Netsurfp-2.0: Improved Prediction of Protein Structural Features by Integrated Deep Learning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1911.09811V1 [Physics.Bio-Ph] 22 Nov 2019 Help to Associate a Folded Structure to a Protein Sequence
Machine learning for protein folding and dynamics Frank Noé Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany Gianni De Fabritiis Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Spain, and Institucio Catalana de Recerca i Estudis Avanats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain Cecilia Clementi Center for Theoretical Biological Physics, and Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States Abstract Many aspects of the study of protein folding and dynamics have been affected by the recent advances in machine learning. Methods for the prediction of protein structures from their sequences are now heavily based on machine learning tools. The way simulations are performed to explore the energy landscape of protein systems is also changing as force-fields are started to be designed by means of machine learning methods. These methods are also used to extract the essential information from large simulation datasets and to enhance the sampling of rare events such as folding/unfolding transitions. While significant challenges still need to be tackled, we expect these methods to play an important role on the study of protein folding and dynamics in the near future. We discuss here the recent advances on all these fronts and the questions that need to be addressed for machine learning approaches to become mainstream in protein simulation. Introduction During the last couple of decades advances in artificial intelligence and machine learning have revolu- tionized many application areas such as image recognition and language translation. -
Protein Contact Map Prediction Using Multiple Sequence Alignment
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.12.443740; this version posted May 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Protein contact map prediction using multiple sequence alignment dropout and consistency learning for sequences with less homologs Abstract The prediction of protein contact map needs enough normalized number of effective sequence (Nf) in multiple sequence alignment (MSA). When Nf is small, the predicted contact maps are often not satisfactory. To solve this problem, we randomly selected a small part of sequence homologs for proteins with large Nf to generate MSAs with small Nf. From these MSAs, input features were generated and were passed through a consistency learning network, aiming to get the same results when using the features generated from the MSA with large Nf. The results showed that this method effectively improves the prediction accuracy of protein contact maps with small Nf. 1. Introduction De novo protein structure prediction has been a long-standing challenge in computational biology. Since 2015, protein contact map assisted protein structure prediction has shown its great advantage and thus has been implemented in almost all cutting-edge de novo protein structure prediction tools, such as RaptorX1, I-TASSER2, AlphaFold13, trRosetta4 and etc5-8. Protein contact map is predicted by using features extracted from multiple sequences alignment (MSA). Such features include mutual information and direct-coupling analysis (DCA). Mutual information was often used in early stage studies to predict co-evolving residues pairs.9-11 However, mutual information includes both direct coupling pairs and indirect coupling pairs, while the latter are bioRxiv preprint doi: https://doi.org/10.1101/2021.05.12.443740; this version posted May 13, 2021. -
Computational Protein Structure Prediction Using Deep Learning
COMPUTATIONAL PROTEIN STRUCTURE PREDICTION USING DEEP LEARNING _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by ZHAOYU LI Professor Yi Shang, Dissertation Advisor May 2020 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled COMPUTATIONAL PROTEIN STRUCTURE PREDICTION USING DEEP LEARNING presented by Zhaoyu Li, a candidate for the degree of Doctor of Philosophy and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Yi Shang Dr. Dong Xu Dr. Jianlin Cheng Dr. Ioan Kosztin DEDICATION To my wife Xian, my parents, and my son Ethan. ACKNOWLEDGEMENTS I would like to take the opportunity to thank the following people who have supported me through my PhD program. Without the support of them, this thesis would not have been possible. First, I would like to thank my advisor, Dr. Yi Shang. He has been my advisor since my master’s study. He opened the door of research for me, showed me instructions, guided me, supported me, encouraged me, and inspired me whenever I need help. It is a great pleasure to work with Dr. Shang together. I would also like to thank my committee members, Dr. Dong Xu, Dr. Jianlin Cheng, and Dr. Ioan Kosztin. They have been giving me constructive suggestions and advices to my dissertation and helping me solve problems in my research. Their support is essential, and I appreciate their time and efforts very much. I would also like to thank other lab mates. -
CASP)-Round V
