My Geological Connection Between Minnesota and Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

My Geological Connection Between Minnesota and Western Australia The Compass: Earth Science Journal of Sigma Gamma Epsilon Volume 85 Issue 1 Article 1 7-30-2013 My Geological Connection between Minnesota and Western Australia Larry E. Davis College of St. Benedict / St. John's University, [email protected] Follow this and additional works at: https://digitalcommons.csbsju.edu/compass Part of the Earth Sciences Commons Recommended Citation Davis, Larry E. (2013) "My Geological Connection between Minnesota and Western Australia," The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 85: Iss. 1, Article 1. Available at: https://digitalcommons.csbsju.edu/compass/vol85/iss1/1 This Article is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in The Compass: Earth Science Journal of Sigma Gamma Epsilon by an authorized editor of DigitalCommons@CSB/SJU. For more information, please contact [email protected]. My Geological Connection between Minnesota and Western Australia Larry E. Davis1,2 1Department of Biology College of St. Benedict / St. John’s University Collegeville, MN 56321 USA [email protected] 2School of Arts and Sciences University of Notre Dame-Australia Fremantle, 6160 Western Australia AUSTRALIA [email protected] “I would rather have bowel surgery in the woods with a stick. If you are not stung or pronged to death in some unexpected manner, you may be fatally chomped by sharks or crocodiles, or carried helplessly out to sea by irresistible currents, or left to stagger to an unhappy death in the baking outback.” ― Bill Bryson, In a Sunburned Country Bill Bryson paints a rather scary occasions, “if you love Australia so much, picture of Australia, at least if you are why don’t you just move?” My response going to spend time in ‘the bush’. Much of is always, “it’s a great place to visit, but I Bryson’s description of the ‘sunburned certainly wouldn’t want to live there!” I country’ is done in his typical ‘tongue in have been fortunate in having had the cheek’ manner, but an Australian traveler opportunity to have seen a significant does need to be alert and aware. In truth, portion of the continent and according to Bryson’s description of Australia is not my Aussie friends, I have seen more of quite as bad as it seems, but I would Australia than most Australians, which is encourage any new visitor to Australia to an interesting compliment. So, here I am read In a Sunburned Country. If, during in Western Australia, 17,125 kilometres the reading, you don’t grin and giggle (10,641 miles) from home, surrounded by between some serious contemplation, then a flora and fauna dramatically different I would suggest you change your plans and from central Minnesota. However, as a visit Austria (P.S. If you do visit Austria, a geologist, I feel a certain geological country in central Europe, Austrians would connection to my home state of Minnesota prefer you don’t ask, “where are the when I look at Australian rocks. kangaroos?”). Australia is a great place to do field In terms of humans, Australia is the work, if for no other reason than the most urban country on Earth. The vast weather is nearly always ‘fine’. I’m serious! Evening news on the TV does the majority of Australians live in towns and weather for the entire continent in 5- cities, which means there is a great deal of minutes – it is fine in Perth, it’s hot and wide, open space to explore. This is my humid in Darwin, it’s fine in Brisbane, it’s 9th trip to Australia and I’m amazed with fine in Sydney, it’s fine in Adelaide, it’s each visit. I’ve been asked on numerous fine in Melbourne, and it’s raining in Hobart. Across the nation, the weather is The Compass: Earth Science Journal of Sigma Gamma Epsilon, v. 85, no. 1, 2013 Page 1 fine. Aussies can’t understand why intrusions, and meta-sedimentary rocks American’s are obsessed with the weather! and dated at 3.6 Ga. Immediately, readers Well, crickey the weather in America should balk at the above reference to the changes every 20-minutes and every 20- oldest dated rocks on Earth because the miles! When going into the field in Australia, do keep in mind you have to Isua Greenstone Belt in Greenland is dated drive on the left side of the road, you need at ~3.7, but