Microfilament-Binding Properties of N-Terminal Extension of the Isoform of Smooth Muscle Long Myosin Light Chain Kinase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Intrinsically Disordered Protein SPE-18 Promotes Localized Assembly of MSP in Caenorhabditis Elegans Spermatocytes Kari L
© 2021. Published by The Company of Biologists Ltd | Development (2021) 148, dev195875. doi:10.1242/dev.195875 RESEARCH ARTICLE The intrinsically disordered protein SPE-18 promotes localized assembly of MSP in Caenorhabditis elegans spermatocytes Kari L. Price*,¶, Marc Presler‡,¶, Christopher M. Uyehara§ and Diane C. Shakes ABSTRACT Buracco et al., 2019; Brouhard and Rice, 2018; Bodakuntla et al., Many specialized cells use unconventional strategies of cytoskeletal 2019; de Forges et al., 2012). However, a full understanding of control. Nematode spermatocytes discard their actin and tubulin cytoskeletal control requires consideration of less-studied proteins following meiosis, and instead employ the regulated assembly/ whose properties challenge our standard assumptions. disassembly of the Major Sperm Protein (MSP) to drive sperm One such protein is the nematode Major Sperm Protein (MSP), motility. However, prior to the meiotic divisions, MSP is sequestered assembly/disassembly dynamics of which power the crawling through its assembly into paracrystalline structures called fibrous motility of nematode spermatozoa (Klass and Hirsh, 1981; bodies (FBs). The accessory proteins that direct this sequestration Sepsenwol et al., 1989; Italiano et al., 1996; reviewed by Roberts process have remained mysterious. This study reveals SPE-18 as an and Stewart, 2012; Smith, 2014). Although MSP-based motility intrinsically disordered protein that is essential for MSP assembly appears superficially similar to its actin-based counterpart, the within FBs. In spe-18 mutant spermatocytes, MSP forms disorganized molecular mechanisms are distinct. Much of what we know about cortical fibers, and the cells arrest in meiosis without forming haploid MSP dynamics was gleaned from the parasitic nematode Ascaris, sperm. -
99978 Fascin (55K-2) Mouse Mab (IHC Formulated)
Revision 1 C 0 2 - t Fascin (55K-2) Mouse mAb (IHC a e r o t Formulated) S Orders: 877-616-CELL (2355) [email protected] 8 Support: 877-678-TECH (8324) 7 9 Web: [email protected] 9 www.cellsignal.com 9 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: IHC-P H M Endogenous 55 Mouse IgG1 Q16658 6624 Product Usage Information Application Dilution Immunohistochemistry (Paraffin) 1:100 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Fascin (55K-2) Mouse mAb (IHC Formulated) recognizes endogenous levels of total fascin protein. Species Reactivity: Human, Mouse Source / Purification Monoclonal antibody is produced by immunizing animals with fascin protein purified from HeLa cells. Background Fascin is a monomeric, globular protein that plays a central role in regulating the structure and function of the cortical actin cytoskeleton (1). Fascin promotes cross-linkage of parallel actin filaments during the formation of cell protrusions (lamellipodia and filopodia), and therefore plays an important role in regulating cell migration (2). It has been reported that fascin may also regulate filopodia formation by a mechanism independent of its actin- bundling functions (3), though less is known about this mechanism of action. Research studies have shown that increased fascin expression is associated with increased motility and invasiveness of neoplastic cells, including breast, colon, prostate, and esophageal squamous cell carcinomas (4-6). -
Fascin Is Regulated by Slug, Promotes Progression of Pancreatic Cancer in Mice, and Is Associated with Patient Outcomes Ang Li,1 Jennifer P
Gastroenterology 2014;146:1386–1396 BASIC AND TRANSLATIONAL—PANCREAS Fascin Is Regulated by Slug, Promotes Progression of Pancreatic Cancer in Mice, and Is Associated With Patient Outcomes Ang Li,1 Jennifer P. Morton,1 YaFeng Ma,1 Saadia A. Karim,1 Yan Zhou,1 William J. Faller,1 Emma F. Woodham,1 Hayley T. Morris,1 Richard P. Stevenson,1 Amelie Juin,1 Nigel B. Jamieson,2 Colin J. MacKay,2 C. Ross Carter,2 Hing Y. Leung,1 Shigeko Yamashiro,3 Karen Blyth,1 Owen J. Sansom,1 and Laura M. Machesky1 1CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; 2Department of Surgery, West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK; and 3Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma