egyptians used sundials with duodecimal system • 12 lunar cycles per year • 12 joints on each hand excluding thumb • Hours were shorter in winter • angle bisection could produce 256 or 512 units instead of 360 • 360 provides the balance between having to use decimals and having to use 3 digit numbers. Other Angle Measurement Systems Vector angles • The sides have fixed values, even though represented by arrows. • Greeks pictured angles with infinitely long rays. Azimuth – another way North is over here Cyclical angle measurements • "We're going to turn this team around 360 degrees." - Jason Kidd, upon his drafting to the Dallas Mavericks Radians vs Degrees • Angles in polar notation are generally expressed in either degrees or radians (2π rad being equal to 360°). • Radians are more abstract, pi is abstract • Pi contains every number pattern in it. For example, “12345” would be found in it somewhere. • If you know the radian measure of an angle, simply multiplying it by the radius gives the arc length. • Most practical (applied) uses of angles don’t care about the length. • Finding the area of a sector is about the same difficulty with radians or with degrees. • Degrees are traditionally used in navigation, surveying, and many applied disciplines. • radians are more common in mathematics and mathematical physics. Quiz 1. The illustration above is an illustration of the size of a) 1 degree b) 1 radian c) 1 percent of a full circle d) 1 percent of a right angle e) 1 gradian f) 1% grade 2. 1 radian is about _________ degrees. 3. T F The slope of the top ray (of the radian from #1) is greater than 1. Another way to illustrate a radian Important angle sizes: • Half a square can be a 45-45-90 triangle • Half an equilateral triangle can be a 30-60-90 triangle 45 degree or 30 and 60 degree angles: Oneness of radians – based upon a radius of 1 Other Alternatives using “1” in a different way and the angles they produce: Slope (Grade) of ‘1’ Circumference of ‘1’ • Radius of 1 • Circumference of 1 100 parts - 100% • cen·ti·grade (C) (sen'ti-grād) 1. Basis of an earlier temperature scale in which 100° separates the melting and boiling points of water. See: Celsius scale 2. One hundredth of a circle, equal to 3.6 degrees of the astronomic circle. http://medical-dictionary.thefreedictionary.com/centigrade (bergians) – made up name using circumference of 1. • 2휋푟 = 1 1 • 푟 = 2휋 • 푎2 + 푏2 = 푐2 1 2 • 푎2 + 푎2 = 2휋 1 • 2푎2 = 4휋2 1 • 푎2 = 8휋2 1 • 푎 = 2 2 휋 2 • 푎 = 4휋 2 1푏 • cos = 4휋 8 1 2휋 1푏 2 • cos = 8 2 1 bergian is 360 degrees • cos 0푏 = 1 1 푏 3 • cos = 12 2 1푏 2 • cos = 8 2 1푏 1 • cos = 6 2 1푏 • cos = 0 4 Area of ‘1’ • Radius of 1 • Area of 1 (Jeromians) – made up name using area of 1 • 휋푟2 = 1 1 • 푟2 = 휋 1 • 푟 = 휋 휋 • 푟 = (rationalize the denominator?) 휋 • 푎2 + 푏2 = 푐2 2 휋 • 푎2 + 푎2 = 휋 휋 • 2푎2 = 휋2 1 • 푎2 = 2휋 1 • 푎 = 2휋 2휋 • 푎 = 2휋 2휋 1푗 • cos = 2휋 8 휋 휋 1푗 2 • cos = 8 2 1 Jeromian is 360 degrees. • cos 0푗 = 1 1 푗 3 • cos = 12 2 1푗 2 • cos = 8 2 1푗 1 • cos = 6 2 1푗 • cos = 0 4 Right angle as “1” • Gradians divide a right angle into 100 units. • There are 400 gradians in a circle. Gradians (sometimes also called grade) Gradians have been removed from newer calculators Disadvantages of gradians • 30 degrees is 33.3ത gradians • 60 degrees is 66.6ത gradians • 45 degrees is 50 gradians Another possibility: Circumference = 4 (Gradians divided by 100) Myronians Gradians (Myronians) – made up name • 2휋푟 = 4 4 2 • 푟 = = 2휋 휋 • 푎2 + 푏2 = 푐2 2 2 • 푎2 + 푎2 = 휋 4 • 2푎2 = 휋2 2 • 푎2 = 휋2 2 • 푎 = 휋 2 1푀 • cos = 휋 2 2 휋 1푀 2 • cos = 1 Myronian is 90 degrees. 