zircons from the Jack Hills to have plenty of water, and always carry a Meta-conglomerate at Mt Narryer (Fig. 1) jar of vegemite. For the uninformed, are dated at 4,404 ± 8Ma (Wilde, et al., Vegemite is an axial-grease-like substance 2001). The conglomerate has been chock-a-block full of vitamins, which interpreted as being deposited in an Aussies smear on their morning toast. As alluvial fan-deltaic system. The zircons an American, having Vegemite as part of your ‘kit’ will endear you to your Aussie provide evidence that the Hadean Earth colleagues, even if you don’t actually eat might have been wetter than originally the stuff. thought and the existence of liquid water Apart from meteorites, Australian rocks 4.4 billion years ago could have important contain the oldest materials dated in the implications for the evolution of life Earth’s crust (at least to this point). The (Wilde, et al., 2001). Although not quite Narryer gneissic terrane in the Yilgarn as old, Minnesota does boast the Morton Craton of Western Australia is composed gneissic terrane (3.6 Ga) (Fig. 2). And, of highly deformed granites, mafic that is my first geological connection. Figure 1. Jack Hills Meta-conglomerate at Mt. Narryer in the Narryer gneissic terrane of Western Australia. Photo from: http://earthobservatory.nasa.gov/Features/Zircon/. The Compass: Earth Science Journal of Sigma Gamma Epsilon, v. 85, no. 1, 2013 Page 2 Figure 2. Outcrop of the Morton Gneiss in southeastern Minnesota, near Morton, MN. My next geological connection is pseudomorphic substitution of silica associated with the Brockman and Marra ‘tiger-eye’ following low-grade meta- Mamba Iron Formations in the Hamersley morphism that creates veins of crocidolite Range of the Pilbara region of Western asbestos. It should be noted that Heaney Australia (Fig. 3), which are equivalent in and Fisher (2003) disagree with the idea of age to the Biwabik Iron Formation of the pseudomorphic substitution but rather are Mesabi Iron Range in northern Minnesota in favour of synchronous mineral growth (Fig. 3). The banded iron formations of through a crack seal, vein-filling process. Western Australia are noted for their Since I am not a mineralogist, I’ll let occurrence of ‘tiger iron’, which is the others do the arguing. Figure 3. Polished slab of banded iron from the Brockman Iron Formation (left). Note the ‘tiger iron’ or tiger-eye in the sample. Biwabik Band Iron Formation (right) exposed in the Soudan Mine, Tower, MN. The Compass: Earth Science Journal of Sigma Gamma Epsilon, v. 85, no. 1, 2013 Page 3 My favourite geological connection domal stromatolites are well exposed in between Minnesota and Western Australia the Willow River Member of the Lower are the stromatolites. In northern Ordovician Shakopee Formation in Minnesota, beautiful stromatolites are southeastern Minnesota (Fig. 5) (May, et preserved in the 1.8 Ga Biwabik Iron al., 2012). Formation (Fig. 4), and large, puscular Figure 4. Digitate stromatolites in the Biwabik Iron Formation of the Mary Ellen Mine. Photo by Ms. Deborah Rausch, Duluth, MN. Figure 5. Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation in southeastern Minnesota. Individual algal structures are outlined in green; overlapping algal growth is outlined in blue; and the entire stromatolitic structure is outlined in red. Photo from May et al., 2012. The Compass: Earth Science Journal of Sigma Gamma Epsilon, v. 85, no. 1, 2013 Page 4 Western Australia boasts some of very best examples of modern the oldest and youngest stromatolites on stromatolites – the famous Hamelin Pool Earth. Fine examples of ancient of Shark Bay (Fig. 8). Additionally, stromatolites can be found in the ~3.4 Ga Western Australia contains modern Strelley Pool Formation in the East Pilbara examples of thrombolites (Fig. 9), which Terrane (Fig. 6) (Wacey, 2010) and the are similar to stromatolites, but consist of ~3.49 Ga Dresser Formation in the ‘clotted’ algal structures formed by the Warrawoona Group of the Pilbara near precipitation of CaCO3, rather than North Pole, Western Australia (Fig. 7) layered accretions of trapped sediment by (Walter, et al., 1980). Of course, it is in cyanobacteria. Western Australia that one can find the Figure 6. Stromatolitic structures in the 3.49 Ga Dresser Formation of the Warrawoona Group in the North Pole