who undergo resection for localized lesions develop recur- (PDAC) is often lethal because it is highly invasive and metas- rent or metastatic disease.2 Consequently, the development tasizes rapidly. The actin-bundling protein fascin has been of more effective strategies to combat metastasis is of identified as a biomarker of invasive and advanced PDAC and paramount importance. regulates cell migration and invasion in vitro. We investigated Human PDAC arises from pancreatic intraepithelial fascin expression and its role in PDAC progression in mice. neoplasias (PanINs) frequently driven by activating muta- METHODS: G12D R172H We used KRas p53 Pdx1-Cre (KPC) mice tions in KRas,3 followed by loss or mutation of tumor sup- fi to investigate the effects of fascin de ciency on development of pressors, such as p53. -
Null Mutation of the Fascin2 Gene by TALEN Leading to Progressive Hearing Loss and Retinal Degeneration in C57BL/6J Mice
G3: Genes|Genomes|Genetics Early Online, published on August 6, 2018 as doi:10.1534/g3.118.200405 Null mutation of the Fascin2 gene by TALEN leading to progressive hearing loss and retinal degeneration in C57BL/6J mice Xiang Liu1,3,§, Mengmeng Zhao1,2,§, Yi Xie1,2, §, Ping Li1, Oumei Wang1 , Bingxin Zhou1,2, Linlin Yang1,4, Yao Nie1, Lin Cheng1, Xicheng Song1,5, Changzhu Jin1,3,**, Fengchan Han1,2,* 1Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai264003, Shandong, P. R. China 2Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai264003, Shandong, P. R. China 3Department of Human Anatomy and Histology and Embryology, Binzhou Medical University, 346 Guanhai Road, Yantai264003, Shandong, P. R. China 4Department of Otorhinolaryngology-Head and Neck Surgery, Yuhuangding Hospital, 20 East Yuhuangding Road, Yantai 264000, Shandong, P.R .China § These authors contribute equally *The First Corresponding Author: [email protected] **The Second Corresponding Author: [email protected] Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai264003, Shandong, P. R. China © The Author(s) 2013. Published by the Genetics Society of America. Abstract Fascin2 (FSCN2) is an actin cross-linking protein that is mainly localized in retinas and in the stereocilia of hair cells. Earlier studies showed that a deletion mutation in human FASCIN2 (FSCN2) gene could cause autosomal dominant retinitis pigmentosa. Recent studies have indicated that a missense mutation in mouse Fscn2 gene (R109H) can contribute to the early onset of hearing loss in DBA/2J mice. -
Regulation Ofactin Microfilament Integrity in Living Nonmuscle Cells by the Camp-Dependent Protein Kinase and the Myosin Light Chain Kinase Ned J
Published June 1, 1988 Regulation ofActin Microfilament Integrity in Living Nonmuscle Cells by the cAMP-dependent Protein Kinase and the Myosin Light Chain Kinase Ned J. C. Lamb,* Anne Fernandez,* Mary Anne Conti,* Robert Adelstein,* David B. Glass,§ William J. Welch,* and James R. Feramisco* * Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724; *Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892; and §Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322 Abstract. Microinjection of the catalytic subunit of phosphorylation of myosin light chain kinase (MLCK) cAMP-dependent protein kinase (A-kinase) into living increased and concomitantly, the phosphorylation of fibroblasts or the treatment of these cells with agents myosin P-light chain decreased. Moreover, inhibiting that elevate the intracellular cAMP level caused marked MLCK activity via microinjection of affinity-purified alterations in cell morphology including a rounded antibodies specific to native MLCK caused a complete Downloaded from phenotype and a complete loss of actin microfilament loss of microfilament bundle integrity and a decrease bundles. These effects were transient and fully revers- in myosin P-light chain phosphorylation, similar to ible. Two-dimensional gel electrophoresis was used to that seen after injection of A-kinase. These data sup- analyze the changes in phosphoproteins from cells in- port the idea that A-kinase may regulate microfilament jected with A-kinase. These experiments showed that integrity through the phosphorylation and inhibition of accompanying the disassembly of actin microfilaments, MLCK activity in nonmuscle cells. on April 13, 2017 YCLIC AMP is a key second messenger which medi- phate. -