2 2 • cos 0푀 = 1 1푀 3 • cos = 3 2 1푀 2 • cos = 2 2 2푀 1 • cos = 3 2 • cos 1푀 = 0 Value of having the hypotenuse (radius) of 1 (Radians) • 푟 = 1 • 푎2 + 푏2 = 푐2 • 푎2 + 푎2 = 1 2 • 2푎2 = 1 1 • 푎2 = 2 2 • 푎 = 2 휋푀 2 • cos = 4 2 Degrees vs Radians in 3d Steradian Square Degree Steradians (square radians) vs Square Degrees • A steradian is the area that the portion of the sphere occupies, divided by the square of the radius of the sphere. • A total sphere is 4 pi steradians. • Astronomers often use square degrees. • Analogous to one degree being equal to π/180 radians, a square degree is equal to (π/180)2 steradians or about 1/3283 of a sphere. Square Degree • The full moon covers only about 0.2 deg2 of the sky when viewed from the surface of the Earth. The Moon is only a half degree across (i.e. a circular diameter of roughly 0.5 deg), so the moon's disk covers a circular area of: π × (0.5°/2)2, or 0.2 square degrees. • Viewed from Earth, the Sun is roughly half a degree across (the same as the full moon) and covers only 0.2 deg2 as well. • Those studying the sky calculate square degrees the same way someone on Earth figures out the area of a rectangle or a circle. If a sky object measures 1° by 2°, it’s like a box measuring 1 foot by 2 feet. The areas are 2 square degrees and 2 square feet, respectively. And while you can designate the latter 2 ft2, there’s no easy abbreviation for square degrees. Reduce memorization by looking for patterns Simplicity as a goal? • People still choose complexity over simplicity when given a choice. This is a sad fact of life, so get over it. (probably not true for students) • "There are two ways of constructing a software design; one way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult." - C. A. R. Hoare Square roots Place these in order from largest to smallest 3 _ 1 degree 4 _ 1 gradian 2 _ 1 radian 5 _ 1% grade 6 _ 1% of a circle 1 _ 1 bergian Summary • History of angle measurements • Common methods to measure angles today • Cyclical angles • Advantages of using radians to measure angles • Helping students remember angle measurement values.
Recommended publications
  • Calculating Growing Degree Days by Jim Nugent District Horticulturist Michigan State University
    Calculating Growing Degree Days By Jim Nugent District Horticulturist Michigan State University Are you calculating degree day accumulations and finding your values don't match the values being reported by MSU or your neighbor's electronic data collection unit? There is a logical reason! Three different methods are used to calculate degree days; i.e., 1) Averaging Method; 2) Baskerville-Emin (BE) Method; and 3) Electronic Real-time Data Collection. All methods attempt to calculate the heat accumulation above a minimum threshold temperature, often referred to the base temperature. Once both the daily maximum and minimum temperatures get above the minimum threshold temperature, (i.e., base temperature of 42degrees, 50degrees or whatever other base temperature of interest) then all methods are fairly comparable. However, differences do occur and these are accentuated in an exceptionally long period of cool spring temperatures, such as we experienced this year. Let me briefly explain: 1. Averaging Method: Easy to calculate Degree Days(DD) = Average daily temp. - Base Temp. = (max. + min.) / 2 - Base temp. If answer is negative, assume 0. Example: Calculate DD Base 50 given 65 degrees max. and 40 degrees min. Avg. = (65 + 40) / 2 = 52.5 degrees DD base 50 = 52.5 - 50 = 2.5 degrees. But look what happens given a maximum of 60 degrees and a minimum of 35 degrees: Avg. = (60 + 35) / 2 = 47.5 DD base 50 = 47.5 - 50 = -2.5 = 0 degrees. The maximum temperature was higher than the base of 50° , but no degree days were accumulated. A grower called about the first of June reporting only about 40% of the DD50 that we have recorded.