Dome area of the East Pilbara of Western Australia. Figure 7. Stromatolitic structure in the 3.430 Ga Strelley Pool Chert of the Warrawoona Group in the East Pilbara of Western Australia. The Compass: Earth Science Journal of Sigma Gamma Epsilon, v. 85, no. 1, 2013 Page 5 Figure 8. Approximately 6,000 year old ‘living’ stromatolites in the Hamblin Pool, Shark Bay, Western Australia. Figure 9. ‘Living’ thrombolites along the shore of Lake Clifton approximately 100 km south of Perth, Western Australia. The Compass: Earth Science Journal of Sigma Gamma Epsilon, v. 85, no. 1, 2013 Page 6 Most recently, I visited the Boya and Low, 1978). The granites are Quarry (also called Government Quarry) associated with the accretion and assembly near Perth, Western Australia and was of Proterozoic proto-Australia. The immediately reminded of the granite Archean Yilgarn and Pilbara cratons were quarries only a few miles from my home in assembled into the West Australian Craton St.
Recommended publications
  • Preliminary Geologic Map of the Baird Mountains and Part of the Selawik Quadrangles, Alaska By
    preliminary Geologic Map of the Baird Mountains and part of the Selawik Quadrangles, Alaska by S.M. Karl, J.A. Dumoulin, Inyo Ellersieck, A.G. Harris, and J.M. Schmidt Open-File Report 89-551 This map is preliminary and has not been reviewed for conformity with the North American stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Table Contents ~ntroduction.......................................... 1 Stratigraphic Framework .................................1 Structural Framework ....................................4 Acknowledgments .......................................6 Unit Descriptions ......................................6 Kc ............................................. 6 KJm .............................................6 JPe .............................................7 ~zb................ '. ... ., ,....................... 8 Mzg ............................................10 MzPzi ..........................................10 MZPZ~.......................................... 11 PMC ............................................12 PD1 ............................................12 Mk0 ............................................12 M1 .............................................13 MDue ...........................................14 Mlt ............................................15 Mk .............................................15 MD1 ............................................16 MDe ............................................16 MD~...........................................
    [Show full text]
  • Formerly Swaziland)
    GeoJournal of Tourism and Geosites Year XI, vol. 22, no. 2, 2018, p.535-547 ISSN 2065-0817, E-ISSN 2065-1198 DOI 10.30892/gtg.22222-309 GEOSITES AS A POTENTIAL FOR THE DEVELOPMENT OF TOURISM – OVERVIEW OF RELEVANT SITES IN ESWATINI (FORMERLY SWAZILAND) Thomas SCHLÜTER* Department of Geography, Environmental Science and Planning, University of Swaziland, P.B. 4, Kwaluseni, Eswatini, e-mail: [email protected] Andreas SCHUMANN Department of Geology and Petroleum Studies, Makerere University, Kampala, Uganda, e-mail: [email protected] Citation: Schlüter, T., & Schumann, A. (2018). GEOSITES AS A POTENTIAL FOR THE DEVELOPMENT OF TOURISM – OVERVIEW OF RELEVANT SITES IN ESWATINI (FORMERLY SWAZILAND). GeoJournal of Tourism and Geosites. 22(2), 535–547. https://doi.org/10.30892/gtg.22222-309 Abstract: Despite being one of the smallest countries in Africa, the Kingdom of Eswatini (formerly Swaziland) is characterized by many locations, which are due to their geoscientific significance to be termed as geosites, and which are here in an overview presented and briefly explained. Each of them can be assigned to a specific scientific approach, e.g. as a landscape, a geological, a geomorphologic, an archaeological (prehistoric) or a mining heritage site. Eswatini yields remarkable landscapes like the Mahamba Gorge and the Sibebe Monolith, it exhibits worldwide one of the largest in granite formed caves (Gobholo), and possibly the oldest dated rocks in Africa (Piggs Peak gneisses), as well as beautiful and scientifically relevant rock painting sites (Nsangwini, Sandlane and Hholoshini) and three abandoned mines in the Barberton Greenstone Belt (Forbes, Ngwenya and Bulembu).