The Relationship Between Intermediate Filaments and Microfilaments Before and During the Formation of Desmosomes and Adherens-Ty
Published May 1, 1987 The Relationship between Intermediate Filaments and Microfilaments before and during the Formation of Desmosomes and Adherens-type Junctions in Mouse Epidermal Keratinocytes Kathleen J. Green, Benjamin Geiger,* Jonathan C. R. Jones, John C. Talian, and Robert D. Goldman Department of Cell Biology and Anatomy, Northwestern University Medical School, Chicago, Illinois 60611; and * Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel Abstract. Actin, keratin, vinculin and desmoplakin ermost of the concentric MFB. Individual IF often organization were studied in primary mouse keratino- splay out, becoming interwoven into these MFB in the cytes before and during Ca2+-induced cell contact forma- region of cell-substrate contact. In the first 30 min af- tion. Double-label fluorescence shows that in cells cul- ter the Ca 2+ switch, areas of submembranous dense Downloaded from tured in low Ca 2÷ medium, keratin-containing inter- material (identified as adherens junctions), which are mediate filament bundles (IFB) and desmoplakin- associated with the perpendicular MFB, can be seen at containing spots are both concentrated towards the cell newly formed cell-ceU contact sites. By 1-2 h, IFB- center in a region bounded by a series of concentric desmosomal component complexes are aligned with microfilament bundles (MFB). Within 5-30 min after the perpendicular MFB as the complexes become jcb.rupress.org raising Ca 2+ levels, a discontinuous actin/vinculin-rich, redistributed to cell-cell interfaces. Cytochalasin D submembranous zone of fluorescence appears at cell- treatment causes the redistribution of actin into numer- cell interfaces. This zone is usually associated with ous patches; keratin-containing Lr:B undergo a con- short, perpendicular MFB, which become wider and comitant redistribution, forming foci that coincide with longer with time. -
Fascin, a Novel Target of B-Catenin-TCF Signaling, Is Expressed at the Invasive Front of Human Colon Cancer
Research Article Fascin, a Novel Target of B-Catenin-TCF Signaling, Is Expressed at the Invasive Front of Human Colon Cancer Danijela Vignjevic,1 Marie Schoumacher,1 Nancy Gavert,3 Klaus-Peter Janssen,4 Gloria Jih,3 MarickLae´,2 Daniel Louvard,1 Avri Ben-Ze’ev,3 and Sylvie Robine1 1UMR 144 Centre National de la Recherche Scientifique and 2Department of Pathology, Institut Curie, Paris, France; 3Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; and 4Department of Surgery, Technical University of Munich, Munich, Germany Abstract carcinogenesis leading to activation of the Wnt/h-catenin signaling Cancer cells become metastatic by acquiring a motile and pathway (1). Later in tumorigenesis, there is an accumulation of ras, p53, Rb invasive phenotype. This step requires remodeling of the actin additional mutations, in K- , and genesencoding h cytoskeleton and the expression of exploratory, sensory componentsof the transforminggrowth factor signaling pathway organelles known as filopodia. Aberrant B-catenin-TCF target (2). Although the effect of such mutations on cell cycle control and gene activation plays a major role in colorectal cancer cell proliferation was extensively studied, much less is known about development. We identified fascin1, a key component of mutations that contribute to the formation of metastases. h filopodia, as a target of B-catenin-TCF signaling in colorectal -Catenin isa central player in the Wnt pathway having a dual cancer cells. Fascin1 mRNA and protein expression were function in epithelial cells. First, it is a component of adherens increased in primary cancers in a stage-dependent manner. junctions that is essential to link the cytoplasmic tail of cadherins Fascin1 was exclusively localized at the invasive front of to the cytoskeleton (3). -
Sphingosine Kinase 1 Signaling Promotes Metastasis of Triple-Negative Breast Cancer Sunil Acharya1,2, Jun Yao1, Ping Li1, Chenyu Zhang1, Frank J
