Estimation and Usage in Large-Scale Electricity Market Models

Total Page:16

File Type:pdf, Size:1020Kb

Estimation and Usage in Large-Scale Electricity Market Models A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Jahns, Christopher; Podewski, Caroline; Weber, Christoph Working Paper Supply curves for hydro reservoirs: Estimation and usage in large-scale electricity market models HEMF Working Paper, No. 01/2019 Provided in Cooperation with: University of Duisburg-Essen, Chair for Management Science and Energy Economics Suggested Citation: Jahns, Christopher; Podewski, Caroline; Weber, Christoph (2019) : Supply curves for hydro reservoirs: Estimation and usage in large-scale electricity market models, HEMF Working Paper, No. 01/2019, University of Duisburg-Essen, House of Energy Markets & Finance, Essen This Version is available at: http://hdl.handle.net/10419/201584 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu SUPPLY CURVES FOR HYDRO RESERVOIRS Estimation and Usage in Large-Scale Electricity Market Models HEMF Working Paper No. 01/2019 by Christopher Jahns, Caroline Podewski and Christoph Weber January 2019 Supply Curves for Hydro Reservoirs – Estimation and Usage in Large-Scale Electricity Market Models by Christopher Jahns, Caroline Podewski and Christoph Weber Abstract Hydro electricity generation is of great importance for the current and the future electricity system since it provides electricity without emitting CO2 and moreover hydro reservoirs offer high operational flexibility. With increasing shares of fluctuating renewable energies, their value is even expected to increase, as – depending on the power plant type – they are able to store electricity. Therefore, an adequate representation of hydro power operation in large-scale electricity models is primordial. The aim of this paper is to analyze empirically the operation of large-scale hydro reservoirs based on observed market data. We derive supply curves for hydro reservoirs in Norway based on electricity price and hydro production time series and analyze key influencing factors. To push further, we apply the resulting supply curves in a multi-region electricity market model and show how they may be used to perform historical and counterfactual simulations. Keywords: hydropower, water value, Econometric models, large-scale electricity market models JEL-Classification: C51, L94, Q25, Q41, Q42 CHRISTOPHER JAHNS CHRISTOPH WEBER (Corresponding author) House of Energy Markets and Finance House of Energy Markets and Finance University of Duisburg-Essen, Germany University of Duisburg-Essen, Germany [email protected] Universitätsstr. 12, 45117 Essen +49-(0)201 / 183-3746 [email protected] www.hemf.net CAROLINE PODEWSKI House of Energy Markets and Finance University of Duisburg-Essen, Germany [email protected] The authors are solely responsible for the contents which do not necessarily represent the opinion of the House of Energy Markets and Finance. I Content List of Figures ......................................................................................................................... II List of Tables ..........................................................................................................................III Symbols .................................................................................................................................III 1 Introduction .................................................................................................................... 1 2 Literature Review ............................................................................................................ 2 3 Formulation of Hypotheses on Hydro Reservoir Supply Curves......................................... 4 4 Empirical Estimation of Hydro Reservoir Supply Curves ................................................... 7 4.1 Operationalization ................................................................................................. 7 4.2 Endogeneity and Non-Linearity ..............................................................................10 4.3 Regression Models and Results ..............................................................................12 5 Application in a Large-Scale Electricity Market Model .....................................................15 5.1 Large-Scale Electricity Market Model .....................................................................15 5.1.1 Standard Modeling of Hydro Reservoirs within the JMM ............................. 16 5.1.2 Implementing Empirically Derived Hydropower Supply Curves within the JMM ..................................................................................................... 16 5.2 Results ..................................................................................................................18 6 Conclusion.....................................................................................................................20 References .......................................................................................................................... XXI Acknowledgements ........................................................................................................... XXIII List of Figures Figure 1: Price duration curve, water value and production schedule of a stylized hydro reservoir. .............................................................................................................................................. 