The NIH Roadmap Epigenomics Program: a Community Epigenetics Resource

Total Page:16

File Type:pdf, Size:1020Kb

The NIH Roadmap Epigenomics Program: a Community Epigenetics Resource The NIH Roadmap Epigenomics Program: A Community Epigenetics Resource Lisa Helbling Chadwick, Ph.D. ([email protected]) Program Director, NIH Roadmap Epigenomics Program National Institute of Environmental Health Sciences Where is the data: sites with unique features Consortium homepage http://roadmapepigenomics.org • View data on genome • protocols • standards NCBI http://ncbi.nlm.nih.gov/epigenomics http://ncbi.nlm.nih.gov/geo/roadmap/epigenomics • View data • Download data • Compare samples Human Epigenome Atlas http://epigenomeatlas.org • View data on genome or with Atlas gene browser • Download data • Tools at Genboree Workbench WashU VizHub http://vizhub.wustl.edu • Next-gen browser http://epigenomegateway.wustl.edu • UCSC visualization hub at http://genome.ucsc.edu Links to other sites! http://www.roadmapepigenomics.org Two ways to browse: Data Table Two ways to browse: Visual Browser Mouse over sites, click for table http://epigenomebrowser.org Where is the data? Consortium homepage http://roadmapepigenomics.org • View data on genome • protocols • standards NCBI http://ncbi.nlm.nih.gov/epigenomics http://ncbi.nlm.nih.gov/geo/roadmap/epigenomics • View data • Download data • Compare samples Human Epigenome Atlas http://epigenomeatlas.org • View data on genome or with Atlas gene browser • Download data • Tools at Genboree Workbench WashU VizHub http://vizhub.wustl.edu • Next-gen browser http://epigenomegateway.wustl.edu • UCSC visualization hub at http://genome.ucsc.edu Hot off the presses : Roadmap data at GEO View tracks on Data download genome viewer (.bed, .wig, some SRA, .bam) of your choice http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics Genome-wide epigenetic data at NCBI: Epigenomics Gateway Compare Text search or Tutorials samples browser search http://www.ncbi.nlm.nih.gov/epigenomics Select samples to add to clipboard Use filters to narrow or collection, or to selection view metadata (antibody, instrument, Or view on quality metrics, genome sample info) Where is the data? Consortium homepage http://roadmapepigenomics.org • View data on genome • protocols • standards NCBI http://ncbi.nlm.nih.gov/epigenomics http://ncbi.nlm.nih.gov/geo/roadmap/epigenomics • View data • Download data • Compare samples Human Epigenome Atlas http://epigenomeatlas.org • View data on genome or with Atlas gene browser • Download data • Tools at Genboree Workbench WashU VizHub http://vizhub.wustl.edu • Next-gen browser http://epigenomegateway.wustl.edu • UCSC visualization hub at http://genome.ucsc.edu The Human Epigenome Atlas Click for data Click to view selected data sets Click to download data, or for metadata The Human Epigenome Atlas Genboree workbench Epigenomic (and other) analysis tools for your data, our data, or both Epigenomic analysis workshop a few times a year. Comparison of epigenetic profiles across specific ROIs (meDIP-seq, low CpG promoters) Cerebellum Cortex Blood Similarity matrix using Pearson correlation Davies et al., Genome Biol 2012 Spark: cluster analysis of genomic regions of interest clusters multiple data types http://www.sparkinsight.org Download program,specific video regions tutorials View regions in UCSC browser Neilsen et al., Genome Research 2012 Where is the data? Consortium homepage http://roadmapepigenomics.org • View data on genome • protocols • standards NCBI http://ncbi.nlm.nih.gov/epigenomics http://ncbi.nlm.nih.gov/geo/roadmap/epigenomics • View data • Download data • Compare samples Human Epigenome Atlas http://epigenomeatlas.org • View data on genome or with Atlas gene browser • Download data • Tools at Genboree Workbench WashU VizHub http://vizhub.wustl.edu • Next-gen browser http://epigenomegateway.wustl.edu • UCSC visualization hub at http://genome.ucsc.edu Roadmap Epigenomics VizHub at UCSC A new epigenomics browser Tutorials! http://epigenomegateway.wustl.edu heatmap metadata Easy to rearrange tracks Juxtaposition: Focus in on specific genomic features or genes Visualize genomic interactions Summary • A community resource of epigenomic maps in a variety of primary human cells and tissues • Data can be found at several sites, including NCBI, UCSC, and sites linked from http://roadmapepigenomics.org Thanks to… REMC PIs: NIH Staff: John Stamatoyannopoulos (Washington) John Satterlee (NIDA) Brad Bernstein & Alex Meissner (Broad) Pat Mastin (NIEHS) Joe Costello (UCSF) Fred Tyson (NIEHS) (and Ting Wang, Wash U) Joni Rutter (NIDA) Bing Ren (UCSD) Kim McAllister (NIEHS) Astrid Haugen (NIEHS) EDACC PI: Aleks Milosavljevic (Baylor) .