Published OnlineFirst June 25, 2019; DOI: 10.1158/0008-5472.CAN-18-3803 Cancer Tumor Biology and Immunology Research Sphingosine Kinase 1 Signaling Promotes Metastasis of Triple-Negative Breast Cancer Sunil Acharya1,2, Jun Yao1, Ping Li1, Chenyu Zhang1, Frank J. Lowery1,2, Qingling Zhang1, Hua Guo3, Jingkun Qu1, Fei Yang4, Ignacio I. Wistuba4, Helen Piwnica-Worms5, Aysegul A. Sahin3, and Dihua Yu1,2 Abstract Triple-negative breast cancer (TNBC) is the most aggres- with distance metastasis and poor clinical outcome in sive breast cancer subtype. To identify TNBC therapeutic patients with TNBC. Targeting SPHK1 and NFkBusing targets, we performed integrative bioinformatics analysis clinically applicable inhibitors (safingol and bortezomib, of multiple breast cancer patient-derived gene expression respectively) significantly inhibited aggressive mammary datasets and focused on kinases with FDA-approved or in- tumor growth and spontaneouslungmetastasisinortho- pipeline inhibitors. Sphingosine kinase 1 (SPHK1) was topic syngeneic TNBC mouse models. These findings high- identified as a top candidate. SPHK1 overexpression or light SPHK1 and its downstream target, NFkB, as promising downregulation in human TNBC cell lines increased or therapeutic targets in TNBC. decreased spontaneous metastasis to lungs in nude mice, respectively. SPHK1 promoted metastasis by transcription- Significance: SPHK1 is overexpressed in TNBC and pro- ally upregulating the expression of the metastasis- motes metastasis, targeting SPHK1 or its downstream target promoting gene FSCN1 via NFkB activation. Activation of NFkB with clinically available inhibitors could be effective the SPHK1/NFkB/FSCN1 signaling pathway was associated for inhibiting TNBC metastasis. Introduction metastasis (4). It has been reported that TNBC tumors are about 2.5 times more likely to metastasize within 5 years than are Breast cancer, which arises mainly from mammary ducts or breast tumors of other subtypes (5). -
Fascin, an Actin-Bundling Protein Associated with Cell Motility, Is Upregulated in Hormone Receptor Negative Breast Cancer
British Journal of Cancer (2000) 83(7), 870–873 © 2000 Cancer Research Campaign doi: 10.1054/ bjoc.2000.1395, available online at http://www.idealibrary.com on Short Communication Fascin, an actin-bundling protein associated with cell motility, is upregulated in hormone receptor negative breast cancer A Grothey1, R Hashizume1, AA Sahin2 and PD McCrea1 1Program in Genes & Development, Department of Biochemistry and Molecular Biology, 2Department of Pathology; University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA Summary Loss of hormone receptor (HR) status in breast carcinomas is associated with increased tumour cell motility and invasiveness. In an immunohistological study of 58 primary breast cancers, oestrogen (ER) and progesterone (PR) receptor levels were inversely correlated with the expression of fascin, an actin-bundling protein associated with cell motility (P < 0.0001 and P = 0.0019, respectively). In addition, fascin was preferentially expressed in non-diploid tumours (P = 0.03). In summary, the upregulation of fascin in HR-negative breast cancers may contribute to their more aggressive behaviour. © 2000 Cancer Research Campaign Keywords: fascin; breast cancer; motility; hormone receptor oestrogen; progesterone The presence of oestrogen and progesterone receptors (ER and MATERIAL AND METHODS PR) is an important prognostic and predictive factor in human breast cancer. Patients with tumours that express ER and PR Tissue specimens were obtained from 58 female patients (14 pre-, display a less aggressive phenotype with longer disease-free and 44 postmenopausal, median age 61 yrs, range 33–85 yrs) with overall survival than patients with tumours with no or minimal primary invasive breast cancer. -
Fascin, an Echinoid Actin-Bundling Protein, Is a Homolog of The
Proc. Nati. Acad. Sci. USA Vol. 90, pp. 9115-9119, October 1993 Cell Biology Fascin, an echinoid actin-bundling protein, is a homolog of the Drosophila singed gene product (cytskeleton/microvilli/sea urchin) JOSEPH BRYAN*t, ROBERT EDWARDS*, PAUL MATSUDAIRA*, JOANN OTTO§, AND JULIA WULFKUHLE§ *Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030-3498; tWhitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142; and §Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 Communicated by Daniel Branton, July 9, 1993 (receivedfor review April 26, 1993) ABSTRACT A cDNA for fascin, an actin-bundling protein homogenize the eggs contained 1 mM dithiothreitol, 10 ug of in echinoderms, has been cloned, sequenced, and expressed. leupeptin per ml, 10 ,g ofaprotinin per ml, 10 ,ug ofpepstatin The predicted mass of the protein is -55 kDa, similar to that A per ml, 1 mM Na-p-tosyl-L-arginine methyl ester, 1 mM observed for fascin purified from sea urchin eggs. Bacteriafly phenylmethylsulfonyl fluoride, 40 ug of soybean trypsin expressed fascin reacts with antibodies prepared against sea inhibitor per ml, 10 pg of L-1-tosylamido-2-phenylethyl chlo- urchin egg fascin. Fascin has a strong sequence similarity to the romethyl ketone per ml, and 10 mM benzamidine. The singed gene (sn) product in Drosophila and has similarities with extract was centrifuged at 30,000 x g for 45 min to remove a 55-kDa human actin-bundling protein. No extensive similar- large particulates. The supernatant was removed and recen- ities were found with other known actin-binding/bundling trifuged at 100,000 x g for 75 min. -