6 Figure 2: Possible bias due to price-setting thermal power plants. ............................................ 8 Figure 3: Scatterplot of prices in Norway vs. reservoir supply in Norway in week 49 in 2017. .11 Figure 4: Visualization of the effects of the different hypotheses. .............................................12 Figure 5: Step function approximation for the reservoir supply function. .................................17 Figure 6: Simulated Norwegian electricity prices compared to historical values. .....................19 II List of Tables Table 1: Overview operationalization. .................................................................................... 8 Table 2: Description and source of data. ................................................................................. 9 Table 3: Descriptive statistics (Whole Norway 01/2016-06/2018). ..........................................10 Table 4: Regression results of the different model variants. .....................................................14 Table 5: MAE and RMSE (in €/MWh) of the electricity prices for the model variants. ...............19 Symbols 퐴푠 Parameter for the reference water value of step 푠 퐵푠 Parameter for the impact of the coal price 퐶푠 Parameter for the impact of deviations from the median filling level 퐷푒푣푀푒푑푖푎푛퐹푖푙푙 Deviation from the long-term median filling level 퐷푒푣푀푒푑푖푎푛퐹푖푙푙° Deviation from the long-term median filling level minus average deviation from the long-term median filling level 퐸푓푓푖푐푖푒푛푐푦 Efficiency of a power plant 2 퐹푎푐푡표푟퐶푂2 CO -factor 퐹푖푙푙퐿푒푣푒푙푝,푎 Calculated filling level of the reservoirs in planning period 푝 and area 푎 푅푒푓 푝 푎 퐹푖푙푙퐿푒푣푒푙푝,푎 Reference filling level of the reservoirs in planning period and area 푃푟푖푐푒 Observed spot price 푃푟푖푐푒_푐표푎푙 Fuel price coal 2 푃푟푖푐푒퐶푂2 CO -price 푅푒푠푣푃푟표푑 Reservoir production 푅푒푠푣푃푟표푑° Reservoir production minus average reservoir production 푉푎푟퐶표푠푡푠퐶표푎푙 Variable costs of a coal-fired power plant 푉푎푟퐶표푠푡푠퐶표푎푙° Variable costs of a coal-fired power plant minus average variable costs of a coal-fired power plant 푢푛푖푓 푝 푎 푊푉푝,푎 Water value (former model formulation) in planning period and area 푛푒푤 푊푉푝,푎,푠 Water value (new model formulation) of steps 푠 in planning period 푝 and area 푎 푅푒푓 푎 푊푉푎 Reference water value in area III 1 Introduction Hydro electricity generation is of great importance for the current and the future electricity system since it provides electricity without emitting CO2 and moreover hydro reservoirs offer high operational flexibility. In 2016 nearly 11 % of the European electricity was provided by hydropower plants (cf. International Hydropower Association (2017)). Norway contributed the most, as it is to almost 100 % reliant on hydro power. Hydro power plants with reservoirs are of particular interest due to their ability to store energy and thereby providing flexibility to meet peak and unexpected demand. With increasing shares of fluctuating renewable infeed, their value is even expected to increase. Subsequently we focus on pure hydro storage plants without pumping since
Recommended publications
  • Trends in Electricity Prices During the Transition Away from Coal by William B
    May 2021 | Vol. 10 / No. 10 PRICES AND SPENDING Trends in electricity prices during the transition away from coal By William B. McClain The electric power sector of the United States has undergone several major shifts since the deregulation of wholesale electricity markets began in the 1990s. One interesting shift is the transition away from coal-powered plants toward a greater mix of natural gas and renewable sources. This transition has been spurred by three major factors: rising costs of prepared coal for use in power generation, a significant expansion of economical domestic natural gas production coupled with a corresponding decline in prices, and rapid advances in technology for renewable power generation.1 The transition from coal, which included the early retirement of coal plants, has affected major price-determining factors within the electric power sector such as operation and maintenance costs, 1 U.S. BUREAU OF LABOR STATISTICS capital investment, and fuel costs. Through these effects, the decline of coal as the primary fuel source in American electricity production has affected both wholesale and retail electricity prices. Identifying specific price effects from the transition away from coal is challenging; however the producer price indexes (PPIs) for electric power can be used to compare general trends in price development across generator types and regions, and can be used to learn valuable insights into the early effects of fuel switching in the electric power sector from coal to natural gas and renewable sources. The PPI program measures the average change in prices for industries based on the North American Industry Classification System (NAICS).