Recommended publications
  • The International Human Epigenome Consortium (IHEC): a Blueprint for Scientific Collaboration and Discovery
    The International Human Epigenome Consortium (IHEC): A Blueprint for Scientific Collaboration and Discovery Hendrik G. Stunnenberg1#, Martin Hirst2,3,# 1Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen, The Netherlands 2Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4. 3Canada’s Michael Smith Genome Science Center, BC Cancer Agency, Vancouver, BC, Canada V5Z 4S6 #Corresponding authors [email protected] [email protected] Abstract The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalogue of high-resolution reference epigenomes of major primary human cell types. The studies now presented (cell.com/XXXXXXX) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic data sets to gain insights in the epigenetic control of cell states relevant for human health and disease. One of the great mysteries in developmental biology is how the same genome can be read by cellular machinery to generate the plethora of different cell types required for eukaryotic life. As appreciation grew for the central roles of transcriptional and epigenetic mechanisms in specification of cellular fates and functions, researchers around the world encouraged scientific funding agencies to develop an organized and standardized effort to exploit epigenomic assays to shed additional light on this process (Beck, Olek et al. 1999, Jones and Martienssen 2005, American Association for Cancer Research Human Epigenome Task and European Union 2008). In March 2009, leading scientists and international health research funding agency representatives were invited to a meeting in Bethesda (MD, USA) to gauge the level of interest in an international epigenomics project and to identify potential areas of focus.
    [Show full text]
  • Integrative Analysis for Elucidating Transcriptomics Landscapes of Glucocorticoid-Induced Osteoporosis
    fcell-08-00252 April 13, 2020 Time: 17:59 # 1 ORIGINAL RESEARCH published: 16 April 2020 doi: 10.3389/fcell.2020.00252 Integrative Analysis for Elucidating Transcriptomics Landscapes of Glucocorticoid-Induced Osteoporosis Xiaoxia Ying1†, Xiyun Jin2†, Pingping Wang2†, Yuzhu He1, Haomiao Zhang1, Xiang Ren1, Songling Chai1, Wenqi Fu1, Pengcheng Zhao1, Chen Chen1, Guowu Ma1* and Huiying Liu1* 1 2 Edited by: School of Stomatology, Dalian Medical University, Dalian, China, School of Life Sciences and Technology, Harbin Institute Yongchun Zuo, of Technology, Harbin, China Inner Mongolia University, China Reviewed by: Osteoporosis is the most common bone metabolic disease, characterized by bone Liang Yu, mass loss and bone microstructure changes due to unbalanced bone conversion, Xidian University, China Yanshuo Chu, which increases bone fragility and fracture risk. Glucocorticoids are clinically used to The University of Texas MD Anderson treat a variety of diseases, including inflammation, cancer and autoimmune diseases. Cancer Center, United States However, excess glucocorticoids can cause osteoporosis. Herein we performed an *Correspondence: Guowu Ma integrated analysis of two glucocorticoid-related microarray datasets. The WGCNA [email protected] analysis identified 3 and 4 glucocorticoid-related gene modules, respectively. Differential Huiying Liu expression analysis revealed 1047 and 844 differentially expressed genes in the two [email protected] datasets. After integrating differentially expressed glucocorticoid-related genes, we †These authors have contributed equally to this work found that most of the robust differentially expressed genes were up-regulated. Through protein-protein interaction analysis, we obtained 158 glucocorticoid-related candidate Specialty section: This article was submitted to genes. Enrichment analysis showed that these genes are significantly enriched in the Epigenomics and Epigenetics, osteoporosis related pathways.