PROTEINS: Structure, Function, and Genetics 53:334–339 (2003) Critical Assessment of Methods of Protein Structure Prediction (CASP)-Round V John Moult,1 Krzysztof Fidelis,2 Adam Zemla,2 and Tim Hubbard3 1Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 2Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 3Sanger Institute, Wellcome Trust Genome Campus, Cambridgeshire, United Kingdom ABSTRACT This article provides an introduc- The role and importance of automated servers in the tion to the special issue of the journal Proteins structure prediction field continue to grow. Another main dedicated to the fifth CASP experiment to assess the section of the issue deals with this topic. The first of these state of the art in protein structure prediction. The articles describes the CAFASP3 experiment. The goal of article describes the conduct, the categories of pre- CAFASP is to assess the state of the art in automatic diction, and the evaluation and assessment proce- methods of structure prediction.16 Whereas CASP allows dures of the experiment. A brief summary of progress any combination of computational and human methods, over the five CASP experiments is provided. Related CAFASP captures predictions directly from fully auto- developments in the field are also described. Proteins matic servers. CAFASP makes use of the CASP target 2003;53:334–339. © 2003 Wiley-Liss, Inc. distribution and prediction collection infrastructure, but is otherwise independent. The results of the CAFASP3 experi- Key words: protein structure prediction; communi- ment were also evaluated by the CASP assessors, provid- tywide experiment; CASP ing a comparison of fully automatic and hybrid methods. -
Benchmarking the POEM@HOME Network for Protein Structure
3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011 Benchmarking the POEM@HOME Network for Protein Structure Prediction Timo Strunk1, Priya Anand1, Martin Brieg2, Moritz Wolf1, Konstantin Klenin2, Irene Meliciani1, Frank Tristram1, Ivan Kondov2 and Wolfgang Wenzel1,* 1Institute of Nanotechnology, Karlsruhe Institute of Technology, PO Box 3640, 76021 Karlsruhe, Germany. 2Steinbuch Centre for Computing, Karlsruhe Institute of Technology, PO Box 3640, 76021 Karlsruhe, Germany ABSTRACT forcefields (Fitzgerald, et al., 2007). Knowledge-based potentials, in contrast, perform very well in differentiating native from non- Motivation: Structure based methods for drug design offer great native protein structures (Wang, et al., 2004; Zhou, et al., 2007; potential for in-silico discovery of novel drugs but require accurate Zhou, et al., 2006) and have recently made inroads into the area of models of the target protein. Because many proteins, in particular protein folding. Physics-based models retain the appeal of high transmembrane proteins, are difficult to characterize experimentally, transferability, but the present lack of truly transferable potentials methods of protein structure prediction are required to close the gap calls for the development of novel forcefields for protein structure prediction and modeling (Schug, et al., 2006; Verma, et al., 2007; between sequence and structure information. Established methods Verma and Wenzel, 2009). for protein structure prediction work well only for targets of high We have earlier reported the rational development of transferable homology to known proteins, while biophysics based simulation free energy forcefields PFF01/02 (Schug, et al., 2005; Verma and methods are restricted to small systems and require enormous Wenzel, 2009) that correctly predict the native conformation of computational resources. -
Methods for the Refinement of Protein Structure 3D Models
International Journal of Molecular Sciences Review Methods for the Refinement of Protein Structure 3D Models Recep Adiyaman and Liam James McGuffin * School of Biological Sciences, University of Reading, Reading RG6 6AS, UK; [email protected] * Correspondence: l.j.mcguffi[email protected]; Tel.: +44-0-118-378-6332 Received: 2 April 2019; Accepted: 7 May 2019; Published: 1 May 2019 Abstract: The refinement of predicted 3D protein models is crucial in bringing them closer towards experimental accuracy for further computational studies. Refinement approaches can be divided into two main stages: The sampling and scoring stages. Sampling strategies, such as the popular Molecular Dynamics (MD)-based protocols, aim to generate improved 3D models. However, generating 3D models that are closer to the native structure than the initial model remains challenging, as structural deviations from the native basin can be encountered due to force-field inaccuracies. Therefore, different restraint strategies have been applied in order to avoid deviations away from the native structure. For example, the accurate prediction of local errors and/or contacts in the initial models can be used to guide restraints. MD-based protocols, using physics-based force fields and smart restraints, have made significant progress towards a more consistent refinement of 3D models. The scoring stage, including energy functions and Model Quality Assessment Programs (MQAPs) are also used to discriminate near-native conformations from non-native conformations. Nevertheless, there are often very small differences among generated 3D models in refinement pipelines, which makes model discrimination and selection problematic. For this reason, the identification of the most native-like conformations remains a major challenge. -
