Biotechnology Explorer™
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Page 1 Template Last Revised 8.28.12 Unit Title: DNA Extraction Date Developed/Last Revised: March 4, 2013 Unit Author(S): Jeani
Unit Title: DNA Extraction Grade Level: 7 Date Developed/Last Revised: March 4, 2013 Time Frame: 60 - 270 minutes Unit Author(s): Jeanine Nakakura, Leslie Hamasaki Primary Content Area: Life Science/Biology UNIT DESCRIPTION: Students will extract DNA from strawberries. As an extension, students can extract DNA from other foods or their cheek cells, and develop a DNA Extraction kit. Big Ideas (Student Insights that Will Be Developed Over the Course of the Unit): • All living organisms—from bacteria to plants, animals, and humans—contain DNA • Genes and chromosomes determine the expressions of inherited traits • DNA is stored in a cell’s nucleus and can be extracted using a few simple steps Essential Questions (Questions that Will Prompt Students to Connect to the Big Ideas): • Why is DNA so important in biology? • How can I predict what traits will be passed from one generation to another? • How are genes and chromosomes important in determining heredity traits? BENCHMARKS/STANDARDS/LEARNING GOALS Science (HCPS III) Science • SC.7.1.1 Design and safely conduct a scientific investigation to answer a question or test a hypothesis • SC.7.5.2 Describe how an inherited trait can be determined by one or more genes which are found on chromosomes CTE (HCPS III) echnology T • Standard 1: TECHNOLOGICAL DESIGN: Design, modify, and apply technology to effectively and efficiently solve problems CTE (HCPS III) Engineering • CTE.7.1.1 Apply the design process through a set of methodical steps for turning ideas into useful and ethical products and systems • CTE 7.1.2 Assess a product or solution for possible modifications Page 1 Template last revised 8.28.12 Math (CCSS) Mathematics • 7.EE.3 Solve real-life and mathematical problems using numerical and algebraic expressions and equations Literacy (CCSS) 7 (WHST.7.2) Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. -
Vivid Dreams/ Problems Sleeping: Nausea/Upset Stomach: Itching/Rash
Addressing NRT Barriers • Assess the severity of symptoms (Is it tolerable?). • Assess Hx: onset, duration and any troubleshooting that has already taken place. If indicated, get history of these symptoms when not taking these medications. You may also ask how Pt. would normally treat these symptoms. • If symptoms are tolerable àdevelop troubleshooting plan with Pt. Inform Pt. that many symptoms will go away after a few days. Reassess at next visit, but ask Pt. to call if symptoms persist/worsen or become intolerable before next call/visit. • If symptoms are not tolerableàconsider changing products or dosages as applicable. Consult study physician, as needed. Refer Pt. to their personal physician, if needed (e.g., prescription strength creams). • All potential cardiac symptoms should be promptly reported to study physician. Advise Pt. to discontinue NRT when indicated or instructed by study physician. Vivid Dreams/ Problems Sleeping: - Assess if sleep is being disrupted. Is night waking normal for Pt. – what is Pts.’ normal routine? - May try taking patch off at night, keeping in mind cravings may be stronger in the AM. After a couple of nights, try again to wear patch overnight. If using more than 1 patch, may consider only wearing 1 at night. - May try removing patch at night and putting on 2 hours before waking, especially when early morning waking is part of routine. Otherwise, can set an alarm, put on patch, and go back to sleep. - Regulate eating and sleeping patterns and use sleep hygiene tips (relaxation training, avoid caffeine). - Do not smoke or use short-acting NRT within 1-2 hours of bedtime (especially if sleep initiation is the major complaint.) Nausea/upset stomach: - Ask if nausea is only after using gum/lozenge or also after smoking a cigarette. -
Facial Image Comparison Feature List for Morphological Analysis
Disclaimer: As a condition to the use of this document and the information contained herein, the Facial Identification Scientific Working Group (FISWG) requests notification by e-mail before or contemporaneously to the introduction of this document, or any portion thereof, as a marked exhibit offered for or moved into evidence in any judicial, administrative, legislative, or adjudicatory hearing or other proceeding (including discovery proceedings) in the United States or any foreign country. Such notification shall include: 1) the formal name of the proceeding, including docket number or similar identifier; 2) the name and location of the body conducting the hearing or proceeding; and 3) the name, mailing address (if available) and contact information of the party offering or moving the document into evidence. Subsequent to the use of this document in a formal proceeding, it is requested that FISWG be notified as to its use and the outcome of the proceeding. Notifications should be sent to: Redistribution Policy: FISWG grants permission for redistribution and use of all publicly posted documents created by FISWG, provided the following conditions are met: Redistributions of documents, or parts of documents, must retain the FISWG cover page containing the disclaimer. Neither the name of FISWG, nor the names of its contributors, may be used to endorse or promote products derived from its documents. Any reference or quote from a FISWG document must include the version number (or creation date) of the document and mention if the document is in a draft status. Version 2.0 2018.09.11 Facial Image Comparison Feature List for Morphological Analysis 1. -
