Microfilaments.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Intrinsically Disordered Protein SPE-18 Promotes Localized Assembly of MSP in Caenorhabditis Elegans Spermatocytes Kari L
© 2021. Published by The Company of Biologists Ltd | Development (2021) 148, dev195875. doi:10.1242/dev.195875 RESEARCH ARTICLE The intrinsically disordered protein SPE-18 promotes localized assembly of MSP in Caenorhabditis elegans spermatocytes Kari L. Price*,¶, Marc Presler‡,¶, Christopher M. Uyehara§ and Diane C. Shakes ABSTRACT Buracco et al., 2019; Brouhard and Rice, 2018; Bodakuntla et al., Many specialized cells use unconventional strategies of cytoskeletal 2019; de Forges et al., 2012). However, a full understanding of control. Nematode spermatocytes discard their actin and tubulin cytoskeletal control requires consideration of less-studied proteins following meiosis, and instead employ the regulated assembly/ whose properties challenge our standard assumptions. disassembly of the Major Sperm Protein (MSP) to drive sperm One such protein is the nematode Major Sperm Protein (MSP), motility. However, prior to the meiotic divisions, MSP is sequestered assembly/disassembly dynamics of which power the crawling through its assembly into paracrystalline structures called fibrous motility of nematode spermatozoa (Klass and Hirsh, 1981; bodies (FBs). The accessory proteins that direct this sequestration Sepsenwol et al., 1989; Italiano et al., 1996; reviewed by Roberts process have remained mysterious. This study reveals SPE-18 as an and Stewart, 2012; Smith, 2014). Although MSP-based motility intrinsically disordered protein that is essential for MSP assembly appears superficially similar to its actin-based counterpart, the within FBs. In spe-18 mutant spermatocytes, MSP forms disorganized molecular mechanisms are distinct. Much of what we know about cortical fibers, and the cells arrest in meiosis without forming haploid MSP dynamics was gleaned from the parasitic nematode Ascaris, sperm. -
Microtubule Nucleation Remote from Centrosomes May Explain
Microtubule nucleation remote from centrosomes may INAUGURAL ARTICLE explain how asters span large cells Keisuke Ishiharaa,b,1, Phuong A. Nguyena,b, Aaron C. Groena,b, Christine M. Fielda,b, and Timothy J. Mitchisona,b,1 aDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115; and bMarine Biological Laboratory, Woods Hole, MA 02543 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2014. Edited by Ronald D. Vale, Howard Hughes Medical Institute and University of California, San Francisco, CA, and approved November 13, 2014 (received for review October 6, 2014) A major challenge in cell biology is to understand how nanometer- aster growth in large cells, such as microtubule sliding, tread- sized molecules can organize micrometer-sized cells in space and milling, or nucleation remote from centrosomes. time. One solution in many animal cells is a radial array of Previously we developed a cell-free system to reconstitute microtubules called an aster, which is nucleated by a central cleavage furrow signaling where growing asters interacted (5, organizing center and spans the entire cytoplasm. Frog (here 12). Here, we combine cell-free reconstitution and quantitative Xenopus laevis) embryos are more than 1 mm in diameter and imaging to identify microtubule nucleation away from the cen- divide with a defined geometry every 30 min. Like smaller cells, trosome as the key biophysical mechanism underlying aster they are organized by asters, which grow, interact, and move to growth. We propose that aster growth in large cells should be precisely position the cleavage planes. -
Profilin and Formin Constitute a Pacemaker System for Robust Actin