    [Show full text]
  • Having Regard to the Opinion of the European Chapter 1 of the Annex Binding Within Five Years of Parliament1 ; the Date of Entry Into Force of This Directive
    878 Official Journal of the European Communities 29.10.71 Official Journal of the European Communities No L 243/29 COUNCIL DIRECTIVE of 18 October 1971 on the approximation of the laws of the Member States relating to units of measurement (71/354/EEC ) THE COUNCIL OF THE EUROPEAN COMMUNITIES, particular their names, symbols and use are not identical in the Member countries ; Having regard to the Treaty establishing the European Economic Community, and in particular HAS ADOPTED THIS DIRECTIVE : Article 100 thereof; Article 1 Having regard to the proposal from the Commission ; 1 . Member States shall make the provisions of Having regard to the Opinion of the European Chapter 1 of the Annex binding within five years of Parliament1 ; the date of entry into force of this Directive. 2 . Member States shall, with effect from 31 Having regard to the Opinion of the Economic and December 1977 at the latest, prohibit the use of the Social Committee2; units of measurement listed in Chapter III of the Annex. Whereas - the laws which regulate the use of units of measurement in the Member States differ from one 3 . The units of measurement temporarily" retained Member State to another and therefore hinder trade ; in accordance with the provisions of Chapter II or whereas application of the rules relating to measuring Chapter III of the Annex may not be brought into instruments is closely linked to the use of units of compulsory use by the Member States where they ' are measurement in the metrological system ; whereas, in not authorised at the date when this Directive enters into force .
    [Show full text]
  • Angles ANGLE Topics • Coterminal Angles • Defintion of an Angle
    Angles ANGLE Topics • Coterminal Angles • Defintion of an angle • Decimal degrees to degrees, minutes, seconds by hand using the TI-82 or TI-83 Plus • Degrees, seconds, minutes changed to decimal degree by hand using the TI-82 or TI-83 Plus • Standard position of an angle • Positive and Negative angles ___________________________________________________________________________ Definition: Angle An angle is created when a half-ray (the initial side of the angle) is drawn out of a single point (the vertex of the angle) and the ray is rotated around the point to another location (becoming the terminal side of the angle). An angle is created when a half-ray (initial side of angle) A: vertex point of angle is drawn out of a single point (vertex) AB: Initial side of angle. and the ray is rotated around the point to AC: Terminal side of angle another location (becoming the terminal side of the angle). Hence angle A is created (also called angle BAC) STANDARD POSITION An angle is in "standard position" when the vertex is at the origin and the initial side of the angle is along the positive x-axis. Recall: polynomials in algebra have a standard form (all the terms have to be listed with the term having the highest exponent first). In trigonometry, there is a standard position for angles. In this way, we are all talking about the same thing and are not trying to guess if your math solution and my math solution are the same. Not standard position. Not standard position. This IS standard position. Initial side not along Initial side along negative Initial side IS along the positive x-axis.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Applications of Geometry and Trigonometry
    P1: FXS/ABE P2: FXS 9780521740517c14.xml CUAU031-EVANS September 6, 2008 13:36 CHAPTER 14 MODULE 2 Applications of geometry and trigonometry How do we apply trigonometric techniques to problems involving angles of depression and elevation? How do we apply trigonometric techniques to problems involving bearings? How do we apply trigonometric techniques to three-dimensional problems? How do we draw and interpret contour maps? How do we draw and interpret scale drawings? 14.1 Angles of elevation and depression, bearings, and triangulation Angles of elevation and depression The angle of elevation is the angle The angle of depression is the angle between the horizontal and a between the horizontal and a direction below direction above the horizontal. the horizontal. eye level line of sight angle of depression line of sight eye level cliff angle of elevation SAMPLEboat Cambridge University Press • Uncorrected Sample pages • 978-0-521-61328-6 • 2008 © Jones, Evans, Lipson TI-Nspire & Casio ClassPad material in collaboration with Brown410 and McMenamin P1: FXS/ABE P2: FXS 9780521740517c14.xml CUAU031-EVANS September 6, 2008 13:36 Chapter 14 — Applications of geometry and trigonometry 411 Bearings The three-figure bearing (or compass bearing) is the direction measured clockwise from north. The bearing of A from O is 030◦. The bearing of C from O is 210◦. The bearing of B from O is 120◦. The bearing of D from O is 330◦. N D N A 30° 330° E 120° E W O 210° W O B C S S Example 1 Angle of depression The pilot of a helicopter flying at 400 m observes a small boat at an angle of depression of 1.2◦.