    [Show full text]
  • EPIGENOMICS: BEYOND Cpg ISLANDS
    REVIEWS EPIGENOMICS: BEYOND CpG ISLANDS Melissa J. Fazzari* and John M. Greally† Epigenomic studies aim to define the location and nature of the genomic sequences that are epigenetically modified. Much progress has been made towards whole-genome epigenetic profiling using molecular techniques, but the analysis of such large and complex data sets is far from trivial given the correlated nature of sequence and functional characteristics within the genome. We describe the statistical solutions that help to overcome the problems with data-set complexity, in anticipation of the imminent wealth of data that will be generated by new genome- wide epigenetic profiling and DNA sequence analysis techniques. So far, epigenomic studies have succeeded in identifying CpG islands, but recent evidence points towards a role for transposable elements in epigenetic regulation, causing the fields of study of epigenetics and transposable element biology to converge. Epigenetic inheritance involves the transmission of issues of correlation and causality — for example, the information not encoded in DNA sequences from cell DNA sequence feature might be the effect of the epige- to daughter cell or from generation to generation. netic process rather than mechanistically involved in Covalent modifications of the DNA or its packaging directing it. As new techniques to characterize epigenetic histones are responsible for transmitting epigenetic processes throughout the genome are being applied, we information. Epigenomics can be defined as a genome- have the potential to generate large amounts of data to wide approach to studying epigenetics. This term facilitate epigenomic studies. It is a good time now to encompasses whole-genome studies of epigenetic consider these issues so that we can design our analytical processes and the identification of the DNA sequences approaches appropriately.
    [Show full text]
  • A Machine Learning Framework for Precise 3D Domain Boundary Prediction at Base-Level Resolution
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.282186; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. preciseTAD: A machine learning framework for precise 3D domain boundary prediction at base-level resolution Spiro C. Stilianoudakis1 ([email protected]), Mikhail G. Dozmorov1* (mikhail.dozmorov@ vcuhealth.org) 1 Dept. of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA * To whom correspondence should be addressed Abstract The low resolution of high-throughput chromatin conformation capture data limits the precise mapping of boundaries of topologically associating domains and chromatin loops. We developed preciseTAD, an optimized random forest model trained on high-resolution genome annotation data (e.g., CTCF ChIP- seq) to predict the location of domain boundaries at base-level resolution. Distance between boundaries and annotations, random under-sampling, and transcription factor binding sites resulted in best model performance. preciseTAD boundaries were more enriched for CTCF, RAD21, SMC3, and ZNF143, and conserved across cell lines. Using genome annotations, pre-trained models can detect boundaries in cells without Hi-C data. preciseTAD is available at https://bioconductor.org/packages/preciseTAD Keywords Hi-C, TAD, machine learning, random forest, DBSCAN Background The advent of chromosome conformation capture (3C) sequencing technologies, and its successor Hi-C, have revealed a hierarchy of the 3-dimensional (3D) structure of the human genome such as chromatin loops [1], Topologically Associating Domains (TADs) [2,3], and A/B compartments [4].
    [Show full text]
  • Epigenetics and Systems Biology 1St Edition Ebook
    EPIGENETICS AND SYSTEMS BIOLOGY 1ST EDITION PDF, EPUB, EBOOK Leonie Ringrose | 9780128030769 | | | | | Epigenetics and Systems Biology 1st edition PDF Book Regulation of lipogenic gene expression by lysine-specific histone demethylase-1 LSD1. BEDTools: a flexible suite of utilities for comparing genomic features. New technologies are also needed to study higher order chromatin organization and function. For example, acetylation of the K14 and K9 lysines of the tail of histone H3 by histone acetyltransferase enzymes HATs is generally related to transcriptional competence. The idea that multiple dynamic modifications regulate gene transcription in a systematic and reproducible way is called the histone code , although the idea that histone state can be read linearly as a digital information carrier has been largely debunked. Namespaces Article Talk. It seems existing structures act as templates for new structures. As part of its efforts, the society launched a journal, Epigenetics , in January with the goal of covering a full spectrum of epigenetic considerations—medical, nutritional, psychological, behavioral—in any organism. Sooner or later, with the advancements in biomedical tools, the detection of such biomarkers as prognostic and diagnostic tools in patients could possibly emerge out as alternative approaches. Genotype—phenotype distinction Reaction norm Gene—environment interaction Gene—environment correlation Operon Heritability Quantitative genetics Heterochrony Neoteny Heterotopy. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Khan, A. Hidden categories: Webarchive template wayback links All articles lacking reliable references Articles lacking reliable references from September Wikipedia articles needing clarification from January All articles with unsourced statements Articles with unsourced statements from June This mechanism enables differentiated cells in a multicellular organism to express only the genes that are necessary for their own activity.