RESEARCH ARTICLE Profilin and formin constitute a pacemaker system for robust actin filament growth Johanna Funk1, Felipe Merino2, Larisa Venkova3, Lina Heydenreich4, Jan Kierfeld4, Pablo Vargas3, Stefan Raunser2, Matthieu Piel3, Peter Bieling1* 1Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 2Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 3Institut Curie UMR144 CNRS, Paris, France; 4Physics Department, TU Dortmund University, Dortmund, Germany Abstract The actin cytoskeleton drives many essential biological processes, from cell morphogenesis to motility. Assembly of functional actin networks requires control over the speed at which actin filaments grow. How this can be achieved at the high and variable levels of soluble actin subunits found in cells is unclear. Here we reconstitute assembly of mammalian, non-muscle actin filaments from physiological concentrations of profilin-actin. We discover that under these conditions, filament growth is limited by profilin dissociating from the filament end and the speed of elongation becomes insensitive to the concentration of soluble subunits. Profilin release can be directly promoted by formin actin polymerases even at saturating profilin-actin concentrations. We demonstrate that mammalian cells indeed operate at the limit to actin filament growth imposed by profilin and formins. Our results reveal how synergy between profilin and formins generates robust filament growth rates that are resilient to changes in the soluble subunit concentration. DOI: https://doi.org/10.7554/eLife.50963.001 *For correspondence: peter.bieling@mpi-dortmund. mpg.de Introduction Competing interests: The Eukaryotic cells move, change their shape and organize their interior through dynamic actin net- authors declare that no works. -
Regulation Ofactin Microfilament Integrity in Living Nonmuscle Cells by the Camp-Dependent Protein Kinase and the Myosin Light Chain Kinase Ned J
Published June 1, 1988 Regulation ofActin Microfilament Integrity in Living Nonmuscle Cells by the cAMP-dependent Protein Kinase and the Myosin Light Chain Kinase Ned J. C. Lamb,* Anne Fernandez,* Mary Anne Conti,* Robert Adelstein,* David B. Glass,§ William J. Welch,* and James R. Feramisco* * Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724; *Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892; and §Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322 Abstract. Microinjection of the catalytic subunit of phosphorylation of myosin light chain kinase (MLCK) cAMP-dependent protein kinase (A-kinase) into living increased and concomitantly, the phosphorylation of fibroblasts or the treatment of these cells with agents myosin P-light chain decreased. Moreover, inhibiting that elevate the intracellular cAMP level caused marked MLCK activity via microinjection of affinity-purified alterations in cell morphology including a rounded antibodies specific to native MLCK caused a complete Downloaded from phenotype and a complete loss of actin microfilament loss of microfilament bundle integrity and a decrease bundles. These effects were transient and fully revers- in myosin P-light chain phosphorylation, similar to ible. Two-dimensional gel electrophoresis was used to that seen after injection of A-kinase. These data sup- analyze the changes in phosphoproteins from cells in- port the idea that A-kinase may regulate microfilament jected with A-kinase. These experiments showed that integrity through the phosphorylation and inhibition of accompanying the disassembly of actin microfilaments, MLCK activity in nonmuscle cells. on April 13, 2017 YCLIC AMP is a key second messenger which medi- phate. -
The Relationship Between Intermediate Filaments and Microfilaments Before and During the Formation of Desmosomes and Adherens-Ty
Published May 1, 1987 The Relationship between Intermediate Filaments and Microfilaments before and during the Formation of Desmosomes and Adherens-type Junctions in Mouse Epidermal Keratinocytes Kathleen J. Green, Benjamin Geiger,* Jonathan C. R. Jones, John C. Talian, and Robert D. Goldman Department of Cell Biology and Anatomy, Northwestern University Medical School, Chicago, Illinois 60611; and * Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel Abstract. Actin, keratin, vinculin and desmoplakin ermost of the concentric MFB. Individual IF often organization were studied in primary mouse keratino- splay out, becoming interwoven into these MFB in the cytes before and during Ca2+-induced cell contact forma- region of cell-substrate contact. In the first 30 min af- tion. Double-label fluorescence shows that in cells cul- ter the Ca 2+ switch, areas of submembranous dense Downloaded from tured in low Ca 2÷ medium, keratin-containing inter- material (identified as adherens junctions), which are mediate filament bundles (IFB) and desmoplakin- associated with the perpendicular MFB, can be seen at containing spots are both concentrated towards the cell newly formed cell-ceU contact sites. By 1-2 h, IFB- center in a region bounded by a series of concentric desmosomal component complexes are aligned with microfilament bundles (MFB). Within 5-30 min after the perpendicular MFB as the complexes become jcb.rupress.org raising Ca 2+ levels, a discontinuous actin/vinculin-rich, redistributed to cell-cell interfaces. Cytochalasin D submembranous zone of fluorescence appears at cell- treatment causes the redistribution of actin into numer- cell interfaces. This zone is usually associated with ous patches; keratin-containing Lr:B undergo a con- short, perpendicular MFB, which become wider and comitant redistribution, forming foci that coincide with longer with time. -
INTERMEDIATE FILAMENT Dr Krishnendu Das Assistant Professor Department of Zoology City College
INTERMEDIATE FILAMENT Dr Krishnendu Das Assistant Professor Department of Zoology City College Q.What are the intermediate filaments? State their role as cytoskeleton. How its functional significance differs from others? This component of cytoskeleton intermediates between actin filaments (about 7 nm in diameter) and microtubules (about 25 nm in diameter). In contrast to actin filament and microtubule the intermediate filaments are not directly involved in cell movements, instead they appear to play basically a structural role by providing mechanical strength to cells and tissues. (Figure 1: Structure of intermediate filament proteins- intermediate filament proteins contain a central α-helical rod domain of approximately 310 amino acids (350 amino acids in the nuclear lamins). The N-terminal head and C-terminal tail domains vary in size and shape. Q.How intermediate filaments differ from actin filaments and microtubules in respect of their components? Actin filaments and microtubules are polymers of single types of proteins (e.g; actin tubulins), whereas intermediate filaments are composed of a variety of proteins that are expressed in different types of cells (as given in the tabular form) Type Protein Size (kd) Site of expression I Acidic keratin 40-60 Epithelial cells II Neutral or basic keratin 50-70 Do III Vimentin 54 Fibroblasts, WBC and other cell types Desmin 53 Muscle cells Periferin 57 Peripheral neurons IV Neurofilament proteins NF-L 67 Neurons NF-M 150 Neurons NF-H 200 Neurons V Nuclear lamins 60-75 Nuclear lamina of all cell types VI nestin 200 Stem cells, especially of the central nervous system Q.How do intermediate filaments assemble? (Figure 2) The central rod domains of two polypeptides wind around each other in a coiled-coil structure to form dimmers. -
Microfilament Motors
Myosin motors animate the microfilament cytoskeleton in muscle and other cell types. Microfilament Motors http://pleiad.umdnj.edu/%7Edaw/Cardiomyocytes/HCM-mutations.html cached 040212 GFP-myosin expressed in cardiomyocyte (green) and counterstained with anti-titin mAb (red) Video loop from http://ipmc.epfl.ch/page23148.html cached 0760213, showing the ability of an isolated myofibroblast to contract (looped to mimic the rhythmic beating observed in cardiac cells in culture) + - - + animation Skeletal Muscle - lengthwise "striated" array of alternating/interdigitating thick and thin filament arrays; Skeletal + + the functional unit is a sarcomere (Z-line to Z-line) + - - + (Striated) Bipolar thin microfilament array Muscle Sliding filament contraction •two arrays of microfilaments arranged head-to-head (plus ends) by alpha-actinin/cap z protein at the Z-line •protein linkages (costameres/dystrophin) connect the Z-lines to the plasma membranes •defects in these linkages cause one form of muscular dystrophy Bipolar thick filament array Z •Two bundles of 300-400 myosins (associated by tails) bundled by M-line proteins M Z Sliding Filament Model •myosin thick filaments slide over actin thin filaments; movement is plus-end directed (toward the z- lines), shortening the sarcomere •regulated by troponin/tropomyosin nestled in the helical groove along the microfilaments •Ca++ release from specialized ER (sarcoplasmic reticulum) binds to troponin, shifts tropomyosin so that myosins engage •In smooth muscle the contractile apparatus is not as ordered, and Ca++ regulation is effected by caldesmon Building a muscle involves generating a regular array of filaments of identical length. Nebulin extends Myosin II is a dimer; Each 230kDa head contains microfilament and ATP binding sites. -