Microfilament Motors
Myosin motors animate the microfilament cytoskeleton in muscle and other cell types. Microfilament Motors http://pleiad.umdnj.edu/%7Edaw/Cardiomyocytes/HCM-mutations.html cached 040212 GFP-myosin expressed in cardiomyocyte (green) and counterstained with anti-titin mAb (red) Video loop from http://ipmc.epfl.ch/page23148.html cached 0760213, showing the ability of an isolated myofibroblast to contract (looped to mimic the rhythmic beating observed in cardiac cells in culture) + - - + animation Skeletal Muscle - lengthwise "striated" array of alternating/interdigitating thick and thin filament arrays; Skeletal + + the functional unit is a sarcomere (Z-line to Z-line) + - - + (Striated) Bipolar thin microfilament array Muscle Sliding filament contraction •two arrays of microfilaments arranged head-to-head (plus ends) by alpha-actinin/cap z protein at the Z-line •protein linkages (costameres/dystrophin) connect the Z-lines to the plasma membranes •defects in these linkages cause one form of muscular dystrophy Bipolar thick filament array Z •Two bundles of 300-400 myosins (associated by tails) bundled by M-line proteins M Z Sliding Filament Model •myosin thick filaments slide over actin thin filaments; movement is plus-end directed (toward the z- lines), shortening the sarcomere •regulated by troponin/tropomyosin nestled in the helical groove along the microfilaments •Ca++ release from specialized ER (sarcoplasmic reticulum) binds to troponin, shifts tropomyosin so that myosins engage •In smooth muscle the contractile apparatus is not as ordered, and Ca++ regulation is effected by caldesmon Building a muscle involves generating a regular array of filaments of identical length. Nebulin extends Myosin II is a dimer; Each 230kDa head contains microfilament and ATP binding sites. -
The E-Cadherin Adhesion Molecule and Colorectal Cancer. a Global
ANTICANCER RESEARCH 28 : 3815-3826 (2008) Review The E- Cadherin Adhesion Molecule and Colorectal Cancer. A Global Literature Approach ELENA TSANOU 1, DIMITRIOS PESCHOS 2, ANNA BATISTATOU 1, ALEXANDROS CHARALABOPOULOS 3 and KONSTANTINOS CHARALABOPOULOS 3 Department s of 1Pathology-Cytology, 2Forensic Science and 3Physiology Clinical Unit, Medical School, University of Ioannina, Ioannina, Greece Abstract. The E-cadherin –catenin complex plays a crucial In recent years, there has been increasing interest in a role in epithelial cell cell adhesion and in the maintenance of large family of transmembrane glucoproteins, termed tissue architecture. Down-regulation of E-cadherin cadherins (5, 6), which are the main mediators of calcium- expression correlates with a strong invasive potential, dependent cell-cell adhesion, as they facilitate the assembly resulting in poor prognosis in human carcinomas. Progress of specialized intercellular junctions necessary for the has been made in understanding the interaction between the linkage of epithelial cells. These molecules have been different components of this protein complex and how this implicated in the progress of tumour invasion. There is cell-cell adhesion complex is modulated in cancer cells. The evidence that defects in the function of these proteins are present study is an update of the role of E-cadherin in human crucial for the initiation and progression of human cancer, colorectal cancer. It emphasizes new features and the including colorectal cancer. possible role of the complex in clinical practice, discussed in the light of references obtained from the Medline database Colorectal Carcinogenesi s from 1987 to 2007. In colorectal carcinomas, changes in E-cadherin expression have been correlated with tumour Colon cancer has become a model for studying multistage size, histopathology and differentiation, but results are still carcinogenesis (Figure 1).