    [Show full text]
  • Geologic Time – Part I - Practice Questions and Answers Revised October 2007
    Geologic Time – Part I - Practice Questions and Answers Revised October 2007 1. The study of the spatial and temporal relationships between bodies of rock is called ____________________. 2. The geological time scale is the ____________ framework in which geologists view Earth history. 3. Both _________________ and absolute scales are included in the geological time scale. 4. Beds represent a depositional event. They are _________ 1 cm in thickness. 5. Laminations are similar to beds but are ___________ 1 cm in thickness. 6. The idea that most beds are laid down horizontally or nearly so is called the (a) Principle of Original Continuity (b) Principle of Fossil Succession (c) Principle of Cross-Cutting Relationships (d) Principle of Original Horizontality (e) Principle of Superposition 7. The idea that beds extend laterally in three dimensions until they thin to zero thickness is called the (a) Principle of Cross-Cutting Relationships (b) Principle of Original Horizontality (c) Principle of Original Continuity (d) Principle of Fossil Succession (e) Principle of Superposition 8. The idea that younger beds are deposited on top of older beds is called the (a) Principle of Original Horizontality (b) Principle of Fossil Succession (c) Principle of Cross-Cutting Relationships (d) Principle of Original Continuity (e) Principle of Superposition 9. The idea that a dike transecting bedding must be younger than the bedding it crosses is called the (a) Principle of Original Horizontality (b) Principle of Original Continuity (c) Principle of Fossil Succession (d) Principle of Cross-Cutting Relationships (e) Principle of Superposition 10. The idea that fossil content will change upward within a formation is called the (a) Principle of Cross-Cutting Relationships (b) Principle of Original Horizontality (c) Principle of Fossil Succession (d) Principle of Original Continuity (e) Principle of Superposition 11.
    [Show full text]
  • Geology of the Eoarchean, >3.95 Ga, Nulliak Supracrustal
    ÔØ ÅÒÙ×Ö ÔØ Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics Tsuyoshi Komiya, Shinji Yamamoto, Shogo Aoki, Yusuke Sawaki, Akira Ishikawa, Takayuki Tashiro, Keiko Koshida, Masanori Shimojo, Kazumasa Aoki, Kenneth D. Collerson PII: S0040-1951(15)00269-3 DOI: doi: 10.1016/j.tecto.2015.05.003 Reference: TECTO 126618 To appear in: Tectonophysics Received date: 30 December 2014 Revised date: 30 April 2015 Accepted date: 17 May 2015 Please cite this article as: Komiya, Tsuyoshi, Yamamoto, Shinji, Aoki, Shogo, Sawaki, Yusuke, Ishikawa, Akira, Tashiro, Takayuki, Koshida, Keiko, Shimojo, Masanori, Aoki, Kazumasa, Collerson, Kenneth D., Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics, Tectonophysics (2015), doi: 10.1016/j.tecto.2015.05.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Geology of the Eoarchean, >3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics Tsuyoshi Komiya1*, Shinji Yamamoto1, Shogo Aoki1, Yusuke Sawaki2, Akira Ishikawa1, Takayuki Tashiro1, Keiko Koshida1, Masanori Shimojo1, Kazumasa Aoki1 and Kenneth D.