    [Show full text]
  • 1. What Is the Radian Measure of an Angle Whose Degree Measure Is 72◦ 180◦ 72◦ = Πradians Xradians Solving for X 72Π X = Radians 180 2Π X = Radians 5 Answer: B
    1. What is the radian measure of an angle whose degree measure is 72◦ 180◦ 72◦ = πradians xradians Solving for x 72π x = radians 180 2π x = radians 5 Answer: B 2. What is the length of AC? Using Pythagorean Theorem: 162 + b2 = 202 256 + b2 = 400 b2 = 144 b = 12 Answer: E 3. one solution to z2 + 64 = 0 is z2 + 64 = 0 z2 = −64 p p z2 = −64 Since there is a negative under the radical, we get imaginary roots. Thus z = −8i or z = +8i Answer: A 4. Simplifying: p 36x10y12 − 36y12 = p36y12 (x10 − 1) p = 36y12p(x10 − 1) p = 6y6 x10 − 1 Answer: C 1 5. Simplifying: 1 1 1 1 1 −3 9 6 3 −3 9 6 27a b c = 27 3 a 3 b 3 c 3 = 3a−1b3c2 3b3c2 = a Answer: C 6. Solving for x: p 8 + x + 14 = 12 p x + 14 = 12 − 8 p x + 14 = 4 p 2 x + 14 = 42 x + 14 = 16 x = 16 − 14 x = 2 Answer: C 7. Simplify x2 − 9 (x + 1)2 2x − 6 × ÷ x2 − 1 (2x + 3)(x + 3) 1 − x Rewrite as a multiplication. x2 − 9 (x + 1)2 1 − x × x2 − 1 (2x + 3)(x + 3) 2x − 6 Simplify each polynomial (x − 3)(x + 3) (x + 1)(x + 1) 1 − x × (x − 1)(x + 1) (2x + 3)(x + 3) 2(x − 3) Canceling like terms (x + 1) − 2(2x + 3) Answer: C 2 8. Simplifying: 1 11 x−5 11 + 2 2 + 2 x−5 (x−5) = (x−5) (x−5) x + 1 x + 1 x−5+11 2 = (x−5) x + 1 x+6 2 = (x−5) x + 1 x + 6 = (x − 5)2(x + 1) Answer: B 9.
    [Show full text]
  • 4.1 – Radian and Degree Measure
    4.1 { Radian and Degree Measure Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 1 / 27 2 Radian Measure 3 Degree Measure 4 Applications 4.1 { Radian and Degree Measure 1 Angles Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 2 / 27 3 Degree Measure 4 Applications 4.1 { Radian and Degree Measure 1 Angles 2 Radian Measure Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 2 / 27 4 Applications 4.1 { Radian and Degree Measure 1 Angles 2 Radian Measure 3 Degree Measure Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 2 / 27 4.1 { Radian and Degree Measure 1 Angles 2 Radian Measure 3 Degree Measure 4 Applications Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 2 / 27 The starting position of the ray is the initial side of the angle. The position after the rotation is the terminal side of the angle. The vertex of the angle is the endpoint of the ray. Angles An angle is determine by rotating a ray about it endpoint. Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 3 / 27 The position after the rotation is the terminal side of the angle. The vertex of the angle is the endpoint of the ray. Angles An angle is determine by rotating a ray about it endpoint. The starting position of the ray is the initial side of the angle. Accelerated Pre-Calculus 4.1 { Radian and Degree Measure Mr. Niedert 3 / 27 The vertex of the angle is the endpoint of the ray.