    [Show full text]
  • Long Non-Coding Rnas, the Dark Matter: an Emerging Regulatory Component in Plants
    International Journal of Molecular Sciences Review Long Non-Coding RNAs, the Dark Matter: An Emerging Regulatory Component in Plants Muhammad Waseem 1,2,3 , Yuanlong Liu 1,2,3 and Rui Xia 1,2,3,* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510640, China; [email protected] (M.W.); [email protected] (Y.L.) 2 Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510640, China 3 Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China * Correspondence: [email protected] Abstract: Long non-coding RNAs (lncRNAs) are pervasive transcripts of longer than 200 nucleotides and indiscernible coding potential. lncRNAs are implicated as key regulatory molecules in various fundamental biological processes at transcriptional, post-transcriptional, and epigenetic levels. Ad- vances in computational and experimental approaches have identified numerous lncRNAs in plants. lncRNAs have been found to act as prime mediators in plant growth, development, and tolerance to stresses. This review summarizes the current research status of lncRNAs in planta, their classification based on genomic context, their mechanism of action, and specific bioinformatics tools and resources for their identification and characterization. Our overarching goal is to summarize recent progress on understanding the regulatory role of lncRNAs in plant developmental processes such as flowering time, reproductive growth, and abiotic stresses. We also review the role of lncRNA in nutrient stress and the ability to improve biotic stress tolerance in plants.
    [Show full text]
  • Systems Biology and Its Relevance to Alcohol Research
    Commentary: Systems Biology and Its Relevance to Alcohol Research Q. Max Guo, Ph.D., and Sam Zakhari, Ph.D. Systems biology, a new scientific discipline, aims to study the behavior of a biological organization or process in order to understand the function of a dynamic system. This commentary will put into perspective topics discussed in this issue of Alcohol Research & Health, provide insight into why alcohol-induced disorders exemplify the kinds of conditions for which a systems biological approach would be fruitful, and discuss the opportunities and challenges facing alcohol researchers. KEY WORDS: Alcohol-induced disorders; alcohol research; biomedical research; systems biology; biological systems; mathematical modeling; genomics; epigenomics; transcriptomics; metabolomics; proteomics ntil recently, most biologists’ emerging discipline that deals with, Alcohol Research & Health intend to efforts have been devoted to and takes advantage of, these enormous address. In this commentary, we will Ureducing complex biological amounts of data. Although scientists try to put the topics discussed in this systems to the properties of individual and engineers have applied the concept issue into perspective, provide views molecules. However, with the com­ of an integrated systemic approach for on the significance of systems biology pleted sequencing of the genomes of years, systems biology has only emerged as a new, distinct discipline to study 1 High-throughput genomics is the study of the structure humans, mice, rats, and many other and function of an organism’s complete genetic content, organisms, technological advances in complex biological systems in the past or genome, using technology that analyzes a large num­ the fields of high-throughput genomics1 several years.