The Evolution of DNA Extraction Methods
American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Review Article Copy Right@ Preetha J Shetty The Evolution of DNA Extraction Methods Mariyam Dairawan1 and Preetha J Shetty2* 1. Medical Student, College of Medicine, Gulf Medical University, UAE 2. Department of Biomedical Sciences, Gulf Medical University, UAE *Corresponding author: Dr. Preetha J Shetty, Associate Professor, Department of Biomedical Sciences, College of Medicine, Gulf Medical University, UAE. To Cite This Article: Preetha J Shetty, The Evolution of DNA Extraction Methods. 2020 - 8(1). AJBSR.MS.ID.001234. DOI: 10.34297/AJBSR.2020.08.001234. Received: February 18, 2020; Published: March 11, 2020 Abstract Since the first DNA extraction performed by Friedrich Miescher in 1869, scientists have made extraordinary progress in designing extraction methods that are more reliable, easier and faster to perform, more cost-effective and produce a higher yield. The classic liquid-liquid DNA extraction method involves the use of organic and inorganic reagents such as phenol-chloroform which pose a toxic threat to humans. Many newer techniques are now based on physical extraction, which has significantly contributed to developing simpler methods for DNA handling, such as extraction using magnetic beads and cellulose-based filter paper. With the advent of gene-editing and personalized medicine, there has been an increase in the demand for reliable and efficient DNA isolation methods that can yield adequate quantities of high-quality DNA with minimal impurities. The current review addresses the evolution of different DNA extraction techniques from solvent-based methods to physical extraction methods each with its varyingKeywords: set of advantages and limitations. -
Improved Method for DNA Extraction and Purification from Tetrahymena
Protocol Improved Method for DNA Extraction and Purification from Tetrahymena pyriformis Ezzouhra El Maaiden 1,2, Youssef El Kharrassi 1, Abdel Khalid Essamadi 1, Khadija Moustaid 2 and Boubker Nasser 1,* 1 Laboratory of Biochemistry and Neurosciences, Department of Biology, University Hassan I, BP 577, 26000 Settat, Morocco; [email protected] (E.E.M.); [email protected] (Y.E.K.); [email protected] (A.K.E.) 2 Laboratory of Applied Chemistry and Environment, Department of Chemistry, University Hassan I, BP 577, 26000 Settat, Morocco; [email protected] * Correspondence: [email protected]; Tel.: +212-067-373-9479 Received: 16 March 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: Tetrahymena pyriformis (protozoa) is intensely investigated as a model organism, offering numerous advantages in comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is a vital step of any molecular experiment, here a new mixed surfactant (Sodium dodecyl sulfate (SDS) 20%/Triton X-100) was adopted for effective DNA extraction from Tetrahymena pyriformis under an easy, fast protocol. The efficiency of this technique was then compared with three widely-used alternative techniques, namely the Chelex 100 matrix, Ammonium pyrrolidine dithiocarbamate (APD) complex and SDS–chloroform methods. DNA extraction was analyzed by pulsed-field gel electrophoresis, spectral measurement, fluorometry (Qubit), restriction enzyme digestion, and polymerase chain reaction. Data analysis revealed that the quantity and quality of the recovered DNA varied depending on the applied DNA extraction method. The new method (SDS 20%/Triton X-100) was the most efficient for extracting DNA from Tetrahymena pyriformis with high integrity and purity, affordable cost, less time, and suitability for molecular applications. -
DNA Extraction
DNA Extraction Learning Objectives: Students learn about DNA, cell structure, and basic chemical separations. GRADE LEVEL SNEAK PEAK inside … ACTIVITY 4–8 Students extract DNA from strawberries. SCIENCE TOPICS STUDENT SUPPLIES Solutions and Mixtures see next page for more supplies Techniques strawberries Organic and Biochemistry sealing plastic bags dish soap PROCESS SKILLS salt meat tenderizer Describing and Defining isopropyl alcohol, etc…. Explaining Evaluating ADVANCE PREPARATION see next page for more details GROUP SIZE dilute soap mix tenderizer and salt together, etc…. 