Leveraging Novel Information Sources for Protein Structure Prediction
Leveraging Novel Information Sources for Protein Structure Prediction vorgelegt von Dipl.-Biol. Michael Bohlke-Schneider, geboren Schneider geb. in Dortmund von der Fakultät IV — Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Klaus Obermayer 1. Gutachter: Prof. Dr. Oliver Brock 2. Gutachter: Prof. Dr. Juri Rappsilber 3. Gutachter: Prof. Dr. Jens Meiler Tag der wissenschaftlichen Aussprache: 22.12.2015 Berlin 2016 I would like to dedicate this thesis to my loving wife Nina and my mother Barbara. Acknowledgements Becoming a scientist was clearly the greatest challenge that I had to master in my life. The past five years changed my views and my life in a way that I never thought to be possible. Many people helped me during this journey. I am blessed with having many good friends and I cannot possibly list all the people that I am grateful for. First, I want to thank my adviser, Oliver Brock. Oliver is the sharpest mind I have ever met and his ability to think incredibly clearly has been very inspiring. In addition, Oliver has redefined my standard for scientific rigor and what it means to master all skills that a scientist should have. But his most important lesson was to never be satisfied, to constantly challenge the status quo, and to change the world for the better. This lesson will surely shape my further life, no matter where it will take me. I would also like to thank the members of my committee, Juri Rappsilber and Jens Meiler. -
Ensembling Multiple Raw Coevolutionary Features with Deep Residual Neural Networks for Contact‐Map Prediction in CASP13
Received: 17 April 2019 Revised: 20 July 2019 Accepted: 8 August 2019 DOI: 10.1002/prot.25798 RESEARCH ARTICLE Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13 Yang Li1,2 | Chengxin Zhang2 | Eric W. Bell2 | Dong-Jun Yu1,2 | Yang Zhang2 1School of Computer Science and Engineering, Nanjing University of Science and Technology, Abstract Nanjing, China We report the results of residue-residue contact prediction of a new pipeline built 2 Department of Computational Medicine and purely on the learning of coevolutionary features in the CASP13 experiment. For a Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA query sequence, the pipeline starts with the collection of multiple sequence alignments (MSAs) from multiple genome and metagenome sequence databases using two comple- Correspondence Yang Zhang, Department of Computational mentary Hidden Markov Model (HMM)-based searching tools. Three profile matrices, Medicine and Bioinformatics, University of built on covariance, precision, and pseudolikelihood maximization respectively, are then Michigan, Ann Arbor, MI 48109. Email: [email protected] created from the MSAs, which are used as the input features of a deep residual con- volutional neural network architecture for contact-map training and prediction. Two Dong-Jun Yu, School of Computer Science and Engineering, Nanjing University of Science and ensembling strategies have been proposed to integrate the matrix features through Technology, Xiaolingwei 200, Nanjing -
Advances in Rosetta Protein Structure Prediction on Massively Parallel Systems
UC San Diego UC San Diego Previously Published Works Title Advances in Rosetta protein structure prediction on massively parallel systems Permalink https://escholarship.org/uc/item/87g6q6bw Journal IBM Journal of Research and Development, 52(1) ISSN 0018-8646 Authors Raman, S. Baker, D. Qian, B. et al. Publication Date 2008 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Advances in Rosetta protein S. Raman B. Qian structure prediction on D. Baker massively parallel systems R. C. Walker One of the key challenges in computational biology is prediction of three-dimensional protein structures from amino-acid sequences. For most proteins, the ‘‘native state’’ lies at the bottom of a free- energy landscape. Protein structure prediction involves varying the degrees of freedom of the protein in a constrained manner until it approaches its native state. In the Rosetta protein structure prediction protocols, a large number of independent folding trajectories are simulated, and several lowest-energy results are likely to be close to the native state. The availability of hundred-teraflop, and shortly, petaflop, computing resources is revolutionizing the approaches available for protein structure prediction. Here, we discuss issues involved in utilizing such machines efficiently with the Rosetta code, including an overview of recent results of the Critical Assessment of Techniques for Protein Structure Prediction 7 (CASP7) in which the computationally demanding structure-refinement process was run on 16 racks of the IBM Blue Gene/Le system at the IBM T. J. Watson Research Center. We highlight recent advances in high-performance computing and discuss future development paths that make use of the next-generation petascale (.1012 floating-point operations per second) machines. -
Gathering Them in to the Fold