    [Show full text]
  • Storage Best Practices for Frozen Vaccines-Celsius
    Storage Best Practices for Frozen Vaccines–Celsius (C) 1 Unpack vaccines immediately 1. Place the vaccines in trays or uncovered containers for proper air flow. 2. Put vaccines that are first to expire in front. HEP A - VFC 3. Keep vaccines in original boxes with lids closed to prevent exposure to light. 4. Separate and label vaccines by type and public (VFC) or private. 2 Thermostat should be at the factory-set or midpoint temperature setting Frozen Vaccines Too Cold! Within Range Too Warm! Take Action! Take Action! Report out-of-range temperatures immediately! -57° C -54° C -51° C -46° C -43° C -40° C -37° C -12° C -9°C -50° C -15° C 3 Use vaccine storage best practices Freezer Only DO temp range ✓ Do make sure the freezer door is closed! -50° C to -15° C ✓ Do use water bottles to help maintain consistent temperature. ✓ Do leave 2 to 3 inches between vaccine containers and freezer walls. don’t block vents ✓ Do post “Do Not Unplug” signs on freezer and by electrical outlet. do not unplug DON’T Don’t use dormitory-style refrigerator/freezer. Don’t use combo refrigerator/freezer unit. Don’t put food in freezer. Don’t store vaccines on shelves in freezer door. CS243541-D Revision %FDFNCFS 20 Distributed by Visit www.cdc.gov/vaccines/SandH or contact your state health department for more information. Test Your Knowledge 1 Which of the following units is the best for storing frozen vaccines? Freezer Freezer Freezer Freezer A. Full-size B. Full-size C.
    [Show full text]
  • Relationships of the SI Derived Units with Special Names and Symbols and the SI Base Units
    Relationships of the SI derived units with special names and symbols and the SI base units Derived units SI BASE UNITS without special SI DERIVED UNITS WITH SPECIAL NAMES AND SYMBOLS names Solid lines indicate multiplication, broken lines indicate division kilogram kg newton (kg·m/s2) pascal (N/m2) gray (J/kg) sievert (J/kg) 3 N Pa Gy Sv MASS m FORCE PRESSURE, ABSORBED DOSE VOLUME STRESS DOSE EQUIVALENT meter m 2 m joule (N·m) watt (J/s) becquerel (1/s) hertz (1/s) LENGTH J W Bq Hz AREA ENERGY, WORK, POWER, ACTIVITY FREQUENCY second QUANTITY OF HEAT HEAT FLOW RATE (OF A RADIONUCLIDE) s m/s TIME VELOCITY katal (mol/s) weber (V·s) henry (Wb/A) tesla (Wb/m2) kat Wb H T 2 mole m/s CATALYTIC MAGNETIC INDUCTANCE MAGNETIC mol ACTIVITY FLUX FLUX DENSITY ACCELERATION AMOUNT OF SUBSTANCE coulomb (A·s) volt (W/A) C V ampere A ELECTRIC POTENTIAL, CHARGE ELECTROMOTIVE ELECTRIC CURRENT FORCE degree (K) farad (C/V) ohm (V/A) siemens (1/W) kelvin Celsius °C F W S K CELSIUS CAPACITANCE RESISTANCE CONDUCTANCE THERMODYNAMIC TEMPERATURE TEMPERATURE t/°C = T /K – 273.15 candela 2 steradian radian cd lux (lm/m ) lumen (cd·sr) 2 2 (m/m = 1) lx lm sr (m /m = 1) rad LUMINOUS INTENSITY ILLUMINANCE LUMINOUS SOLID ANGLE PLANE ANGLE FLUX The diagram above shows graphically how the 22 SI derived units with special names and symbols are related to the seven SI base units. In the first column, the symbols of the SI base units are shown in rectangles, with the name of the unit shown toward the upper left of the rectangle and the name of the associated base quantity shown in italic type below the rectangle.