1–3 OPTIONAL EXTRAS DEMONSTRATION If available, goggles are recommended for this activity. Modeling the Procedure (p. C - 22) EXTENSIONS Animal DNA (p. C - 29) Other DNA Sources (p. C - 30) TIME REQUIRED Advance Preparation Set Up Activity Clean Up 15 minutes 15 minutes 20 minutes 15 minutes the day before DNA Extraction C – 19 Chemistry in the K–8 Classroom Grades 4–8 2007, OMSI SUPPLIES Item Amount Needed strawberries 1 per group sealing plastic bags (e.g., ZiplocTM) 1 per group liquid dish soap ½ teaspoon per group 99% isopropyl alcohol (or lower, e.g., 70% ¼ cup per group rubbing alcohol) meat tenderizer 1 tablespoon per class OR OR papaya or pineapple juice ¼ cup juice per class salt 1 tablespoon per class tall, clear, narrow plastic cups (8 oz. or 12 oz.) 2 per group plastic spoon 1 per group pop-top squeeze bottles (e.g., water or sports drink) 1 per group freezer or bucket of ice 1 per class For Extension or Demonstration supplies, see the corresponding section. ADVANCE PREPARATION Supplies Preparation Strawberries: Purchase fresh or thawed, green tops on or off. -
GLOSSARY of MEDICAL and ANATOMICAL TERMS
GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat. -
1 the Ph of the Human Nail Plate S Murdan*, G
The pH of the human nail plate S Murdan*, G Milcovich and G S Goriparthi Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK *corresponding author Tel: +44-2077535810; Fax: +44-2077535942; [email protected] Keywords: nail, pH, surface, tape stripping, washing, gender, acidity The work described in this paper was supported by The School of Pharmacy, University of London (now UCL School of Pharmacy). 1 ABSTRACT In this Chapter, measurements of the nailplate pH are reported. Measurements were conducted in vivo in 37 volunteers with healthy finger and toe nails, using a skin pH meter. The pH of unwashed and washed fingernails and the big toenails was measured and the influence of washing, anatomical site (fingers/toes), side (left/right), finger digit (digits 1-5) and gender were determined. The pH of the nail plate surface was around 5. There was no significant difference between the sides i.e. right or left hand/foot, among the ten fingernails, and between the two great toenails. However, toenails had a significantly higher pH than fingernails. Washing the nails caused an immediate, but transient increase in pH, which was not sustained with time, and pH returned to pre- washing levels within 20 minutes. In males, washing did not significantly influence finger or toe nailplate pH. In females however, washed fingernails had a significantly higher pH than unwashed ones, while there was no difference in the pH of the toenails. The pH of the nail plate interior, measured after tape-stripping, was found to be slightly lower than that at its surface. -
Detection and Quantitation of Residual Host Cell DNA
Detection and Quantitation of Residual Host Cell DNA White Paper Author: Phil Kuhlman, Biopharmaceutical Technical Specialist 1 Abstract All biological drug products are required to be characterised for safety, quality and efficacy. ICH Q6B gives clear guidance on the requirements for product characterisation including the detection of product and process related impurities. This white paper discusses an approach to monitoring the levels of residual DNA derived from the production host for the drug including consideration of practical control of contamination as well as the MHRA’s guidance on performing PCR analysis. Contents Introduction 3 Process control 3 Batch monitoring 3 Quantitation of residual host cell nucleic acid 4 The requirement for sample extraction 5 HCDNA testing at RSSL 5 Validation of residual host cell DNA analysis 6 Contamination control and assay validity 6 Conclusion 7 2 Introduction Process control The expression of biological products using recombinant The demonstration to the regulatory authorities that DNA technology has enabled the use of peptides and the drug manufacturing process is able to routinely proteins for therapeutic use. One of the main concerns and consistently remove any possible residual DNA with this expression technology especially in immortal contamination leads to no further need for routine cell lines is the possibility of transference of the immortal residual host cell DNA release testing of individual trait to the end user of the medication. Thereby, batches. This would typically involve the demonstration potentially inducing cancer. of clearance of intentionally added host cell DNA, of the The World Health Organisation (WHO), has released size distribution expected in the drug manufacturing guidance1,2 requiring the monitoring throughout the process, at greater than the expected concentration of manufacturing process of HCDNA to demonstrate residual DNA to steps in the process and quantifying the reduction to safe levels, either by process validation or lot reduction in DNA. -
Mandible Biomechanics and Continuously Erupting Teeth: a New Defect Model for Studying Load-Bearing Biomaterials