The E-Cadherin Adhesion Molecule and Colorectal Cancer. a Global
ANTICANCER RESEARCH 28 : 3815-3826 (2008) Review The E- Cadherin Adhesion Molecule and Colorectal Cancer. A Global Literature Approach ELENA TSANOU 1, DIMITRIOS PESCHOS 2, ANNA BATISTATOU 1, ALEXANDROS CHARALABOPOULOS 3 and KONSTANTINOS CHARALABOPOULOS 3 Department s of 1Pathology-Cytology, 2Forensic Science and 3Physiology Clinical Unit, Medical School, University of Ioannina, Ioannina, Greece Abstract. The E-cadherin –catenin complex plays a crucial In recent years, there has been increasing interest in a role in epithelial cell cell adhesion and in the maintenance of large family of transmembrane glucoproteins, termed tissue architecture. Down-regulation of E-cadherin cadherins (5, 6), which are the main mediators of calcium- expression correlates with a strong invasive potential, dependent cell-cell adhesion, as they facilitate the assembly resulting in poor prognosis in human carcinomas. Progress of specialized intercellular junctions necessary for the has been made in understanding the interaction between the linkage of epithelial cells. These molecules have been different components of this protein complex and how this implicated in the progress of tumour invasion. There is cell-cell adhesion complex is modulated in cancer cells. The evidence that defects in the function of these proteins are present study is an update of the role of E-cadherin in human crucial for the initiation and progression of human cancer, colorectal cancer. It emphasizes new features and the including colorectal cancer. possible role of the complex in clinical practice, discussed in the light of references obtained from the Medline database Colorectal Carcinogenesi s from 1987 to 2007. In colorectal carcinomas, changes in E-cadherin expression have been correlated with tumour Colon cancer has become a model for studying multistage size, histopathology and differentiation, but results are still carcinogenesis (Figure 1). -
Patterning and Polarization of Cells by Intracellular Flows
Author Accepted Manuscript - A published version of this article is available. Illukkumbura, R., Bland, T., and Goehring, N.W. (2020). Curr. Opin. Cell Biol. 62, 123–134. Available at: https://doi.org/10.1016/j.ceb.2019.10.005. Patterning and polarization of cells by intracellular flows Rukshala Illukkumburaa, Tom Blanda,b, Nathan W. Goehringa,b,c aThe Francis Crick Institute, London, UK bInstitute for the Physics of Living Systems, University College London, London, UK c MRC Laboratory for Molecular Cell Biology, University College London, London, UK Abstract Beginning with Turing’s seminal work [1], decades of research have demonstrated the fundamental ability of biochemical networks to generate and sustain the formation of patterns. However, it is increasingly appreciated that biochemical networks both shape and are shaped by physical and mechanical processes [2, 3, 4]. One such process is fluid flow. In many respects, the cytoplasm, membrane and actin cortex all function as fluids, and as they flow, they drive bulk transport of molecules throughout the cell. By coupling biochemical activity to long range molecular transport, flows can shape the distributions of molecules in space. Here we review the various types of flows that exist in cells, with the aim of highlighting recent advances in our understanding of how flows are generated and how they contribute to intracellular patterning processes, such as the establishment of cell polarity. (Word Count: 3200) Keywords: advection, cortical flow, membrane flow, actomyosin, cell polarity, self- organization © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 1. -
Microfilament-Binding Properties of N-Terminal Extension of the Isoform of Smooth Muscle Long Myosin Light Chain Kinase