    [Show full text]
  • Best Electricity Market Design Practices
    In My View Best Electricity Market Design Practices William W. Hogan (forthcoming in IEEE Power & Energy) Organized wholesale electricity markets in the United States follow the principles of bid-based, security-constrained, economic dispatch with locational marginal prices. The basic elements build on analyses done when large thermal generators dominated the structure of the electricity market in most countries. Notable exceptions were countries like Brazil that utilized large-scale pondage hydro systems. For such systems, the critical problem centered on managing a multi- year inventory of stored water. But for most developed electricity systems, the dominance of thermal generation implied that the major interactions in unit commitment decisions would be measured in hours to days, and the interactions in operating decisions would occur over minutes to hours. As a result, single period economic dispatch became the dominant model for analyzing the underlying basic principles. The structure of this analysis Figure 1: Spot Market integrated the terminology of economics and engineering. As shown in SHORT-RUN ELECTRICITY MARKET Figure 1: Spot Market, the Energy Price Short-Run (¢/kWh) Marginal increasing short-run Cost Price at marginal cost of generation 7-7:30 p.m. defined the dispatch stack or supply curve. Thermal Demand efficiencies and fuel cost 7-7:30 p.m. Price at were the primary sources 9-9:30 a.m. of short-run generation cost Price at Demand differences. The 2-2:30 a.m. 9-9:30 a.m. introduction of markets Demand 2-2:30 a.m. added the demand Q1 Q2 Qmax perspective, where lower MW prices induced higher loads.
    [Show full text]
  • Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
    Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.
    [Show full text]
  • U.S. Power Sector Outlook 2021 Rapid Transition Continues to Reshape Country’S Electricity Generation
    Dennis Wamsted, IEEFA Energy Analyst 1 Seth Feaster, IEEFA Data Analyst David Schlissel, IEEFA Director of Resource Planning Analysis March 2021 U.S. Power Sector Outlook 2021 Rapid Transition Continues To Reshape Country’s Electricity Generation Executive Summary The scope and speed of the transition away from fossil fuels, particularly coal, has been building for the past decade. That transition, driven by the increasing adoption of renewable energy and battery storage, is now nearing exponential growth, particularly for solar. The impact in the next two to three years is going to be transformative. In recognition of this growth, IEEFA’s 2021 outlook has been expanded to include separate sections covering wind and solar, battery storage, coal, and gas— interrelated segments of the power generation sector that are marked by vastly different trajectories: • Wind and solar technology improvements and the resulting price declines have made these two generation resources the least-cost option across much of the U.S. IEEFA expects wind and solar capacity installations to continue their rapid rise for the foreseeable future, driven not only by their cost advantage but also by their superior environmental characteristics. • Coal generation capacity has fallen 32% from its peak 10 years ago—and its share of the U.S. electricity market has fallen even faster, to less than 20% in 2020. IEEFA expects the coal industry’s decline to accelerate as the economic competition from renewables and storage intensifies; operational experience with higher levels of wind and solar grows; and public concern about climate change rises. • Gas benefitted in the 2010s from the fracking revolution and the assumption that it offered a bridge to cleaner generation.
    [Show full text]
  • The Value of Economic Dispatch a Report to Congress Pursuant To
    THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 Prepared by United States Department of Energy November 7, 2005 ii THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 Prepared by United States Department of Energy November 7, 2005 iii iv TABLE OF CONTENTS Table of Contents i List of Acronyms iii Section 1 -- Introduction and Summary 1 Industry Changes 1 Study Method and Overview 2 Summary of Findings 3 Section 2 -- Economic Dispatch 9 What is Economic Dispatch? 9 “Economic” Dispatch vs. “Efficient” Dispatch 11 Security-Constrained Unit Commitment 12 Grid Conditions that Constrain Economic Dispatch 13 Resource Considerations that Constrain Economic Dispatch 14 Security-Constrained Economic Dispatch 15 Current Practices in Building the Economic Dispatch Resource Stack 16 Figure 1 – Building the Economic Dispatch Stack 17 What’s Left for Economic Merit Order Dispatch? 19 Current Practices for Optimizing Dispatch 20 Variations in Economic Dispatch Practices 22 Figure 2 – Map of ISOs and RTOs 26 How Large Should a Dispatch Area Be? 27 Economic Dispatch and Reliability 29 Section 3 – The Benefits of Economic Dispatch 31 Congressional Intent and Study Definitions 31 Overview of Prior Studies and Other Materials Reviewed 32 Review of RTO Studies 33 Review of IPP Studies 34 Findings from Review of Prior Studies and Submitted Materials 36 Table 1 – Studies and Documents Reviewed to Assess Benefits of Economic Dispatch 38 Table 2 – Summary of Economic Dispatch Benefits from RTO Studies 40 Table 3 – Summary of Economic Dispatch Benefits from IPP Studies 42 Section 4 – Which Resources Get Into the Economic Dispatch Stack? 43 Conditions That Could Exclude a Resource from the Dispatch Stack 45 i v Section 5 – Proposed Modifications to Economic Dispatch and Suggestions for Future Work 49 Proposals for Modifying Economic Dispatch 49 Recommendations for Future Work 51 References 54 Appendix A – U.S.