© 1996 Nature Publishing Group http://www.nature.com/nsmb • comment tion trials, preferring the shorter The first was held in 19947 (see Gathering sequences which are members of a http://iris4.carb.nist.gov/); the sec sequence family: shorter sequences ond will run throughout 19968 were felt to be easier to predict, and ( CASP2: second meeting for the them in to methods such as secondary struc critical assessment of methods of ture prediction are significantly protein structure prediction, Asilo the fold more accurate when based on a mar, December 1996; URL: multiple sequence alignment than http://iris4.carb.nist.gov/casp2/ or A definition of the state of the art in on a single sequence: one or two http://www.mrc-cpe.cam.ac.uk/casp the prediction of protein folding homologous sequences whisper 21). pattern from amino acid sequence about their three-dimensional What do the 'hard' results of the was the object of the course/work structure; a full multiple alignment past predication competition and shop "Frontiers of protein structure shouts out loud. the 'soft' results of the feelings of prediction" held at the Istituto di Program systems used included the workshop partiCipants say 1 Ricerche di Biologia Molecolare fold recognition methods by Sippl , about the possibilities of meaning (IRBM), outside Rome, on 8-17 Jones2, Barton (unpublished) and ful prediction? Certainly it is worth October 1995 (organized by T. Rost 3; secondary structure predic trying these methods on your target Hubbard & A. Tramontano; see tion by Rost and Sander\ analysis sequence-if you find nothing http://www.mrc-cpe.cam.ac.uk/irbm of correlated mutations by Goebel, quickly you can stop and return to course951). -
Improving the Performance of Rosetta Using Multiple Sequence Alignment
PROTEINS:Structure,Function,andGenetics43:1–11(2001) ImprovingthePerformanceofRosettaUsingMultiple SequenceAlignmentInformationandGlobalMeasures ofHydrophobicCoreFormation RichardBonneau,1 CharlieE.M.Strauss,2 andDavidBaker1* 1DepartmentofBiochemistry,Box357350,UniversityofWashington,Seattle,Washington 2BiosciencesDivision,LosAlamosNationalLaboratory,LosAlamos,NewMexico ABSTRACT Thisstudyexplorestheuseofmul- alwayssharethesamefold.8–11 Eachsequencealignment tiplesequencealignment(MSA)informationand canthereforebethoughtofasrepresentingasinglefold, globalmeasuresofhydrophobiccoreformationfor witheachpositionintheMSArepresentingthepreference improvingtheRosettaabinitioproteinstructure fordifferentaminoacidsandgapsatthecorresponding predictionmethod.Themosteffectiveuseofthe positioninthefold.BadretdinovandFinkelsteinand MSAinformationisachievedbycarryingoutinde- colleaguesusedthetheoreticalframeworkoftherandom pendentfoldingsimulationsforasubsetofthe energymodeltoarguethatthedecoydiscrimination homologoussequencesintheMSAandthenidentify- problemisnotcurrentlypossibleunlesstheinformationin ingthefreeenergyminimacommontoallfolded theMSAisusedtosmooththeenergylandscape.12,13 sequencesviasimultaneousclusteringoftheinde- Usingathree-dimensional(3D)cubiclatticemodelfora pendentfoldingruns.Globalmeasuresofhydropho- polypeptide,theseinvestigatorsdemonstratedthataverag- biccoreformation,usingellipsoidalratherthan ingascoringfunctioncontainingrandomerrorsover sphericalrepresentationsofthehydrophobiccore, severalhomologoussequencesallowedthecorrectfoldto -
Precise Structural Contact Prediction Using Sparse Inverse Covariance Estimation on Large Multiple Sequence Alignments David T
Vol. 28 no. 2 2012, pages 184–190 BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btr638 Sequence analysis Advance Access publication November 17, 2011 PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments David T. Jones1,∗, Daniel W. A. Buchan1, Domenico Cozzetto1 and Massimiliano Pontil2 1Department of Computer Science, Bioinformatics Group and 2Department of Computer Science, Centre for Computational Statistics and Machine Learning, University College London, Malet Place, London WC1E 6BT, UK Associate Editor: Mario Albrecht ABSTRACT separated with regards to the primary sequence but display close Downloaded from https://academic.oup.com/bioinformatics/article/28/2/184/198108 by guest on 30 September 2021 Motivation: The accurate prediction of residue–residue contacts, proximity within the 3D structure. Although different geometric critical for maintaining the native fold of a protein, remains an criteria for defining contacts have been given in the literature, open problem in the field of structural bioinformatics. Interest in typically, contacts are regarded as those pairs of residues where the this long-standing problem has increased recently with algorithmic C-β atoms approach within 8 Å of one another (C-α in the case of improvements and the rapid growth in the sizes of sequence families. Glycine) (Fischer et al., 2001; Graña et al., 2005a, b; Hamilton and Progress could have major impacts in both structure and function Huber, 2008). prediction to name but two benefits. Sequence-based contact It has long been observed that with sufficient correct information predictions are usually made by identifying correlated mutations about a protein’s residue–residue contacts, it is possible to elucidate within multiple sequence alignments (MSAs), most commonly the fold of the protein (Gobel et al., 1994; Olmea and Valencia, through the information-theoretic approach of calculating mutual 1997).