biomedicines Article Mandible Biomechanics and Continuously Erupting Teeth: A New Defect Model for Studying Load-Bearing Biomaterials Jonathan Z. Baskin 1,2,3,*, Brandon M. White 3 , Amit Vasanji 4 , Thomas E. Love 5 and Steven J. Eppell 3 1 Department of Otolaryngology-Head & Neck Surgery, Cleveland VA Medical Center, Cleveland, OH 44106, USA 2 Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH 44106, USA 3 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; [email protected] (B.M.W.); [email protected] (S.J.E.) 4 ERT Inc., Cleveland, OH 44114, USA; [email protected] 5 Population Health Research Institute, The MetroHealth System and Departments of Medicine and Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; [email protected] * Correspondence: [email protected]; Tel.: +216-791-3800 (ext. 63111) Abstract: Animals with elodont dentition and unfused mandible symphyses are hypothesized to have symmetric incisor morphology. Since these animals maintain their teeth by gnawing, they may provide physiologic feedback on mechanical function when unilateral mandible defects are created that manifest as ipsilateral changes in tooth structure. This defect model would potentially Citation: Baskin, J.Z.; White, B.M.; generate important information on the functional/mechanical properties of implants. Rats’ and Vasanji, A.; Love, T.E.; Eppell, S.J. rabbits’ mandibles and teeth are analyzed with µCT at baseline and post-intervention (n = 8 for each). Mandible Biomechanics and Baseline incisors were compared. In a unilateral mandible pilot study, defects—ranging from critical Continuously Erupting Teeth: A New size defect to complete ramus osteotomies—were created to assess effect on dentition (rats, n = 7; Defect Model for Studying rabbits, n = 6). -
Potential Evidence for Transgenerational Epigenetic Memory in Arabidopsis Thaliana Following Spaceflight ✉ Peipei Xu 1,2, Haiying Chen1,2, Jinbo Hu1 & Weiming Cai 1
ARTICLE https://doi.org/10.1038/s42003-021-02342-4 OPEN Potential evidence for transgenerational epigenetic memory in Arabidopsis thaliana following spaceflight ✉ Peipei Xu 1,2, Haiying Chen1,2, Jinbo Hu1 & Weiming Cai 1 Plants grown in spaceflight exhibited differential methylation responses and this is important because plants are sessile, they are constantly exposed to a variety of environmental pres- sures and respond to them in many ways. We previously showed that the Arabidopsis genome exhibited lower methylation level after spaceflight for 60 h in orbit. Here, using the offspring of the seedlings grown in microgravity environment in the SJ-10 satellite for 11 days and 1234567890():,; returned to Earth, we systematically studied the potential effects of spaceflight on DNA methylation, transcriptome, and phenotype in the offspring. Whole-genome methylation analysis in the first generation of offspring (F1) showed that, although there was no significant difference in methylation level as had previously been observed in the parent plants, some residual imprints of DNA methylation differences were detected. Combined DNA methylation and RNA-sequencing analysis indicated that expression of many pathways, such as the abscisic acid-activated pathway, protein phosphorylation, and nitrate signaling pathway, etc. were enriched in the F1 population. As some phenotypic differences still existed in the F2 generation, it was suggested that these epigenetic DNA methylation modifications were partially retained, resulting in phenotypic differences in the offspring. Furthermore, some of the spaceflight-induced heritable differentially methylated regions (DMRs) were retained. Changes in epigenetic modifications caused by spaceflight affected the growth of two future seed generations. Altogether, our research is helpful in better understanding the adaptation mechanism of plants to the spaceflight environment. -
Quick Tissue/Culture Cells Genomic DNA Extraction Kit
Quick Tissue/Culture Cells Genomic DNA Extraction Kit Item N°: NB-03-0025 50 preps NB-03-0026 100 preps Kit Content Content NB-03-0025 NB-03-0026 Solution DS 15 ml 30 ml Solution MS 20 ml 40 ml Proteinase K 1 ml 2 ml Wash Buffer PS 30 ml 60 ml Wash Buffer PE 15 ml 30 ml Eluent Buffer TE 5 ml 10 ml Spin Column 50 each 100 each Description The Tissue/Culture Cells Genomic DNA Extraction Kit provides a simple and rapid method for high quality genomic DNA purification from mammalian tissues(either fresh or frozen at -70°C until use) and culture cells. The Tissue/Culture Cells Genomic DNA system uses the silica-gel-membrane technology for simple and fast isolation of Genomic DNA without phenol/chloroform. Homogenization is not necessary since tissues are directly lysed by Proteinase K. The buffer system is optimized to allow selective binding of DNA to the silica-gel membrane. The simple centrifugation protocol completely removes contaminants such as proteins, divalent cations, and secondary metabolites. Pure DNA is then eluted in water or low-salt buffer, ready to use. The typical yield of genomic DNA is 3-35 µg from 10 mg of tissue or 1 x 106-107 cultrue cells. The purified high molecular weight genomic DNA is suitable for direct use in all common molecular biology applications. Neo-Biotech 147, avenue Henri Ginoux - 92120 Montrouge Features Efficient: 3-35 µg of genomic DNA from 10 mg of tissue or 1 x 106-107 cultrue cells. Fast: Procedure takes only 30 min.