    [Show full text]
  • Plug-In Electric Vehicles Automated Charging Control
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Dallinger, David; Kohrs, Robert; Mierau, Michael; Marwitz, Simon; Wesche, Julius Working Paper Plug-in electric vehicles automated charging control Working Paper Sustainability and Innovation, No. S4/2015 Provided in Cooperation with: Fraunhofer Institute for Systems and Innovation Research ISI Suggested Citation: Dallinger, David; Kohrs, Robert; Mierau, Michael; Marwitz, Simon; Wesche, Julius (2015) : Plug-in electric vehicles automated charging control, Working Paper Sustainability and Innovation, No. S4/2015, Fraunhofer-Institut für System- und Innovationsforschung ISI, Karlsruhe, http://nbn-resolving.de/urn:nbn:de:0011-n-3279201 This Version is available at: http://hdl.handle.net/10419/107069 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]
  • Challenges Facing Combined Heat and Power Today: a State-By-State Assessment
    Challenges Facing Combined Heat and Power Today: A State-by-State Assessment Anna Chittum and Nate Kaufman September 2011 Report Number IE111 © American Council for an Energy-Efficient Economy 529 14th Street, N.W., Suite 600, Washington, D.C. 20045 (202) 507-4000 phone, (202) 429-2248 fax, www.aceee.org Challenges Facing Combined Heat and Power Today, © ACEEE CONTENTS Executive Summary ...................................................................................................................................... iii Acknowledgments ......................................................................................................................................... v Glossary ........................................................................................................................................................ vi Introduction.................................................................................................................................................... 1 Combined Heat and Power Today ........................................................................................................... 1 Methodology ............................................................................................................................................. 5 Part I: General Findings ................................................................................................................................ 6 Economics ...............................................................................................................................................
    [Show full text]
  • Revisiting the Merit-Order Effect of Renewable Energy Sources
    Revisiting the Merit-Order Effect of Renewable Energy Sources Marcus Hildmann, Andreas Ulbig and Goran¨ Andersson Abstract An on-going debate in the energy economics and power market community has raised the question if energy- only power markets are increasingly failing due to growing feed-in shares from subsidized renewable energy sources (RES). The short answer to this is: No, they are not failing. Energy-based power markets are, however, facing several market distortions, namely from the gap between the electricity volume traded at day-ahead markets versus the overall electricity consumption as well as the (wrong) regulatory assumption that variable RES generation, i.e., wind and photovoltaic (PV), truly have zero marginal operation costs. In this paper we show that both effects over-amplify the well-known merit-order effect of RES power feed-in beyond a level that is explainable by underlying physical realities, i.e., thermal power plants being willing to accept negative electricity prices to be able to stay online due to considerations of wear & tear and start-stop constraints. We analyze the impacts of wind and PV power feed-in on the day-ahead market for a region that is already today experiencing significant feed-in tariff (FIT)-subsidized RES power feed-in, the EPEX German- Austrian market zone (≈ 20% FIT share). Our analysis shows that, if the necessary regulatory adaptations are taken, i.e., increasing the day-ahead market’s share of overall load demand and using the true marginal costs of RES units in the merit-order, energy- based power markets can remain functional despite high RES power feed-in.
    [Show full text]
  • Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them
    BENEFITS OF DEMAND RESPONSE IN ELECTRICITY MARKETS AND RECOMMENDATIONS FOR ACHIEVING THEM A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 1252 OF THE ENERGY POLICY ACT OF 2005 Price of Demand Electricity Supply Supply DemandDR P PDR QDR Q Quantity of Electricity February 2006 . U.S. Department of Energy ii U.S. Department of Energy Benefits of Demand Response and Recommendations The Secretary [of Energy] shall be responsible for… not later than 180 days after the date of enactment of the Energy Policy Act of 2005, providing Congress with a report that identifies and quantifies the national benefits of demand response and makes a recommendation on achieving specific levels of such benefits by January 1, 2007. --Sec. 1252(d), the Energy Policy Act of 2005, August 8, 2005 U.S. Department of Energy Benefits of Demand Response and Recommendations iii iv U.S. Department of Energy Benefits of Demand Response and Recommendations EXECUTIVE SUMMARY Sections 1252(e) and (f) of the U.S. Energy Policy Act of 2005 (EPACT)1 state that it is the policy of the United States to encourage “time-based pricing and other forms of demand response” and encourage States to coordinate, on a regional basis, State energy policies to provide reliable and affordable demand response services to the public. The law also requires the U.S. Department of Energy (DOE) to provide a report to Congress, not later than 180 days after its enactment, which “identifies and quantifies the national benefits of demand response and makes a recommendation on achieving specific levels of such benefits by January 1, 2007” (EPACT, Sec.