    [Show full text]
  • The World Turns Over: Hadean–Archean Crust–Mantle Evolution
    Lithos 189 (2014) 2–15 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Review paper The world turns over: Hadean–Archean crust–mantle evolution W.L. Griffin a,⁎, E.A. Belousova a,C.O'Neilla, Suzanne Y. O'Reilly a,V.Malkovetsa,b,N.J.Pearsona, S. Spetsius a,c,S.A.Wilded a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Dept. Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia b VS Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia c Scientific Investigation Geology Enterprise, ALROSA Co Ltd, Mirny, Russia d ARC Centre of Excellence for Core to Crust Fluid Systems, Dept of Applied Geology, Curtin University, G.P.O. Box U1987, Perth 6845, WA, Australia article info abstract Article history: We integrate an updated worldwide compilation of U/Pb, Hf-isotope and trace-element data on zircon, and Re–Os Received 13 April 2013 model ages on sulfides and alloys in mantle-derived rocks and xenocrysts, to examine patterns of crustal evolution Accepted 19 August 2013 and crust–mantle interaction from 4.5 Ga to 2.4 Ga ago. The data suggest that during the period from 4.5 Ga to ca Available online 3 September 2013 3.4 Ga, Earth's crust was essentially stagnant and dominantly maficincomposition.Zirconcrystallizedmainly from intermediate melts, probably generated both by magmatic differentiation and by impact melting. This quies- Keywords: – Archean cent state was broken by pulses of juvenile magmatic activity at ca 4.2 Ga, 3.8 Ga and 3.3 3.4 Ga, which may Hadean represent mantle overturns or plume episodes.
    [Show full text]
  • Geologic Map of Alaska
    Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey Front cover. Color shaded relief map of Alaska and surroundings. Sources: 100-meter-resolution natural image of Alaska, http://nationalmap.gov/small_scale/mld/nate100.html; rivers and lakes dataset, http://www.asgdc.state.ak.us/; bathymetry and topography of Russia and Canada, https://www.ngdc.noaa.gov/mgg/global/global.html. Back cover. Previous geologic maps of Alaska: 1906—Brooks, A.H., Abbe, Cleveland, Jr., and Goode, R.U., 1906, The geography and geology of Alaska; a summary of existing knowledge, with a section on climate, and a topographic map and description thereof: U.S. Geological Survey Professional Paper 45, 327 p., 1 sheet. 1939—Smith, P.S., 1939, Areal geology of Alaska: U.S. Geological Survey Professional Paper 192, 100 p., 18 plates. 1957—Dutro, J.T., Jr., and Payne, T.G., 1957, Geologic map of Alaska: U.S. Geological Survey, scale 1:2,500,000. 1980—Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geological Survey Special Map, scale 1:2,500,000, 2 sheets. Geologic Map of Alaska Compiled by Frederic H. Wilson, Chad P. Hults, Charles G. Mull, and Susan M. Karl Pamphlet to accompany Scientific Investigations Map 3340 2015 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S.
    [Show full text]
  • Through the Ages and Around the World
    Mt. Abraham viewed from the Sandy River food plain 5 FARMINGTON: Trough the Ages and Around the World Preface Te summit of Mt. Abraham (above) is hard quartz- ite, resistant to erosion, of Silurian age. Around 430 million years ago (Ma), its quartz-rich sands landed in the Sea of Exploits, located in the southern hemisphere on the newly formed Appalachian margin of ancient North America (Laurentia). Previously (470-450 Ma), an island volcanic arc had collided with Laurentia, and subsequently a fragment (Avalonia) of the supercon- tinent Gondwana would arrive, upending the marine sediments and helping to assemble an even larger supercontinent—Pangea. Rounded sand grains of the mineral zircon dispersed with the quartz have been separated, dated (inset, 1873 Ma), and found to be derived from sources both in Laurentia and Gondwa- na. Te geosphere, thus, records a long history full of rich interactions among Earth’s various envelopes—the atmosphere, hydrosphere, and biosphere—also promi- nently displayed in the photo. Introduction Over the centuries, curious minds have wondered about the origins of our world. Today, thanks to the mind-bending accomplishments of science, we have a coherent, compelling story to tell. Part of that story has been unravelled by examination of the landscape, the veneer of surfcial deposits, and its bedrock founda- tion. Here are some of the local highlights—enjoy! Acknowledgements Tanks to countless geoscientists for deciphering how Earth works and its rich history. Te reader might also consider the hidden role of geoscience in everyday life if you 1) purchase gasoline; 2) possess anything made with mineral resources; 3) beneft from medical science, modern biology being rooted in the concept of natural selection inferred by the geologist Charles Darwin; and/or 4) have concern, based on studies of 2014) et al.