    [Show full text]
  • Enhanced Jbrowse Plugins for Epigenomics Data Visualization Brigitte T
    Hofmeister and Schmitz BMC Bioinformatics (2018) 19:159 https://doi.org/10.1186/s12859-018-2160-z SOFTWARE Open Access Enhanced JBrowse plugins for epigenomics data visualization Brigitte T. Hofmeister1* and Robert J. Schmitz2* Abstract Background: New sequencing techniques require new visualization strategies, as is the case for epigenomics data such as DNA base modifications, small non-coding RNAs, and histone modifications. Results: We present a set of plugins for the genome browser JBrowse that are targeted for epigenomics visualizations. Specifically, we have focused on visualizing DNA base modifications, small non-coding RNAs, stranded read coverage, and sequence motif density. Additionally, we present several plugins for improved user experience such as configurable, high-quality screenshots. Conclusions: In visualizing epigenomics with traditional genomics data, we see these plugins improving scientific communication and leading to discoveries within the field of epigenomics. Keywords: Epigenomics, Genomics, Genome browser, Visualization Background seq) [15], assay for transposase-accessible chromatin As next-generation sequencing techniques for detecting sequencing (ATAC-seq) [16], RNA-seq [17–19], and and quantifying DNA nucleotide variants, histone small RNA-seq [20] have been instrumental in advancing modifications and RNA transcripts become widely the field of epigenomics. Epigenomic data sets generated implemented, it is imperative that graphical tools such from these techniques typically include: DNA base modifi- as genome browsers are able to properly visualize these cations, mRNAs, small RNAs, histone modifications and specialized data sets. Current genome browsers such as variants, chromatin accessibility, and DNA sequence UCSC genome browser [1], AnnoJ [2], IGV [3], WashU motifs. These techniques have allowed researchers to map EpiGenome Browser [4], Epiviz [5], IGB [6], and JBrowse the epigenomic landscape at high resolution, greatly [7], have limited capability to visualize these data sets advancing our understanding of gene regulation.
    [Show full text]
  • Generative Modeling of Multi-Mapping Reads with Mhi-C Advances Analysis of Hi-C Studies Ye Zheng1, Ferhat Ay2,3, Sunduz Keles1,4*
    TOOLS AND RESOURCES Generative modeling of multi-mapping reads with mHi-C advances analysis of Hi-C studies Ye Zheng1, Ferhat Ay2,3, Sunduz Keles1,4* 1Department of Statistics, University of Wisconsin-Madison, Madison, United States; 2La Jolla Institute for Allergy and Immunology, La Jolla, United States; 3School of Medicine, University of California, San Diego, La Jolla, United States; 4Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, United States Abstract Current Hi-C analysis approaches are unable to account for reads that align to multiple locations, and hence underestimate biological signal from repetitive regions of genomes. We developed and validated mHi-C, a multi-read mapping strategy to probabilistically allocate Hi-C multi-reads. mHi-C exhibited superior performance over utilizing only uni-reads and heuristic approaches aimed at rescuing multi-reads on benchmarks. Specifically, mHi-C increased the sequencing depth by an average of 20% resulting in higher reproducibility of contact matrices and detected interactions across biological replicates. The impact of the multi-reads on the detection of significant interactions is influenced marginally by the relative contribution of multi-reads to the sequencing depth compared to uni-reads, cis-to-trans ratio of contacts, and the broad data quality as reflected by the proportion of mappable reads of datasets. Computational experiments highlighted that in Hi-C studies with short read lengths, mHi-C rescued multi-reads can emulate the effect of longer reads. mHi-C also revealed biologically supported bona fide promoter-enhancer interactions and topologically associating domains involving repetitive genomic regions, thereby *For correspondence: unlocking a previously masked portion of the genome for conformation capture studies.
    [Show full text]
  • Next Generation Sequencing: Advances in Characterizing the Methylome
    Genes 2010, 1, 143-165; doi:10.3390/genes1020143 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review Next Generation Sequencing: Advances in Characterizing the Methylome Kristen H. Taylor 1, Huidong Shi 2 and Charles W. Caldwell 1,* 1 University of Missouri-Columbia School of Medicine, Ellis Fischel Cancer Center, Columbia, MO 65212, USA; E-Mail: [email protected] 2 Medical College of Georgia, Augusta, GA 30912, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-573-882-1283; Fax: +1-573-884-4612. Received: 3 May 2010; in revised form: 22 June 2010 / Accepted: 28 June 2010 / Published: 1 July 2010 Abstract: Epigenetic modifications play an important role in lymphoid malignancies. This has been evidenced by the large body of work published using microarray technologies to generate methylation profiles for numerous types and subtypes of lymphoma and leukemia. These studies have shown the importance of defining the epigenome so that we can better understand the biology of lymphoma. Recent advances in DNA sequencing technology have transformed the landscape of epigenomic analysis as we now have the ability to characterize the genome-wide distribution of chromatin modifications and DNA methylation using next-generation sequencing. To take full advantage of the throughput of next-generation sequencing, there are many methodologies that have been developed and many more that are currently being developed. Choosing the appropriate methodology is fundamental to the outcome of next-generation sequencing studies. In this review, published technologies and methodologies applicable to studying the methylome are presented.