Chun Xiang Yang et al. npg Cell Research (2006)16: 367-376 npg367 © 2006 IBCB, SIBS, CAS All rights reserved 1001-0602/06 $ 30.00 ORIGINAL ARTICLE www.nature.com/cr Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase Chun Xiang Yang1,3,*, Hua Qun Chen2,*, Chen Chen1, Wei Ping Yu3, Wen Cheng Zhang1, Ya Jin Peng1, Wei Qi He1, Dong Mei Wei1, Xiang Gao1, Min Sheng Zhu1,4 1Model Animal Research Center and National Key Lab of Medicine, Nanjing University, Nanjing 210061, China ; 2College of Life Science, Nanjing Normal University, Nanjing 210097, China; 3Medical College, Southeast University, Nanjing 210096, China; 4Huadong Research Institute for Medical Biotechnics, Nanjing 210002, China Myosin light chain kinases (MLCK) phosphorylate the regulatory light chain of myosin II in thick filaments and bind to F-actin-containing thin filaments with high affinity. The ability of short myosin light chain kinase (S-MLCK) to bind F-actin is structurally attributed to the DFRXXL regions in its N-terminus. The long myosin light chain kinase (L-MLCK) has two additional DFRXXL motifs and six Ig-like modules in its N-terminal extension. The six Ig-like modules are capable of binding to stress fibers independently. Our results from the imaging analysis demonstrated that the first two intact Ig-like modules (2Ig) in N-terminal extension of L-MLCK is the minimal binding module required for microfilament binding. Binding assay confirmed that F-actin was able to bind 2Ig. Stoichiometries of 2Ig peptide were similar for myofilament or pure F-actin. -
Sperm Differentiation
International Journal of Molecular Sciences Review Sperm Differentiation: The Role of Trafficking of Proteins Maria E. Teves 1,* , Eduardo R. S. Roldan 2,*, Diego Krapf 3 , Jerome F. Strauss III 1 , Virali Bhagat 4 and Paulene Sapao 5 1 Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] 2 Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain 3 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA; [email protected] 4 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] 5 Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] * Correspondence: [email protected] (M.E.T.); [email protected] (E.R.S.R.) Received: 4 March 2020; Accepted: 20 May 2020; Published: 24 May 2020 Abstract: Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. -
9.4 | Intermediate Filaments
354 9.4 | Intermediate Filaments The second of the three major cytoskeletal Microtubule elements to be discussed was seen in the electron microscope as solid, unbranched Intermediate filaments with a diameter of 10–12 nm. They were named in- filament termediate filaments (or IFs ). To date, intermediate filaments have only been identified in animal cells. Intermediate fila- ments are strong, flexible, ropelike fibers that provide mechani- cal strength to cells that are subjected to physical stress, Gold-labeled including neurons, muscle cells, and the epithelial cells that line anti-plectin the body’s cavities. Unlike microfilaments and microtubules, antibodies IFs are a chemically heterogeneous group of structures that, in Plectin humans, are encoded by approximately 70 different genes. The polypeptide subunits of IFs can be divided into five major classes based on the type of cell in which they are found (Table 9.2) as well as biochemical, genetic, and immunologic criteria. Figure 9.41 Cytoskeletal elements are connected to one another by We will restrict the present discussion to classes I-IV, which are protein cross-bridges. Electron micrograph of a replica of a small por- found in the construction of cytoplasmic filaments, and con- tion of the cytoskeleton of a fibroblast after selective removal of actin sider type V IFs (the lamins), which are present as part of the filaments. Individual components have been digitally colorized to assist inner lining of the nuclear envelope, in Section 12.2. visualization. Intermediate filaments (blue) are seen to be connected to IFs radiate through the cytoplasm of a wide variety of an- microtubules (red) by long wispy cross-bridges consisting of the fibrous imal cells and are often interconnected to other cytoskeletal protein plectin (green).