    [Show full text]
  • Earth History
    Earth History Dana Desonie, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHOR Dana Desonie, Ph.D. To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2014 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg
    ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg A CRYPTIC MESOARCHAEAN TERRANE IN THE BASEMENT TO THE CENTRAL AFRICAN COPPERBELT C. RAINAUD, S. MASTER, R. A. ARMSTRONG and L. J. ROBB INFORMATION CIRCULAR No. 363 UNIVERSITY OF THE WITWATERSRAND JOHANNESBURG A CRYPTIC MESOARCHAEAN TERRANE IN THE BASEMENT TO THE CENTRAL AFRICAN COPPERBELT by C. RAINAUD1, S. MASTER1, R.A. ARMSTRONG2 and L.J. ROBB1 (1Economic Geology Research Institute-Hugh Allsopp Laboratory, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, Johannesburg, South Africa (e-mail: [email protected]); 2Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia) ECONOMIC GEOLOGY RESEARCH INSTITUTE INFORMATION CIRCULAR No. 363 September, 2002 A CRYPTIC MESOARCHAEAN TERRANE IN THE BASEMENT TO THE CENTRAL AFRICAN COPPERBELT ABSTRACT In a study of the geochronology of the Katangan Sequence and its basement in the Central African Copperbelt, detrital and xenocrystic zircons from Muva quartzites and Katangan lapilli tuffs, were dated using the Sensitive High-Resolution Ion Microprobe (SHRIMP). A detrital population (dated between 3007 and 3031 Ma) and a group of xenocrystic zircons, aged between 3169 and 3225 Ma, provide the first evidence for the existence of a Mesoarchaean basement beneath the Central African Copperbelt. _____________oOo_____________ A CRYPTIC MESOARCHAEAN TERRANE IN THE BASEMENT TO THE CENTRAL AFRICAN COPPERBELT CONTENTS
    [Show full text]
  • Lesson3 It's a Matter of Time
    Paleontology Lesson It’s a Matter 3 of Time Objectives • Comprehend geologic time; • Differentiate between different divisions of geologic time; and • Understand the environment during the Late Triassic Period where Petrified Forest National Park is located today. Main Idea To develop an understanding of geologic time and the Late Triassic Period as represented by the geologic and fossil records at Petrified Forest National Park. Essential Skills • writing • analyzing • cooperating • classifying • decision making • generalizing • identifying Mathematical Skills • measuring • basic mathematical skills • calculating time • graphing • recording • scale • organizing data Materials • student journals • large sheet of paper • markers or crayons Pages to Photocopy • Creating Timelines Student Activity Sheet pages 31-32 • Geologic Timeline cards pages 33-36 21 Paleontology The following table aligns this lesson with the Arizona Science Standards (5-24-04). Most curricu- lum connections shown are implicit within the lesson. Others are achieved through teacher interac- tion with the class, including discussion of the background information provided. Teachers are encouraged to expand on the lesson to increase its potential as an educational tool and a fun learning experience. Curriculum Connections: Paleontology Lesson 3 IT'S A MATTER OF TIME Arizona Science Standards (5-24-04) Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 Strand 1: C2-PO4 C2-PO4* C4-PO1 C4-PO1* C4-PO2* Inquiry C2-PO5 C2-PO5* Process C4-PO2 C4-PO2* Strand 2: C2-PO1 C2-PO1 C2-PO3* C2-PO1* History & C2-PO3 C2-PO2 Nature of C2-PO3 Science Strand 3: C1-PO1 Science in Personal & Social Perspectives Strand 6: C1-PO3 Earth & C1-PO4 Space Science * repetition of a performance objective from an earlier grade level 22 Paleontology IntrIntrIntroductionoductionoduction Geologic time can be a difficult concept to understand.