    [Show full text]
  • Modernizing the U.S. Electrical Grid
    Transmission Innovation Symposium Modernizing the U.S. Electrical Grid Chen-Ching Liu Electricity Transmission Virginia Polytechnic Institute and State System Research University and Development: Emma M. Stewart Distribution Integrated Lawrence Livermore National Laboratory with Transmission Operations Prepared for the Transmission Reliability and Renewable Integration Program Advanced Grid R&D, Office of Electricity US Department of Energy April 2021 Electricity Transmission System Research and Development: Distribution Integrated with Transmission Operations Transmission Innovation Symposium: Modernizing the U.S. Electric Grid 2021 White Papers Prepared for the Office of Electricity U.S. Department of Energy Principal Authors Chen-Ching Liu Power and Energy Center Virginia Polytechnic Institute and State University Emma M. Stewart Lawrence Livermore National Laboratory April 2021 The work described in this study has been authored by authors at Virginia Polytechnic Institute and State University, under a subcontract from Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231, and Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with the U.S. Department of Energy. Disclaimer This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • Merit Order of Energy Storage by 2030 – Executive Summary
    Merit Order of Energy Storage by 2030 – Executive Summary Merit Order of Energy Storage by 2030 – Executive Summary Aim and approach The study “Merit Order of Energy Storage by 2030” aimed at the analysis and systematical assessment of measures for flexibilisation via functional energy storage. Therefore, power to heat, flexibilisation of load in industrial and private household applications, electromobility, stationary battery storage, pumped hydro storage as well as power2gas were investigated. In the context of the study, the term “Merit Order” is understood as a comparative ranking of different storage technologies. This ranking of storage technologies is done with respect to their added value from a system as well as business perspective by means of storage expansion. For this purpose, an innovative approach was used: multiobjective technology rankings were combined with a spatially and highly time resolved energy system analysis. For Germany and Austria a linearized unit commitment model was used to perform hourly resolved simulations on the transmission system level. Exchange within Europe was considered with a country specific resolution. Every weather dependent input data was modeled with meteorological data from the year 2012. Renewable energy capacities in Germany were taken from the grid development plan 2015 which results in 60 GW photovoltaic, 76 GW onshore- and 14 GW offshore-wind power for 2030. In contrast to the grid development plan, technological advances of onshore wind power turbines are taken into account, which leads to full load hours of newly installed units of 3000 instead of 2000. Hereby, the capacity-directed expansion corridor results in a renewable energy share of up to 75 % in electrical supply by 2030 which is significantly more than stated in the coalition contract of the federal government of Germany (55 % by 2035).
    [Show full text]
  • PV Integration and the Merit Order Effect (Webinar Transcript)
    PV Integration and the Merit Order Effect —Transcript of a webinar offered by the Clean Energy Solutions Center on 26 September 2019— For more information, see the clean energy policy trainings offered by the Solutions Center. Webinar Presenter David Jacobs International Energy Transition This Transcript Because this transcript was created using transcription software, the content it contains might not precisely represent the audio content of the webinar. If you have questions about the content of the transcript, please contact us or refer to the actual webinar recording. David Jacobs Hello around the world, and welcome to the next session of the International Solar Alliance Expert Training Course. I am Dr. David Jacobs speaking here from Berlin. I'm very pleased to discuss with you today Session 28, which deals with PV Integration and the Merit Order Effect. So we're going to have a closer look at the impact of solar PV in wholesale electricity markets, which is a very interesting topic, and I'm very glad that you joined this webinar. As you probably know, this is a webinar in cooperation of the International Solar Alliance and the Clean Energy Solutions Center. So thank you very much for providing this platform, and for teaching experts about solar policies and solar regulation. I am David Jacobs, founder and director of the consulting firm IET—International Energy Transition. Working for almost 15 years now in the renewable energy policy sector. Working in a lot of countries around the world, and having dealt with solar PV integration in a lot of cases.
    [Show full text]