    [Show full text]
  • Storage Best Practices for Refrigerated Vaccines–Celsius (C)
    Storage Best Practices for Refrigerated Vaccines–Celsius (C) 1 Unpack vaccines immediately 1. Place the vaccines in trays or containers for proper air flow. 2. Put vaccines that are first to expire in front. HEP A - VFC 3. Keep vaccines in original boxes with lids closed to prevent exposure to light. 4. Separate and label vaccines by type and public (VFC) or private. 2 Store vaccines at ideal temperature: 5° C Refrigerated Vaccines Never freeze Too Cold! Within Range Too Warm! refrigerated Take Action! Take Action! Report out-of-range vaccines! temperatures Exception: MMR immediately! -4˚ C -1˚ C 2˚ C 8˚ C 10˚ C can be stored in refrigerator or 5˚ C freezer 3 Use vaccine storage best practices Refrigerator Only DO ✓ Do make sure the refrigerator door is closed! ✓ Do replace crisper bins with water bottles to help maintain consistent temperature. ✓ Do label water bottles "Do Not Drink." 5° C ideal temp ✓ Do leave 2 to 3 inches between vaccine containers and refrigerator walls. ✓ Do post “Do Not Unplug” signs on refrigerator and do not near electrical outlet. unplug DON’T ; Don’t use dormitory-style refrigerator. ; Don’t use top shelf for vaccine storage. ; Don’t put food or beverages in refrigerator. ; Don’t put vaccines on door shelves or on floor of refrigerator. Don’t drink from or remove water bottles. ; CS243541-C Revision February 2018 Distributed by Visit www.cdc.gov/vaccines/SandH or contact your state health department for more information. Test Your Knowledge 1 Can you find at least 8 things that are wrong with vaccine storage in this refrigerator? 5° C ideal temp 2 When unpacking vaccines, why is it important to put the first-to-expire in the front? A.
    [Show full text]
  • 1.4.3 SI Derived Units with Special Names and Symbols
    1.4.3 SI derived units with special names and symbols Physical quantity Name of Symbol for Expression in terms SI unit SI unit of SI base units frequency1 hertz Hz s-1 force newton N m kg s-2 pressure, stress pascal Pa N m-2 = m-1 kg s-2 energy, work, heat joule J N m = m2 kg s-2 power, radiant flux watt W J s-1 = m2 kg s-3 electric charge coulomb C A s electric potential, volt V J C-1 = m2 kg s-3 A-1 electromotive force electric resistance ohm Ω V A-1 = m2 kg s-3 A-2 electric conductance siemens S Ω-1 = m-2 kg-1 s3 A2 electric capacitance farad F C V-1 = m-2 kg-1 s4 A2 magnetic flux density tesla T V s m-2 = kg s-2 A-1 magnetic flux weber Wb V s = m2 kg s-2 A-1 inductance henry H V A-1 s = m2 kg s-2 A-2 Celsius temperature2 degree Celsius °C K luminous flux lumen lm cd sr illuminance lux lx cd sr m-2 (1) For radial (angular) frequency and for angular velocity the unit rad s-1, or simply s-1, should be used, and this may not be simplified to Hz. The unit Hz should be used only for frequency in the sense of cycles per second. (2) The Celsius temperature θ is defined by the equation θ/°C = T/K - 273.15 The SI unit of Celsius temperature is the degree Celsius, °C, which is equal to the Kelvin, K.
    [Show full text]
  • The International System of Units (SI) - Conversion Factors For
    NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v
    [Show full text]