    [Show full text]
  • Comprehensive Epigenome Characterization Reveals Diverse Transcriptional Regulation Across Human Vascular Endothelial Cells
    Nakato et al. Epigenetics & Chromatin (2019) 12:77 https://doi.org/10.1186/s13072-019-0319-0 Epigenetics & Chromatin RESEARCH Open Access Comprehensive epigenome characterization reveals diverse transcriptional regulation across human vascular endothelial cells Ryuichiro Nakato1,2† , Youichiro Wada2,3*†, Ryo Nakaki4, Genta Nagae2,4, Yuki Katou5, Shuichi Tsutsumi4, Natsu Nakajima1, Hiroshi Fukuhara6, Atsushi Iguchi7, Takahide Kohro8, Yasuharu Kanki2,3, Yutaka Saito2,9,10, Mika Kobayashi3, Akashi Izumi‑Taguchi3, Naoki Osato2,4, Kenji Tatsuno4, Asuka Kamio4, Yoko Hayashi‑Takanaka2,11, Hiromi Wada3,12, Shinzo Ohta12, Masanori Aikawa13, Hiroyuki Nakajima7, Masaki Nakamura6, Rebecca C. McGee14, Kyle W. Heppner14, Tatsuo Kawakatsu15, Michiru Genno15, Hiroshi Yanase15, Haruki Kume6, Takaaki Senbonmatsu16, Yukio Homma6, Shigeyuki Nishimura16, Toutai Mitsuyama2,9, Hiroyuki Aburatani2,4, Hiroshi Kimura2,11,17* and Katsuhiko Shirahige2,5* Abstract Background: Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phe‑ notypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. The underlying molecular mechanisms responsible for the diverse phenotypes of ECs from diferent organs are not well understood. Results: To characterize the transcriptomic and epigenomic landscape in the vascular system, we cataloged gene expression and active histone marks in nine types of human ECs (generating 148 genome‑wide datasets) and carried out a comprehensive analysis with chromatin interaction data. We developed a robust procedure for comparative epigenome analysis that circumvents variations at the level of the individual and technical noise derived from sample preparation under various conditions. Through this approach, we identifed 3765 EC‑specifc enhancers, some of which were associated with disease‑associated genetic variations.
    [Show full text]
  • Survey of Epigenomic Landscapes in ES Cells and Differentiated Cells
    The NIH Roadmap Epigenomics Program: Sequencing Human Epigenomes from Head to Toe Joseph F. Costello UCSF Funded by NIH Common Fund NIH Roadmap Epigenomics Program Program Goal: Understand how epigenetic mechanisms contribute to disease NIEHS: Lisa Chadwick, Fred Tyson NIDA:, Joni Rutter, John Satterlee NIH Roadmap Epigenomics Program Novel Marks UCSF UCSD Mapping Broad Centers UW New Health and Technologies Disease EDACC Baylor NCBI Reference Epigenome Mapping Centers Goal: Create high quality epigenome maps of human cells and tissues Matching maps to diseases Reference Map Complex Disease Immune system Asthma Airway cells Autoimmune disease Monocytes Atheroslerosis Breast Breast Cancer Muscle, smooth, skeletal Cardiopulmonary disease Pancreatic islets, Adipocytes Diabetes, Obesity Liver Schizophrenia Brain regions Autism Neural progenitors Dementia Human Epigenome Assays DNA methylation (shotgun bisulfite, RRBS, MeDIP/MRE) HistoneStatus modifications on November by ChIP8, 2012-seq: (6 core marks, plus others) H3K4me1 334 Tissues/Cell types H3K4me3 Chromatin2092 Epigenome accessibility/Transcriptome by DNAseI assays hypersensitivity H3K9me3 H3K27me3 RNA by ssRNA-seq H3K36me3 miRNA by miRNA-seqH3K27Ac* BE Bernstein et al, Nat Biotech 2010; Zhou, Nature Methods, 2011 Sequencing Epigenomes from Head to Toe Oocyte Fertilized egg Morula Sperm Blastocyst Trophoblast Development of specialized cells S. Yamanaka cells Panceatic islets Intestinal cells Epigenomic analysis of multi-lineage differentiation of hESCs Mapping of DNA methylation
    [Show full text]