    [Show full text]
  • Appendix: Abstracts
    Appendix: Abstracts 221 Mineral Deposits: Processes to Processing, Stanley et al. (eds) © 1999 Balkema, Rotterdam, ISBN 90 5809 068 X A fertile Palaeoproterozoic magmatic arc beneath the Central African Copperbelt C.Rainaud Department of Geology, University of the Witwatersrand, Pvt. Bag 3, WITS 2050, South Africa R.A.Armstrong Research School of Earth Sciences, Australian National University, Canberra 0200, ACT, Australia S.Master Department of Geology, University of the Witwatersrand, Pvt. Bag 3, WITS 2050, South Africa L.J.Robb Department of Geology, University of the Witwatersrand, Pvt. Bag 3, WITS 2050, South Africa ABSTRACT: Chemical characteristics and new U-Pb SHRIMP zircon age data from the basement of the Katangan Sequence in the Central African Copperbelt confirm the existence of a Palaeoproterozoic calc- alkaline volcanic arc. The Lufubu schists, comprising intermediate to acid metavolcanics, have been dated at circa 2000 Ma. Granitic gneiss from the Mkushi copper mine south of the Zambian Copperbelt yields an age of 2049 Ma, whereas the Mufulira granite in the Copperbelt is 1991 Ma. The Samba copper porphyry is dated at circa 1960 Ma. Quartzite from the Muva Supergroup, which unconformably overlies the crystalline basement, exhibits a broad range of detrital zircon ages from 3180 Ma down to 1941 Ma, indicating both Archaean and Palaeoproterozoic provenances. The basement to the world class copper-cobalt deposits of the Katangan Sequence is regarded as a magmatic arc that is, in itself, copper enriched. This has implications for ore-genesis models in the region. 1. INTRODUCTION basement is mainly exposed in the Zambian Copperbelt and in immediately adjacent areas of The Central African Copperbelt, hosted by Katanga.
    [Show full text]
  • Researchers Find Oldest Rocks on Earth 25 September 2008
    Researchers find oldest rocks on Earth 25 September 2008 deposits. "There have been older dates from Western Australia for isolated resistant mineral grains called zircons," says Carlson, "but these are the oldest whole rocks found so far." The oldest zircon dates are 4.36 billion years. Before this study, the oldest dated rocks were from a body of rock known as the Acasta Gneiss in the Northwest Territories, which are 4.03 billion years old. The Earth is 4.6 billion years old, and remnants Bedrock along the northeast coast of Hudson Bay, of its early crust are extremely rare—most of it has Canada, has the oldest rock on Earth. Credit: Jonathan been mashed and recycled into Earth's interior O'Neil several times over by plate tectonics since the Earth formed. The rocks are significant not only for their great age Canadian bedrock more than four billion years old but also for their chemical composition, which may be the oldest known section of the Earth's resembles that of volcanic rocks in geologic early crust. Scientists at the Carnegie Institution settings where tectonic plates are crashing used geochemical methods to obtain an age of together. "This gives us an unprecedented glimpse 4.28 billion years for samples of the rock, making it of the processes that formed the early crust," says 250 million years more ancient than any previously Carlson. discovered rocks. The findings, which offer scientists clues to the earliest stages of our Source: Carnegie Institution planet's evolution, are published in the September 26 issue of Science.
    [Show full text]